
PACIFIC JOURNAL OF MATHEMATICS
Vol. 45, No. 1, 1973

COMMUTATIVE ENDOMORPHISM RINGS

S. H. Cox, JR.

Two problems of W. V. Vasconcelos are partially solved:
(1) The total quotient ring of a commutative noetherian ring
R is quasi-frobenius if and only if Ends (A) is commutative
for each ideal A of R. (2) Let R be a commutative quasi-
regular ring and E a finitely presented ϋ?-module. If E is
faithful and End# (JE) is semi-prime, then E is isomorphic to
an ideal of R. Only commutative rings with unit and unital
modules are considered.

1* In [3] Vasconcelos considers problems concerning commutative
endomorphism rings. Toward the end he asks for a characterization
of rings R for which End (A) is commutative for each ideal A c R.
He conjectures the following answer for noetherian rings.

THEOREM 1.1. Let R be a noetherian ring with total quotient
ring T. If End^ (A) is commutative for each ideal A of R then T is
quasi-frobe nius.

Proof. It is sufficient to show that for each maximal ideal p of
T the local ring S = Tp has Krull dimension zero and Ann^ (q) is a
one dimensional S/q-vector space where q = pS [2, Theorem 221]. Each
ideal I of S has a commutative endomorphism ring since we can
select J a R such that J' (x) S — I and observe that the natural map
EndΛ (J) 0B S —> End,? (J®E S) is a ring isomorphism [1, p. 39, Proposi-
tion 11]. Also because R is noetherian q = Anns (a) for some aeS
[2, Theorem 82]. Since End^ (Ann^ (q)) — End5 (Ann5 (q)) is com-
mutative and Anns (q) Φ 0, then Anns (q) is a one dimensional S/q-
vector space. It remains to show S is zero dimensional, i.e., q is
nilpotent. Since a Φ 0, then there is an integer n such that a g qn

[2, Theorem 79]. Since Ann5 (q) is simple we must have Sa = Ann5 (q)
and qn Π Sa = 0. Now we show qn = 0. Suppose not, choose b e qn, b Φ 0.
Then Anns (6) czq = Ann5 (α). Thus the correspondence xb —* xa defin-
es an S-homomorphism /: Sb —> Sa. Let J = Sa + Sb. This sum is
direct since Saf] Sbcz Sa Π qn = 0. Let %, w e End5 (J) be the follow-
ing composites:

u: J >SaaJ

w:J >Sb-^->Sa(zJ .

Then uw(b) = α and iιra(δ) = 0 contradicting the commutativity of
Ends (J). Thus qn — 0, and £> is zero dimensional.
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The converse to 1.1 is true also. This is because Γis an injective
T-module if T is quasi-frobenius. Indeed if R is any commutative
ring whose total quotient ring T is Γ-in jective then for A e R, EndΛ (A)
can be viewed as a subring of Endτ (AT) which is a homomorphic
image of T and therefore commutative.

The next proposition gives a sufficient condition on AcR for
End (A) to be commutative.

PROPOSITION 1.2. Let R be a commutative ring and A an ideal
of R. If Af] Ann (A) — 0, then Ί£nάB (A) is commutative.

Proof. Let /, g eEnd^ (A) and c = fg — gf. For a, be A we have
ac(b)=c(άb) =f(g(ab)) - g(f(ab)) =f(ag(b)) - g(bf(a)) = g(b)f(a) -f(a)g(b) = 0.
Hence Ac(A) = 0 implies c(A) czAf] Ann (A) = 0. Therefore End (A)
is commutative.

An i?-algebra will be called semi-prime if it has no non-zero
nilpotent elements.

COROLLARY 1.3. If R is semi-prime then End (A) is commutative
and semi-prime for each ideal Ad R.

Proof. A Π Ann (A) consists of nilpotents so End (A) is com-
mutative by 1.2. If / e End (A) is nilpotent, say fn = 0, then for
xeA 0 = fn{xn) = (/(α?))\ Since R is semi-prime f(x) = 0 for xe A.
Thus / = 0.

If R is an integral domain, we can characterize the ideals of R
as those torsionless i?-modules E having End (E) commutative. For
if x 6 E x Φ 0 there is /: E-+R with f(x) Φ 0. Let y e E. The two
homomorphisms z -+f{z)x and z -+f(z)y commute. Hence f(y)x = f{x)y,
so f(y) = 0 implies y = 0. Thus / is injective.

The next section is concerned with how well the property End (A)
is semi-prime distinguishes the ideals of a semi-prime ring R from
other jβ-modules.

2. In [3] Vasconcelos proves that when R is noetherian and
semi-prime a finitely generated faithful itJ-module E with EndΛ (E)
commutative and semi-prime is isomorphic to an ideal of R. He con-
jectures that the result may remain valid for a finitely presented E
even if R is not noetherian. I could not resolve this but generalize
his result to include those rings having an absolutely flat total quo-
tient ring (called quasi-regular rings). The methods make no use of
the commutativity of End (E). Thus in the situation considered (in
2.2 below) semi-prime implies commutativity. Although we are con-
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sidering only commutative rings here, our generalization, unlike the
original version of the theorem, can at least be conjectured for non-
commutative rings.

This is the first step in the proof:

THEOREM 2.1. Let Rbe a ring and E a finitely present R-module.
If xeE is nonzero, then there exists feΈτιd(E) nonzero such that
f(E) c Rx.

Proof. First suppose R is noetherian. Let p be a prime minimal
over Ann (x). Then there exists yeRx such that p = Ann (y) [2,
Theorem 86]. Localize at p. Let K = RPjpP. Since EpΦϋ,Ep®K
is at least one dimensional by the Nakayama lemma [2, Theorem 78].
Thus there is a surjection h: Ep (g) K-+K. As an J?p-module, K = (Ry)P

Let g be the composite Ep—>Ep(>§K-+{Ry)p(z(Rx)p. Since E is
finitely presented, we have Hom^ (E, Rx)p = Hom^ (EP, RxP) [1, p 39,
Proposition 11]. Hence g = //s for some/: E-+Rx and s e R\p. Clearly,
/ has the required properties. Thus the result holds when R is
noetherian. Since E is finitely presented we can use the following well

known technique to reduce to the noetherian case: Let Rm -+ Rn —+
E—>0 be a presentation of E, select bases fif eά: let A(fi) = Σ aae5
B(ej) — mh x = Σ χJmj with aih χj £ -B Let S be the subring generat-
ed by 1 and all the x's and α's. S is noetherian by the Hubert Basis
Theorem. Let F be the S-submodule generated by the m's Then
F(g)s R = E and x e F. Since S is noetherian there is nonzero g: F—>Sx.
Tensoring with S yields a commutative diagram:

E >Sx6ξ)R >Rx

F > Sx c Rx
9

Hence we can take / to be the composite of the maps on the upper row.
For an ideal I of R let Min (/) denote the primes of R minimal

over 7. For an i?-module E let Ass (E) denote the Bourbaki associated
primes of E. Thus Ass (E) is the union over x e E of the sets
Min(Ann(#)).

THEOREM 2.2. Let R be a semi-prime ring, E a finitely presented
R-module. If End (E) is semi-prime, then End (E) is commutative
and Ass (E) = Min(Ann (E)).

Proof. For any finitely presented J?-module E Min(AnnΛ (E)) c
Ass (E) and the mapping End (E) -+ΐ[peA88{E)EndR (Ep) induced by
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End (E) —• End^ (EP) is an in jective ring homomorphism Thus it is
sufficient to establish that if p e Min(Ann (x)) and x e E, then Ep =
(Rx)p. For then [End^ (E)]p ~ ΈndRp(Ep) is commutative and
Ann^ (Rxp) = AnnΛp(2?p) = [AnnJ?(j&)]p Thus by relationship between
primes of Rp and primes of R contained in p we get p e Min(Ann (E)).
So let p e Min(Ann (x)), α? e J0. Put T=RP9 q = pT,F = EP9 y = s/1 e F.
Γ is quasi-local semi-prime with maximal ideal q — l/AnnΓ (y). By
2.1 there is nonzero f:F-+F with /(F) c Ity. Let f(y) = αy. Then
α $ # else / is nilpotent and consequently zero since EndΓ (F) is semi-
prime. Let beq and define h = fror1/. Then & is nilpotent since
b e i/Ann (y) and A(F) c TV. Thus h = 0. Hence 0 =
Therefore q = AnnΓ (y). Let Λf = JP/Γi/ and suppose M Φ qM. Then
M/qM is at least one dimensional over T/q so there is a surjection
g: M-+ T/q = 2ty. Let fc be the composite of the natural map F-+M
followed by g. Then k e End (JP) and k2 = 0. Since End (F) is semi-
prime we get the contradiction k = 0 and ϊfy =̂  0. Therefore ikί = Q'Λί;
and thus F = Ty hy Nakayama. Hence Ep = (jBa?)p as required.

THEOREM 2.3. Lei i? &β quasi-regular ring and E a finitely
presented R-module. If End (E) is semi-prime and if there is an
ideal IczR such that Ann (/) = Ann (E), then E is isomorphic to an
ideal of R.

Proof. By 2.2 Ass (E) = Min(Ann (E)) = Min(Ann (/)). Thus
each associated prime of E consists of zero divisors of R [2, Theorem
84]. Therefore the natural map E—*E®T is in jective where T
denotes the total quotient ring of JB. Let F — E® T. EndΓ(E) =
EndΛ (E) (x) T is semi-prime. Since T is absolutely flat, then F is a
direct sum Te1 © 0 Ten of ideals of T each of which is generated
by an idempotent β< of T [1, Exercise 18, p. 64]. Let iΦj, he
HomΓ (Teif Teά). Define f:F->F by f(ek) = 0 for fc Φ i and /(^) =
h(ei). Then / 2 = 0 and thus h = 0. Hence the idempotents e* are
mutually orthogonal and therefore I*7 = Teγ + + 2K is an ideal of
T. Now multiplication by a suitable regular element will move the
image of E in F inside R.

The hypothesis on AnnΛ (E) in 2.3 is satified when E is faithful.
There is some evidence that 2.3 may be valid for noncommutative

rings. For example if R is an absolutely flat semi-prime ring and E
a finitely presented right JS-module (or more generally a protective
right i2-module) and if End (E) is semi-prime then E is isomorphic
to an ideal.

Added March 12, 197S. S. Alamelu has independently obtained
Theorem 1.1. Her results will appear in the Proceedings of the
American Mathematical Society.
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