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SURGERY AND HANDLE STRAIGHTENING
IN HILBERT CUBE MANIFOLDS

T. A. CHAPMAN

The main result of this paper establishes an infinite dimen-
sional version of the finite-dimensional handle straightening
result of Kirby-Siebenmann. In order to do this a procedure
is developed for doing surgery on infinite-dimensional mani-
folds. These results are used elsewhere to prove that every
compact Hubert cube manifold can be triangulated and to
establish the topological invariance of Whitehead torsion.

1* Introduction* A Hilbert cube manifold (or Q-manifold) is a
separable metric space which has an open cover by sets which are
homeomorphic to open subsets of the Hilbert cube Q. Some obvious
examples of Q-manifolds are (1) open subsets of Q and (2) M x Q,
for any finite-dimensional manifold M Some nonobvious examples of
Q-manifolds are provided by the work of West [17], where it is shown
that P x Q is a Q-manifold, for any locally compact polyhedron P.
We say that a Q-manifold can be triangulated (or is triangulable)
provided that it is homeomorphic to P x Q, for some locally compact
polyhedron P.

The main result of this paper is Theorem 7.1, which gives an
infinite-dimensional version of the finite-dimensional handle straighten-
ing result of Kirby-Siebenmann [10]. This result is a crucial step in
the author's recent proof that Whitehead torsion is a topological
invariant [6]. Theorem 7.1 is also used to establish the following
theorem. We will use the notation Rn for Euclidean w-space, and
for any r > 0 we use B? = [— r, r]n and Int (B?) — (— r, r)n to denote
the standard w-cell of side 2r and its interior.

THEOREM. If X is a triangulable Q-manifold and h: Rn x Q—>X
is an open embedding, for n^2, then X\h(Int (J5Γ) x Q) is triangulable.

The above theorem is the main tool used in proving that every
compact Q-manifold can be triangulated. We refer the reader to [5]
for details of the proof of this result and for a discussion of its
corollaries.

In broad outline the proof of Theorem 7.1 follows the proof of
the corresponding finite-dimensional result. In particular, the idea of
torus homeomorphisms is used. However to achieve the details we
will have to apply a considerable amount of infinite-dimensional ma-
chinery.
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A crucial step in the proof of Theorem 7.1 is Theorem 3.1, where
we establish an infinite-dimensional surgery result. For the most
part, the techniques used in proving Theorem 3.1 differ from those
used in corresponding finite-dimensional situations. In particular we
don't need Poincare duality or transversality.

In §2 we give some definitions and notation which will be used
throughout this paper. As mentioned earlier, §3 is devoted to surgery.
In §§4, 5, and 6 we establish some technical results which will be
used in §7, where we prove our version of infinite-dimensional handle
straightening. Finally in Section 8 we prove the theorem cited earlier.

2 Definitions and notation* In this section we will describe
some of the basic terminology that will be used throughout this paper.
We will use the representation Q — ΠΓ=i In where each 2* is the closed
interval [— 1,1]. If X is any space and k is any integer, then we
use pk to denote the projection of X x Q onto X x P, where P =
Ii x- Jfc. We also let Qk+1 = Ik+1 x Ik+2 x , for all k > 0. Let
S1 denote the standard 1-sphere in R2 and let e: R-+S1 be the covering
projection defined by e(x) = exp (πix/4). Let the w-torus be denoted
by Γ ^ ^ x x S 1 and let en: Rn -> Tn be the product covering
projection defined by en = e x x e.

For any space Xand Ad X we use Int x (A) and Bdx (A) to denote
the topological interior and boundary, respectively, of A in X. As
usual, the subscript will be omitted when the meaning is clear. If
M is an w-manifold (i.e. a finite-dimensional manifold), then dM will
denote the combinatorial boundary of M. We will use definitions and
notation from [8] concerning PL spaces and manifolds, regular neigh-
borhood theory, etc.

A map is a continuous function and embedding f:X—+Y is a
homeomorphism of X onto f(X) c Y. When we say that / : X~+Yis
a homeomorphism, we mean that / is a homeomorphism of X onto
Y. If f,g:X—+Y are homotopic maps, then we write / = g. We
will denote composition of maps by juxtaposition.

We will also need Anderson's notion of Property Z[ϊ\. A closed
subset A of a space X is said to be a Z-set in X provided that given
any nonnull, homotopically trivial open subset U of X, U\A is also
nonnull and homotopically trivial. iJ-sets in Q-manifolds are impor-
tant because of the following result [2]. Homeomorphism Extension
Theorem. Let Ku K2 be compact Z-sets in a Q-manifold X and let h:
Kx ~+ K2 be a homeomorphism such that h = id (i.e. h is homotopic to
the inclusion of Kγ into X). Then h can be extended to a homeomorphism
of X onto itself.

3. Infinite-dimensional surgery• Our main result is Theorem
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3.1, where we establish an infinite-dimensional surgery result. In
Theorem 3.2 we apply a special case of Theorem 3.1 to prove a result
which will be used directly in §7 for handle straightening.

Let P be a compact connected PL space such that P is 1-con-
nected or π^P) — Z, M be a finite-dimensional PL manifold, and
let φ: P x Q x R —> M x Q be an open embedding. We will use this
notation throughout this section. The proof of Theorem 3.1 will be
made more readable by establishing Lemmas 3.1—3.5, each of which
strengthens the preceding one. In the argument that follows we
have explicitly given the details for the case π^P) = Z. The case
in which P is 1-connected is quite similar, and easier.

LEMMA 3.1. There exists an integer k > 0 and a compact PL
submanifold X of M x P such that

(1) X is connected,
(2) Bd (X) is a PL submanifold of M x P which is PL bicollared1,
(3) Bd (X) consists of exactly two components,
(4) ^ ( P x Q x { O } ) c I n t ( I ) x Qk+1 c X x Qk+1cz φ (P x Q x R).

Proof. Choose an integer kx > 0 large enough so that

pklΦ(P x Q x {0}) x Qkι+1 aφ(Px Q x R) .

Choose an open set UaM x Pι such that

pkιΦ(P x Q x {0}) x Qkι+1 aUx Qkl+1 aφ(Px Q x R) .

Then let X1 c U be a regular neighborhood of any compact connected
PL subspace of U which contains pklΦ(P x Q x {0}), and such that
X1 meets dU regularly. Clearly Xx is a compact connected PL sub-
manifold of M x Pι such that Bd (Xλ) is a PL submanifold which is
PL bicollared and

φ{PxQx {0}) c Int (XO x Q*1+1c-Xi x Q, 1 + 1 c^(Px Q x R) .

Bd (JQ x Qfci+1 is compact and since P is connected it follows that
each component of <p(P x Q x i2)\(Int (XJ x Qh+d meets Bd (Xx) x
Qkl+1. Thus φ(P x Q x R)\(Int (X,) x Qh+1) has only finitely many
components, and it is clear that exactly two of these are unbounded.
Let {Al9 •••, Ap} be the collection of bounded components of Φ(P x
Q x 22)\(Int (XO x Qh+1). Choose k2 ;> kt large enough so that

pk2{A%) x Qk2+1 dφ(Px Q x R) ,

for 1 <Ξ i ^ p. Let Xi = Xλ x Ikl+1 x x I&2 and note that pk2(Ai)

1 Bd (X) is PL bicollared means that there exists a PL open embedding h: Bd (X) x
( - 1,1) -> M X Ik such that h(x, 0) = x, for all x 6 Bd (X).
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is a relatively open subset of (M x P2)\Int {XI), for 1 5g i <; p. Put

χ2 = χ; u (u ph(Ad)

and note that X2 is a compact connected PL submanifold of M x P*
such that Bd (X2) is a PL submanifold of M x P 2 , Bd (X2) PL bicollared,
φ(PxQx {0})cInt (X2) x Q,2+1 c X2 x Q,2+1 c ί ( P x Q x i2), and ^(P x
Q x iϋ)\(Int (X2) x Qk2+1) has exactly two components.

Let A, B denote the components of φ(P x Q x i?)\(Int (X2) x Qki+d
We will show how to reduce the number of components of (Bd (X2) x
Qk2+1) Π A. The procedure for reducing the number of components
of (Bd (X2) x Qk2+1) ίΊ B will be similar. Thus choose distinct components
C, D of (Bd (X2) x Qh+ί) Π ̂ 4. We can find a path σ in A from C to
D (i.e. σ f l C ^ ^ and σ Π D Φ φ). Choose k3 ^ k2 large enough so that
Pk3(σ) x Qfe3+i c A. Let X3' = X2 x JΛa+i x x h3 and note that pkz(σ)
is a path in (M x 7fe3)\Int (X3') from pfc3(C) to vH{D). We can use
2>48(σ) to find a PL arc α in (M x /*8)\[int (X3') (j 3(ikf x I*β)] from
Pk3(C) to pki(D) such that one endpoint is in pkz{C), the other is in
Pk3(D), and the remainder of the arc misses XI.

In a standard way we can use a to attach a PL handle to XI in
(ilf x Ps)\[Int {XI) U <5(M x /*3)] which connects the components ph{C)
and Pk3{D) (i.e. take a regular neighborhood of a in (Λf x Pή\d{M x
P3) and add it to X3'). In this manner we obtain a compact connected
PL submanifold X3 of Λf x P 3 such that Bd (X3) is a PL submanifold,
Bd(X3) is PL bicollared, Bd (X3) has one less component than Bd(X3'),
φ{Px Q x {0}) c Int (X3) x Qh+1 c X3 x Qh+1 czφ{PxQxR) and φ{P x
Q x i2)\(Int (X3) x Qkz+i) has exactly two components. [For this last
condition we need to assume that ks >̂ 3.].

It is now clear that we can continue to eliminate boundary com-
ponents in this manner to inductively arrive at an integer k ^ k3 and
a compact connected PL submanifold X of M x P which fulfills our
requirements.

Our next task is to alter the X obtained in Lemma 3.1 so that,
in addition to the properties listed there, if C is a component of Bd (X),
then the inclusion C x Qk+ί c φ{P x Q x R) induces an isomorphism
of πλ{C x Qk+1) onto πx{φ{P x Q x R)). In Lemma 3.2 below we achieve
the surjectivity of this induced homomorphism and Lemmas 3.3, and
3.4 give an inductive procedure for eliminating the kernel of this
homomorphism, while maintaining the surjectivity.

LEMMA 3.2. There exists an inteqer k > 0 and a compact PL
submanifold X of M x P such that
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(1) X is connected,
(2) Bd (X) is a PL submanifold of M x P which is PL bicollared,
(3) Bd (X) consists of exactly two components,
(4) φ(Px Q x {0})dnt(X) x Qk+ιaXx Qk+1aφ(Px Q x R),
(5) if C is any component of Bd(X), then the inclusion C x

Qk+1 c φ(P x Q x R) induces a surjection of π^C x Qk+ί) onto π^φiP x
Q x R)).

Proof. Using Lemma 3.1 there exists an integer kx > 0 and a
compact connected PL submanifold Xι of M x P1 such that Bd (XJ
is a PL submanifold of M x I\ Bd (Xx) is PL bicollared and has
exactly two components, and φ(P x Q x {0}) c Int (-XΊ) x QAl+1 c Xx x
Q A l + 1 c ^ ( P x Q x R). The procedure is now to "fatten up" X1 x
Ikx+ι x x /fc2 in ikf x P2, for some sufficiently large integer k2, so
that (5) above is satisfied. Since πx{φ{P x Q x R) — Z, this amounts
to "fattening up" Xt x I* ι + 1 x x IH so that a loop is introduced
into each component of its boundary, where this loop is appropriately
chosen to achieve (5) above. We will not give the details of the
construction since they are similar to the "fattening up" process used
in Lemma 3.5 later on.

LEMMA 3.3. Let ^ > 0 be an integer and let X1aM x P 1 be a
compact connected PL submanifold of M x P1 such that Bd (XJ is a
PL submanifold, Bd (Xx) is PL bicollared and has exactly two com-
ponents, and φ(P x Q x {0}) c Int (JΣi) x Qkι+ι aXιx Qh+1 c φ(P x Q x
R). Let Cί9 A be the components of Bd(Zi) and let ilfj\ be the
inclusions d x Qh+1 aφ{P x Q x R), A x Qkι+ι c φ(P x Q x R). If
a 6 ̂ (Cx x Q*1+1) and β e πι{Dι x Qh+ί) satisfy (iO*(a) = 1 <wd 0Ί)*(/3) =
1, where (ίO* and (j^ are the induced homomorphisms on the funda-
mental groups, then there exists an integer k2 ̂  h and a compact
PL submanifold X2 of M x Pz such that

(1) Bd (X2) is a PL submanifold of M x 1%
(2) Bd (X2) is PL bicollared and has exactly two components,
(3) φ(Px Qx {0})cInt(X2) x O ¥ 1 c l 2 x Qk2+1czφ(P x Q x R),
(4) if C2, D2 are the components of Bd (X2) (with notation appro-

priately chosen) and i2, j2 are the inclusions C2xQkz+ί(Zφ(P x Q x R),
D2 x Qk2+ι(Zφ(P x Q x R), then there exist surjective homomorphisms
u: TΓ^d x Qkl+1) -> πy{C% x Qk2+1) and v: πι{D1 x Qkl+ί) -> π1(D2 x Qk2+1)
such that u(a) = 1, v(β) = 1, (i2)*u = (i^, and (j^^v = (j"i)*

Proof. Let Au Bι be the components of φ(P x Q x i?)\(Int (XO x
Qkl+1) and choose notation so that CΊ x Qkl+1ci A^φiP x Q x (0, <χ>)) and
A x Qkl+1 aB.dφiPxQxi- oo, 0)). Since (*,)•(«) = 1 and (j\)Λβ) =
1 we can find maps f,: B\ ->Φ(P x Q x (0, oo)) and g,: Bl -+φ(Px Q x
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(-00,0)) such that Λ(Bd (Bf)) c C, x Q*1+1, [ΛI Bd (£2)] = α, Λ (Bd (£?)) c
D1xQkι+ι, and [& | Bd (A2)] = /3(here [ ] denotes homotopy class).
Choose k2 ^ max {ku 5) large enough so that

VuJiiBϊ) x Qk2+1czφ(P x Q x (0, oo))

and

P*2Λ(Bί) x Qk2+1aφ{P x Q x ( - oo, 0)) .

Since k2 ^ 5 we can approximate / x and #i by PL embeddings
U Bΐ -+(Mx Pή\d{M x Pή

and

#2: B? ->(Mx Pή\d(M x !*»)

such that
(1) /2(Bd {B!)) c Cx x I f c l + 1 x x I*2 and ̂ 2(Bd (Bx

2)) czD.x Ih+1 x

(2) / 2 (£ί) x Qh+1 <zφ{Px Q x (0, oo)) and gt(B$ x Qk2+1 c φ(P x
Q x ( - oo, 0)),

(3) [ ( (/ 2 |Bd(£ 2 ) ) , 0)] - a and [((g2 \ Bd (£?)), 0)] - /9, where
((/21 Bd (52)), 0): Bd {BD ->C4 x Qfcl+1 and ((^21 Bd (i?2)), 0): Bd (β2) ~> A x
QA l + ι are defined by ((/21 Bd (β2)), 0)(x) = (/a(»), 0) and ( ( A | Bd (Bx

2)), 0)(a?) -
(Sφ), 0), where 0 = (0, 0, - .) e QH+U

(4) /2(J52) is in general position with respect to d x Ikι+1 x

• X h2,
(5) g2{B?) is in general position with respect to Dί x Ikl+1 x

• x Ikz. Choose an open set UaM x P2 such that

( C l X J f c l + 1 x . . . x Ik2)uMB?)c:U

and U x Qk2+1czφ{P x Q x (0, oo)). Similarly we can choose an open
set VczM x P2 such that

(A x Ikl+1 x x Ik2) u g2{B?) c F

and F x Qk2+1aφ{P x Q x (— oo, 0)). The procedure of Browder now
applies here. That is, Lemma 3.1 of [3] implies that we can exchange
discs to construct a compact connected PL submanifold X2 of M x
P2 such that

(1) Bd (X2) is a PL submanifold of M x P2 which has exactly
two components, one in U and the other in F,

(2) Bd(X2) is PL bicollared,
(3) φ{Px Qx {0}) c Int (X2) x Q , 2 + 1 c X 2 x Q & 2 + 1 c ^ ( P x Q x R),
(4) if C2 and A are the components of Bd (X2), where C2<zU and

A c F, then the homomorphisms u and v of the statement of the
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lemma exist and satisfy the required properties.
We now use Lemma 3.3 to inductively construct an X which

satisfies the requirements of Lemma 3.1 and which also satisfies the
property that if C is a component of Bά(X), then the inclusion
C x Qk+i c Φ(P x Q x R) induces an isomorphism of πx(C x Qk+i) onto
πt(φ(P x Q x R)).

LEMMA 3.4, There exists an integer k > 0 and a compact PL
submanifold X of M x P such that

(1) X is connected,
(2) Bd (X) is a PL submanifold of Mx P which is PL bicollared,
( 3) Bd (X) consists of exactly two components,
(4) φ(Px Q x {0})cInt (X) x Qk+1cz XxQk+ίcφ(P x Q x R),
(5) if C is a component of Bd (X), then the inclusion C x Qk+ι c

φ(P x Q x R) induces an isomorphism of πt(C x Qk+ι) onto π^φiP x
Q x R)).

Proof. Using Lemma 3.2 there exists an integer kx > 0 and a
compact connected PL submanifold Xλ of M x Pι such that Bd (Xj)
is a PL submanifold of M x P 1 , Bd (Xt) is PL bicollared and has
exactly two components, and φ(P x Q x (0}) c Int (Xλ) x QkL+ί c X1 x
Qkl+ίdφ(P x Q x R). Moreover if d and A are the components
of Bd (JQ and i,: d x Qkl+ιaφ{PxQx R), j \ : A x Qkl+1 <zφ(PxQxR)
are inclusions, then (i^*: TΓ^CΊ X Qk) —> TT^(P X Q X R)) and (j\)*:
πι{Dι x <3*1+i) —•τr1(0(P x Q x R)) are surjections. Let a be a generator
of 7Γi(0(P x Q x R)) and choose aγ e πt{C1 x Qkι+d, β1 e π1{D1 x Qkl+ί)
such that (ii)*(aO = a and OΌJGSO = «:. Since ^ ( d x Q*1+i) and
π^Di x Qkι+i) are finitely generated we can choose generators yl9 ,
7m of πΊ(d x Qfc1+1) and δly •• , δ % of ^ ( d x Q*1+i) We now apply
Lemma 3.3 to inductively reduce the number of generators of π^d x
Qkl+1) and TΓ^A X Qfcl+1).

Note that (ii)*(7i) = ar and 0Ί)*(^i) = α% f° r some integers r a n d
s. Thus (/ii)Hί(7i6i:rr) = 1 and 0Ί)*(<5i/5Γs) = 1. Using Lemma 3.3 we
can choose an integer k2 ^ kx and a compact connected P L submanifold
I 2 o f tfx P* such that Bd (X2) is a PL submanifold of M x P* which
is PL bicollared and has exactly two components, and φ{P x Q x
{0}) c Int (X2) x Qk2+1 c X2 x Qk2+1 aφ(Px Q x R). Moreover if C2, A
are the components (appropriately named) of Bd (X2) and i2: C2 x Qk2+1 c
φ(P x Q x R), j 2 : A x Q*2+iC φ(P x Q x R) are inclusions, then there
exist surjective homomorphisms u: 7rx(d x Qkl+i)-+Ki(C2 x Qkz+i), v: π1(D1 x
Qkι+ι)-^π1{D2 x Qk2+1) such that w(71«Γr) = 1, v(δ1βr8) = h (iz)^= (ii)*, and
0's)**> = 0\)* We have ^(C 2 x Qfc2+1) generated by ^ ( α j , w(7θ, , w(7m),
where u(yj = (u(α1))r. Thus Tr^d x Qfc2+i) is generated by u{a^), u(y2), ,
i*(7w). Also we have (iz)*{u{a^) — a. Similarly we have πx(D2 x Qk2+1)
generated by v{βx), v(δ2), . . . , v(δn) and (jj*(v(βd) = a.
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Inductively continuing this procedure we will eventually arrive
at an integer k3 ^ k2 and an appropriate subspace X3 of M x P3, with
boundary components C3 and D3, and inclusions %: C3 x Q^3+1 c ψ(P x
Q x R) and j s : D3 x Qki+1aφ(P x Q x R), such that πλ{C3 x Q^+O is
generated by an element a3 which satisfies (i3)*(a3) — a and π1(D3 x
Qk3+ι) is generated by an element β3 which satisfies (j3)*(β3) = ct. This
implies that (i)* and (£,)* are isomorphisms.

We now prove that the X of Lemma 3.1 can be constructed so
that the inclusion X x Qk+ί c φ(P x Q x R) is a homotopy equivalence.

LEMMA 3.5. There exists an integer k > 0 and a compact connected
PL submanifold X of M x P such that

(1) Bd (X) is a PL submanifold of M x P which has exactly
two components,

(2) Bd (X) is PL bicollared,
( 3) φ(P x Q x {0}) c Int (X) x Qk+1 c X x Qk+1 c φ(P x Q x R),
(4) the inclusion X x Qk+1 c φ(P x Q x R) is a homotopy equi-

valence.

Proof. Using Lemma 3.4 we can find an integer kγ > 0 and a
compact connected PL submanifold Xx of M x P1 such that Bd (JQ
is a P L submanifold of M x P1 which has exactly two components,
Bd (XO is PL bicollared, φ(P x Q x {0}) c Int (X,) x Qkl+1 c Xλ x Qk+1a
Φ(P x Q x R), and if Cl9 A are the components of B d ^ ) , then the
i n c l u s i o n s C Ί x Q f c l + 1 a φ ( P x Q x R) a n d D ι x Q k l + 1 a φ ( P x Q x R)
induce isomorphisms on πλ. Let Au B1 denote the components of φ(P x
Q x i?)\(Int(X!) x QΛl+i)> where notation is chosen so that Bd (Ax) =
d x Qfcl+1 and Bd (BO - A x Q*1+i.

Consider the following diagram, where all the homomorphisms are
induced by inclusions.

δi

π,(C, x Qkι+d >πι{φ(P x Q x R)) .

α2 π^A U (XL x Q*1+0) δ2

We are given that δ0 is an isomorphism, thus α1? a2 are one-to-one
and 6i, b2 are onto. If G denotes the amalgated free product of πx(

and π1(B1 U (Xi x Q*1+0)> w i t h t h e subgroup aι{π1{C1 x Qkl+1)) of
amalgated with subgroup a2(π1(C1 x Qkι+ί)) of π1(B1 U (Xi x Q^1+i)), then
there exist monomorphisms c0, c1? c2 such that the two triangles commute
in the following diagram (see [11], p. 32).
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x Qkl+1)

a2 π^B, U (Xί x Qkι+d) C2

Using the Seifert-Van Kampem theorem there exists a homomorphism
d: πx(φ(P x Qx E))-+G such that c, = dbx and c2 = d&2 (see [12], p. 114).
Thus 61? 62 must be isomorphisms, hence the inclusions A1 c φ(P x Q x
i?) and B1czφ(P x Q x i?) induce isomorphisms on π lβ

It follows from [14] (Complement 6 6(b), p. 48) that A, and J5X

are dominated by finite complexes. It follows from [16] that Ax and
Bί have finite homotopy type if and only if the Wall obstructions

and σ(B1) vanish. But since π^A^ ~ π^B^ ~ Z it follows that
and σ(B^) vanish (see [16], p. 67, for references). Thus Ax and

Bι have finite homotopy type.
Our strategy will be to use the fact that A1 and B1 have

finite homotopy type to "fatten up" Xλ to get our desired X. This
is the first time that we really have to exploit the fact that we are
dealing with infinite-dimensional spaces. Instead of inductively killing
homology groups (as is done in the finite-dimensional situation), we
make the jump from Xι to X in one step.

Choose a finite complex K and maps / : A1 —• | K\, g: \K\—+A1

which are homotopy inverses. Let ί: d —* Aι be defined by i(c) = (c, 0).
Since d is a compact PL space we can find a PL map a: CΊ—*|i£|
which is homotopic to fί: d--> \K |. Let Y be the simplicial mapping
cylinder of a, for appropriate subdivisions of C1 and K (see [7] for
details). Then CΊ and \K\ have natural identifications in Y. Let
r: Y —* I i ί I be the retraction which collapses the fiber over each point
of \K\ in Y to that point. With this identification we obviously must
have r \ CΊ = a. Then r is a deformation retraction. Thus gr: Y—*Άί

is a homotopy equivalence. Using results from [2] we can find an
embedding h:Y—j*Άι such that h(Y) is a Z-set and h ~ gr. Let
i: d c Γ b e inclusion and note that

hj = grj = ga = gfί ~ (id)i = i ,

where id denotes the identity. Thus h \ d : Cx —+ Ax is an embedding
such that h \ CΊ = i and hid) is a Z-set. Using the Homeomorphism
Extension Theorem of §2 we can adjust h so that the condition h\d =
i is additionally satisfied.

Now choose Jc2 ^ kγ large enough so that pkJι(Y) x Qk2+laA1 and
let β = pk2h. If Jc2 is chosen large enough, then we can replace β
by a PL embedding 7:Y-+M x P* such that 7 | CΊ = (id, 0): CΊ — M x



68 T. A. CHAPMAN

P 2 and 7 is as close to β as we want. Thus 7 can be chosen so
that Ύ(Y) x Q^+iCAi and Ύ ~ β. By making one more adjustment
to 7 we can additionally require that

7(F\Q Π (d x Ikι+1 x x h) = 0 .

Note that (7, 0): F—• Ax is a homotopy equivalence. If C2 = Ci x JΓ^+I x
•••x Ifc2, then there is a deformation retraction of C2Uτ(Γ) onto
(Ci x {0}) U 7(30 = 7(F). Thus the inclusion (C2 U τ ( F ) ) x Q*2+1c A,
is a homotopy equivalence. Let

N=(C2x Ik2+ι) U (7(Γ) x {1}) c M x Zfc

2

+1

and observe that there is a strong deformation retraction of N onto
(C2U7(F)) x {1}, thus the inclusion N x QA2+1 c 4i is a homotopy
equivalence. Also we have Nad((M x P2+1)\Int (X3)), where X3 =
Xi x I f c l + ι x x Ifca+i. Choose a regular neighborhood JV* of N in
3((ikΓ x I*'+1)\Int (X3)) such that iV* x Qk2+2 c Ax. Clearly the inclusion
JV* x Q ¥ 2 c i ! is a homotopy equivalence. Put kz — kz + 1.

Since (M x P3)\Int (X3) has a boundary collar we can find a PL
embedding θ: JV* x [0,1] -> (Λf x P*)\Int (X3) such that 0(Λ, 0) = n,
for all neN*, and (̂iV* x [0, l])nd((M x Ifc3)\int (JQ) = iV*. By
choosing (̂iNΓ* x [0,1]) in a neighborhood of AT* which is sufficiently
close to N*9 we can additionally assume that Θ(N* x [0,1]) x Qki+1(Z
A,. Let Bd(iV*) denote the boundary of AT* in 3 ( ( I x I*»)\Int (JJQ)
and let ψ:Bά(N*) x [0,1] —>JV* be a boundary collar of N*, where
ψ(n, 0) = n, for all neBά(N*). Let us additionally assume that
ψ(Bά (N*) x [0,1]) Π N - 0 . Let τ: iSΓ*\f (Bd (iNΓ*) x [0,1/2)) — [0,1]
be a PL map such that τ(N) = {1} and τ^O) = f(Bd(iV*) x {1/2}).
PutXf = I 8 U δ , where

G = U {̂ (̂ , *) I w e N*\ψ(N* x [0,1/2)) and 0 ^ t ^ Γ(Λ)/2} .

It is now clear that XI is a compact connected PL submanifold of
M x P 3 such that Bd (Xζ) is a PL submanifold which is PL bicollared,
Bd (X3') has exactly two components, and X± x Qkί+1 c XI x Qks+i c ^(P x
QxE). Let A3, 5 3 be the components of φ(PxQx JB)\(Int(X/) x Q*8+1)
and let C3, JD3 be the components of Bd(X3'), where notation is chosen
so that Bd (A$ = Q x Qh+ί and Bd (£3) = JD; X Qfc8+1. We can also
choose notation so that B'3 — B1 and D[ — Dx x Ikl+1 x x Ikz.
Then it follows that the inclusion C3 x Qkz+i c A!z is a homotopy equi-
valence. Thus we have successfully operated on one side of Xt.

It is clear that the above procedure can be repeated to find an
integer &4 > 0 and a compact connected PL submanifold X4 of M x
P* such that Bd (X4) is a PL submanifold of M x I*< which is PL
bicollared, Bd(X4) has exactly two components, say C4 and Diy φ(P x
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Q x {0}) c Int (X4) x Q*4+i c X4 x Q,4+1 c ^(P x Q x R), and if A4, J54

are the components of φ(P x Q x 22)\(Int (X4) x Qk4+i) such that Bd (A*) =
C4 x QΛ4+1 and Bd (B4) = D4 x QA4+1, then the inclusions C4 x Qfc4+1 c
A4 and A x Qfc4+1 c I?4 are homotopy equivalences. A well-known
property of ANR's implies that C4 x Qk4t+i is a strong deformation
retract of A4 and DA x Q 4̂+i is a strong deformation retract of B4

(for example see [15], p. 31), This implies that the inclusion X4 x
Qk^+1 c φ(P x Q x R) is a homotopy equivalence. Then put X = X4

and k = &4 to fulfill our requirements.
We are now ready to state and prove our main surgery result.

What we are going to do is modify the boundary of the X which
was obtained in Lemma 3.5. For the reader who is comparing this
process with finite-dimensional surgery, this is the step in which we
exchange handles.

THEOREM 3.1. There exists an integer k > 0 and a compact PL
submanifold X of M x P such that

(1) Bd (X) is a PL submanifold of M x Ik which is PL bicollared,
(2) Bd (X) has exactly two components,
(3) φ(P x Q x {0}) c Int (X) x Qk+ι c X x Q*1+1 c φ(P x Q x R),
(4) the inclusion X x Qk+ι c φ(P x Q x R) is a homotopy equi-

valence,
(5) for each component C of Bd(X), the inclusion C x Q H 1 c

φ(P x Q x R) is a homotopy equivalence.

Proof. Using Lemma 3.5 we can find an integer kγ > 0 and a
compact PL submanifold Xι of M x Ikί such that

(1) Bd (XO is a PL submanifold of M x P 1 which is PL bicollared,
( 2) Bd (XO has exactly two components,
(3) Φ(P x Q x {0}) c Int (X) x Qh+1 c X x Qk+1 c φ(P x Q x R),
(4) the inclusion Xx x Qkί+1 c φ(P x Q x R) is a homotopy equi-

valence. Let Au B1 be the components of φ(P x Q x i?)\(Int (Xt) x
Qkl+1) and let d , D1 be the components of Bd (XO so that Bd (Ax) —
d x Qkl+i and Bd (B^ = A x Qkl+ί. It is possible that the inclusions
CΊ x Qkl+1czφ(P x Q x R) and A x Qkί+1aφ(P x Q x R) are not
homotopy equivalences. To remedy this defect we now dig back into
Xi to produce our required X. This amounts to "fattening up" Aι

and Bί We will only give the details for operating on Aγ. A similar
procedure will work on J5lβ Choose notation so that we have A1 c
φ(P x Q x (0, oo)) and B1 c φ(P x Q x ( - °o, 0)).

Choose r > 0 so that φ(P x Q x [- r, r]) c Int (X,) x Qkl+1. Then
the inclusion φ(P x {0} x {r}) c Xι x Qkl+1 is a homotopy equivalence,
where 0 = (0, 0, •) e Q. Put Po = φ(P x {0} x {r}), let / : Po -> X, x
Qkl+1 be inclusion, and let g: Xx x Qkl+ί —> Po be a map such that / and



70 T. A. CHAPMAN

g are homotopy inverses. Let i: d —* Xί x Qkl+1 be the map defined
by i(c) — (c, 0) and let a: d —• Po be a PL approximation to gi (i.e.,
a ~ gi). [We are regarding Po as having a fixed PL structure which
is inherited from P.] Let Y be the simplicial mapping cylinder of a,
where d and Po have natural identifications in Y, and let r: Y—>PQ

be the map which collapses the fiber over each point of Po to that point.
Then fr:Y—>XX x Qfcl+1 is a homotopy equivalence and / r | d ' CΊ—*
Xi x QAl+1 is homotopic to i: CΊ —• Xi x Qkι+1 (in X1 x Qkl+1). But 0(P x
Q x [r, oo)) is a retract of ^(P x Q x R). Thus the homotopy joining
i to fr I d can be realized in (Xx x Qfcl+1) ΓΊ ̂ (Px Q x [r, oo)). Therefore
the main idea of Lemma 3.5 can be used to dig back into Xx x Qkl+ί

to produce an integer k2 ^ kx and a compact PL submanifold X2 of
M x P 2 such that

(1) φ(PxQx {0}) c Int (X2) x Qkt+ί c X2 x Qk2+1 c Xx x Qh+1,
(2) Bd (X2) is a P L submanifold of M x P2 which is PL bicollared,
(3) Bd (X2) has exactly two components,
(4) one component of Bd (X2) is D1 x Ikι+1 x x Ik%,
(5) if C2 is the other component of Bd(X2), then d x Qk2+ιC:

Φ(P x Q x R) is a homotopy equivalence,
(6) the inclusion X2 x Qk2+1 c φ(P x Q x R) is a homotopy equi-

valence. Thus we have successfully operated on Aγ. Using a similar
procedure on Bλ we can produce our desired X and k.

In Theorem 3.2 below we establish a special case of Theorem 3.1
which will also be used in the proof of Theorem 7.1.

THEOREM 3.2. Let M be a PL manifold and let h: Rn x Q-+M x
Q be an open embedding, where n ^ 2. Then there exists an integer
k > 0 and a compact contractible PL submanifold X of M x P such
that

( 1 ) Bd (X) is a PL submanifold of M x P,
(2) Bd(X) is PL bicollared,
(3) h(Bΐ x Q) c Int (X) x Qk+ι c X x Qk+ι c h(βt x Q),
(4) the inclusion Bd (X) x Qk+1dh((B2\Int (B?)) x Q) is a homotopy

equivalence.

Proof. Let φ = h \ (Int (BζΛ)\B^) x Q, which may be viewed as an
open embedding of Bd (B?) x Q x R into M x Q. Using Theorem 3.1
we can find an integer k > 0 and a compact PL submanifold Y of
MxP such that Y is PL bicollared, Y x Qk+1ch((hLt(Bζ)\Bϊ) x Q),
this inclusion is a homotopy equivalence, and Y x Qk+1 separates
h((Int (Btδ)\Bn

δ) x Q) into two components, one containing h(Bd (Bf) x
Q) and the other containing h(βά(Bt) x Q)

Clearly h~\Y x Qk+1) separates Rn x Q into two components, one
component is bounded and contains B? x Q. Let C be the closure
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of this component and note that C is contractible. Then X — pkh(C)
fulfills our requirements,

4* Simple homotopy type* In this section we develop the
machinery on simple homotopy type which will be needed in the proof
of Theorem 7.1. The first result strengthens a theorem of West [17].

LEMMA 4.1. Let K and L be finite connected complexes and let
f: \K\—>\L\ be a simple homotopy equivalence. Then f x id: \K| x
Q —> ILI x Q is homotopic to a homeomorphism.

Proof. In [17] West proved that \K\ x Q is homeomorphic to
I If I x Q. We will modify West's argument to give our desired con-
clusion. Actually no new ideas are involved and our proof is just
West's proof with a little more attention paid to appropriate details.

Using Whitehead [18] there exist pairs (Ko, Lo), (Klf I/O, •••, (Kn,
Ln) of finite complexes such that K = Ko, Ln — L, each | L^ | is PL
homeomorphic to |JBΓ<|, and each Li is a formal deformation of Ki (we
use the language of [13]) For each i let us define a map /<: \Ki\—>
\Lt\ as follows: /< is inclusion if Kt —* Li is a formal expansion and
fi is a retraction which is homotopic to the identity if Ki~+Li is a
formal contraction. For each i let g^: | L^_i | —* | Ki | be the given PL
homeomorphism. Then / : | K | —>| L \ is homotopic to fngn-ifn-i9n-2
/xflTo/o. But in [17] West proved that each fi x id: |iΓ, | x Q -> |L, | x
Q is homotopic to a homeomorphism. This clearly gives us our desired
result.

We now use this result to obtain the main result of this section:
It is used in the proof of Theorem 7.1.

THEOREM 4.1. Let K and L be finite connected complexes such
that the Whitehead group Whfa^lKl)) — 0, let X be a compact metric
space, and let i: X—+\K\ x Q,j:X—+\L\ x Q be embeddings such that
i and j are homotopy equivalences and i(X),j(X) are Z-sets. Then
there exists a homeomorphism / : | J K " | X Q - ^ | L | X Q such that fi = j .

Proof. Let g: \K\ x Q —>X be a map such that i and g are
homotopy inverses and let h: \ K | —• | K | x Q be defined by h(x) = (a?,
0), where 0 = (0, 0, •) e Q. If p: \L\ x Q—> \L\ is the projection
map, then clearly pjgh: \K\—>\L\ is a homotopy equivalence. Since
Wh ( Γid K I)) — 0 it follows then that pjgh is a simple homotopy
equivalence ([18], p. 43). Using Lemma 4.1 it follows that pjgh x
id: IKI x Q —* | L \ x Q is homotopic to a homeomorphism φ: \ K \ x Q —•
\L\ x Q. Then φi:X-+\L\ x Q is an embedding such that φi(X)
is a Z-set. It is easy to see that φi = j . Using the Homeomorphism
Extension Theorem of § 2 we can therefore adjust φ to get our desired
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homeomorphism / : | K | x Q —• \ L | x Q.

5* Immersions* If X and Y are Q-manifolds, then we define an
immersion to be a map a: X—> Y which is locally an open embedding.
In Lemma 5.1 below we show that if Y is triangulated, then "large"
compacta in X lie in triangulated submanifolds of X. Of course if
X is compact, then this implies that X is triangulated; however our
use of this result is for noncompact X. Using an argument along
the lines of Theorem 8 of [4], one could actually prove that noncompact
X are triangulated. We settle for the weaker version, which has a
more direct proof.

LEMMA 5.1. Let X be a Q-manifold, M be a finite-dimensional
PL manifold, and let a: X-+M x Q be an immersion. If K0(Z Gd
KaX, where Ko and K are compact, G is open, and a \ G is one-to-one,
then there exists a finite-dimensional PL manifold N, a compact PL
submanifold No of N, and an embedding φ: N x Q —>X such that

(1) ϋΓocInt(^(iVo x Q))dφ(N0 x Q) c G c Kaφ(N x Q),
(2) there exists an integer n > 0 and a PL submanifold Y of

M x In such that aφ(N0 x Q) = Y x QΛ+1,
(3) aφ I JVo x {0}: iV0 x {0} —> Y x {0} is a PL homeomorphism,
( 4 ) for any (n, (&)) eN0 x Q we have aφ(n, (?,)) = (y, (q$), where

y is chosen so that aφ(n, 0) = (y, 0).

Proof. Note that a(G) is open in M x Q and a(K0) is a compact
set in a{G). Thus we can find an integer m > 0 and compact PL
submanifolds Λf0', Ml of M x Im such that Ml clnt(ikf/), Ml x ζ>m + ic
α((x), α(ifo) c Mo x Qw+1. Since α is an immersion we can choose an open
cover <& of Xo = -X\(α I G)~ι(Mi x Q +i) s ^ c h that i f ^ * e St ( ^ ) , then
α|£7* is one-to-one, and if Ue%S and Ϊ7Π (α | ( J ) " " 1 ^ / x Q*+i) ̂  0>
then UaG. [We use S t ( ^ ) to denote the set whose elements are
U {V\Ve%f, VΠU Φ 0}, where C/e ̂ . ] We say that an open subset
W of Q is a basic open set provided that there exists an integer k > 0
and an open subset W of /* such that W — Wr x Qk+ι and such that
W is a product of intervals. For each xeX0 we can choose an open
subset A9 of X such that

x e Ax c Ux e <2S ,

for some Ux e ̂ , and such that ct(Ax) is the product of an open
neighborhood in M with a basic open set in Q. Choose a finite subset
{Ai}Uι oί {Ax}xeXo which covers K\(a | G ^ I n t (ikf/) x Qm+1). Then we
can find an integer n Ξ> m large enough so that for each i we have
oc(Ai) = Bi x Qn+u for some open subset Bi of M x In. Put Afi =
Λί/ x Jm + 1 x x / , and let
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N = ( u («I A^iBt x {0})) U (α I G)~Wi x {0}) ,

iVo = (α I G)"\M1 x {0}) ,

It is clear that the map pna \N: N—+M x J%, which is locally an open
embedding, induces a PL structure on N. Thus N is a PL manifold
and No is a P L submanifold of JV. Let

Z = ( U -4*) U (α I G ) " 1 ^ ! x Q»+i)

and define Ao = (a | G)~1(M1 x Q»+i). Choose 7/ G ^ , 0 <Z i ^ p, and
define

ψ{y) = ((α I A r U 0), ?) e iSΓ x Qn+1 ,

where α(j/) = (&, ρ) e (ikί x In) x Qn + i . It routinely follows that f is
a homeomorphism of ^ onto N x Qn+i. To check this we have to use
the properties of the cover ^ which are listed at the beginning of
this proof. Then φ — ψ"1 clearly fulfills our requirements (if we
identify Qn+1 with Q).

Using the covering projection en: Rn-+Tn of §2 let Dn =
en{[2, 3]") and En = eft(SΓ). We will find the following result useful
in the proof of Theorem 7.1.

LEMMA 5.2. There exists an immersion a: (Tn\Dn) x Q —>Int (Bζ) x
Q such that a(en x id) | J5Γ x Q : B ? x Q-> 2?Γ x Q is ίΛe identity.

Proof. On page 48 of [9] it is shown that there exists a map
β: Tn\Dn —•> Int (B?) such that /5 is locally an open embedding and
βen I Bΐ: Bl -> 2?* is the identity. Then a = /9 x id fulfills our require-
ments.

6* Bounded homeomorphisms* A homeomorphism λ: Rn x Q —>
iϋ% x Q is said to be bounded provided that the set

{|| x - y\\ I λ(a, gθ - (y, q2), for some (a?, q,) e Rn x Q}

is bounded above. In this section we describe the apparatus concerning
bounded homeomorphisms which will be needed in the proof of Theorem
7.1. Our first result is just an observation due to Kirby.

LEMMA 6.1. Let h: Tn x Q —» Tn x Q be a homeomorphism and
let h: Rn x Q—> Rn x Q be a covering homeomorphism of h which fixes
lattice points, i.e. h((a^), 0) — ((α<), 0), for all points (α̂ ) G Rn such that
a ^ 4 mod 8. Then h is a bounded homeomorphism.
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Proof. We just take the argument given on page 44 of [9] and
multiply everything by Q.

The next simple result gives us conditions which imply the exis-
tence of bounded homeomorphisms.

LEMMA 6.2. Using the notation En = en(Bΐ) (as introduced in
§5),leth:Tnx Q-+Tn x Q be a homeomorphism such that h\ (Tn\En) x
{0} = id, where n ^ 2. Then h can be covered by a bounded homeo-
morphism h: Rn x Q —> Rn x Q.

Proof. Let X = (Tn\En) x {0} and note that X = (en x id)~1(X)
is connected, since n Ξ> 2. Let h: Rn x Q —+ Rn x Q be the covering
homeomorphism of h which satisfies Λ((4, 4, , 4), 0) = ((4, 4, , 4),
0). The existence of h follows from standard covering space theory.
Since h \ X — id it follows that h \ X: X —> X is a covering transforma-
tion which satisfies Λ((4, 4, , 4), 0) = ((4, 4, , 4), 0). Thus h\X =
id, which implies that h fixes lattice points. It now follows from
Lemma 6.1 that h is bounded.

We now establish the main result of the section. It is one of
the key technical results which will be needed in the proof of
Theorem 7.1.

THEOREM 6.1. Let h: Tn x Q —* T" x Q be a homeomorphism and
let h: Rn x Q —> Rn x Q be a covering homeomorphism of h which is
bounded. Assume that A c Int (En) x Q is compact, connected, and
h(A) c Int (En) x Q. Then there exists a homeomorphism h: En x Q—+
En x Q such that h |Bd (En) x Q = id and K\A = h\A.

Proof. Let A = {{en x id) | JBf x Q)~\A), which is a subset of
Int(5Γ) x Q. We will now show that there exists a covering trans-
formation ψ:RnxQ->Rn x Q such that φh{A) c Int (Br) x Q. To see
this note that

a - ({en x id) | Bl x Q)'ιh \ A: A — Int (B?) x Q

qives a lifting of h\A: A—* Int (En) x Q. Choose any aQe A and note
that a(a0) = ((en x id) | B: x Q)~ιh(a,) = α0 e Int (J5Γ) x Q. Now

/S = Λ((e x id) IBn x Q)-1 \A:A-^RnxQ

also gives a lifting of h \ A: A -> Int (JS?W) x Q. Let φ:RnxQ-+RnxQ
be a covering transformation which satisfies φβ(a0) = α0. Then we
must have /̂3 = α, since A is connected. Thus ^(A) c Int (Bΐ) x Q.
We also note that φh is bounded. So without loss of generality we
man assume that h satisfies h(A) a Int (5?) x Q. We will now construct
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a homeomorphism / : J5f x Q -* JSf x Q such that /1 Bd (J? ) x Q = id
and / | A = Λ | A. Once this is done we can get our required h by
defining

h= (en x id)f((en x id) | J5Γ x Q)"1 .

Since A is compact we can find t, 0 < t < 1, such that

A U Λ(A) c ( - ί, t)n x Q .

Let 7: Int (I?f) —> Rn be a radial expansion which satisfies 712?" = id.
Let C(£Γ x Q) = (Int (£f) x Q) U (Bd (£•) x {0}) and let p: B? x Q~+
C{B? x Q) be defined by p | Int (B?) x Q = id and p(&, gr) = (a?, 0) for
all (a?, 9) e Bd (J5Γ) x Q. Give C(J?Γ x Q) the identification topology
determined by p. Since Q is known to be homeomorphic to its own
cone, it follows that C(B? x Q) ~ Q. Define a homeomorphism g:
C{B? x Q ) - C ( B ΐ x Q) by

(id on Bd(5Λ x {0}
Q ~ ((7 x id)-^(7 x id) on Int (5 ) x Q .

It is clear that g is a homeomorphism because Λ is bounded. Note
that g\Ά = £ | A . Choose a homeomorphism δ: B? x Q —> C(J?* x
Q) which satisfies δ | Bt

n x Q = id and δ is close enough to p
so that δ(Bd(BΓ) x Q ) Π (J5t

n x Q) = 0 . Then δ induces a homeo-
morphism g: Bl x Q ~> Bj* x Q which makes the following diagram
commute.

J?Γ x Q - ^ BΓ x Q

C(B? x Q) > C{B? x Q)
9

Note that g\Ά = g\Ά = h\A. I f δ i s chosen sufficiently close to p
then we have ^ | Bd (S^) x Q = id (in (B?\B?) x Q). Using the fact
that Bd (JB*) x Q is a Z-set in Bf x Q, the Homeomorphism Extension
Theorem of §2 applies to give us a homeomorphism θ: B? x Q~+B? x
Q such that θ \ Bt

n x Q = id and 0 | Bd (£*) x Q = g\Bd (B») x Q.
Then / = ί"1^ clearly fulfills our requirements.

7Φ Handle straightening* In this section we obtain our infinite-
dimensional version of the handle-straightening results of Kirby-
Siebenmann. The statement of the result is given in Theorem 7.1.

Let M be a finite-dimensional PL manifold and let h: B? x Q—>Mx Q
be an embedding such that Bd (h(B? x Q)) = h(Bά (B2

n) x Q). Then we
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say that h can be straightened if there exists a homeomorphism / : B2

n x
Q —> B2

n x Q and an integer k > 0 such that / | Bd (2?2

n) x Q = id and
ft/(#i72 x Q) - iV x Q/c+1, where JV is a PL submanifold of M x P
such that Bd (N) is a PL submanifold of M x P which is PL bicollared.

THEOREM 7.1. Let M be a finite-dimensional PL manifold and
let h: B? x Q —> M x Q 6e cm embedding such that Bd (fe(J52

n x Q)) =
h(βd (B2

n) x Q). 1/ n :> 2, ίΛew fe c<m 6β straightened.

Proof. We use the notation L)71 and En of §5. Using Lemma
5.2 let a:(Tn\Dn) x Q — Int (B2

n) x Q be an immersion such that
a(en x id) 12?Γ x Q = id. Then it follows that a \ En x Q is one-to-one.
Also to: (Tn\Dn) x Q —> Λf x Q is an immersion. Let

iΓ0 = βw(B3%) x Q ,

G - e%(Int (B*)) x Q ,

K = (Γn\e ((1.5, 3.5)n)) x Q .

Note that K^a Ga K, where Ko and i ί are compact and G is open.
Moreover we see that ha\G is one-to-one. Using Lemma 5.1 there
exists a PL manifold N, a compact PL submanifold No of N, and an
embedding φ: N x Q -> (Tn\Dn) x Q such that

(1) JKoClnt^ίiVo x Q))(zφ(N0 x Q) a Gcz K a φ(N x Q) ,
(2) there exists an integer ra > 0 and a PL submanifold ilf0 of

M x Im such that haφ(N0 x Q) = Mo x Qm+1,
( 3) to^ I JVo x {0}: iVo x {0} —> Mo x {0} is a PL homeomorphism,

(4) for any (n, {q,)) e No x Q we have haφ(n, (q4)) = (m, fe)),
where m is chosen so that hocφ(n, 0) = (m, 0).

Note that φ~] \ Int (Ko): Int (iΓ0) ~*Int (No) x Q is an open embedding.
Using Theorem 3.2 there exists an integer k1 > 0 and a compact
contractible PL submanifold Y1 of Int (No) x P1 such that

(1) Bd(Yi) is a PL submanifold of Int (ΛQ x Pi which is PL
bicollared,

(2) φ~ι{en{Bΐl2) x Q) c Int (Γ,) x QfcjL+1 c 7 , x Q,l+1

c^ίβ-ίlntίSjβ)) xQ) ,
(3) the inclusion Bd(Y ) x Qh+1 c ^~1(βΛ(J52%\Int (B^)) x Q) is a

homotopy equivalence.
It follows from the construction of φ that haώ(Y1 x {0}) is a PL

subspace of M x Im+k± x {0} c M x Q (where Y, x {0} c (ΛΓ0 x J*i) x
Qkl+1). We will construct a homeomorphism / : 52

W x Q —> B™ x Q such
that / I Bd (B?) x Q = id and /(JB^ xQ) = aφ(Y, x Qkl+1). This will ful-
fill our requirements. In order to construct / we will first construct
a homeomorphism f:EnxQ-+EnxQ such that f\Bd(En) x Q =
id and f(en{B^ x Q) — φ{Yι x Qkl+i). Once we have / we can define
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/ by

= fid on (£?VBΓ) x Q

\af(a I En)~ι on B? x Q .

It is clear that φ'1 | eΛ((l 3, 3.7)«\[1.4, 3.6]n) x Q gives an open
embedding of ew((1.3, 3.7)*\[1.4, 3.6]w) x Q into N x Q. Using Theorem
3.1 we can find an integer k2 ;> ^ and a compact PL submanifold Y2

ofNx P* such that
(1) Y2 is PL bicollared,
(2) Γ2 x Q t2+1 c ^ ( ^ ( ( 1 . 3 , 3.7) \[1.4, 3.6]*) x Q),
(3) the above inclusion is a homotopy equivalence,
(4) Γ2 x Qkz+1 separates φ~1(e*([1.2, 3.7]*\(1.4, 3.6)%) x Q) into two

components, one containing ^ ( ^ ( B d ([1.3, 3.7]%)) x Q) and the other
containing ^ ( e ^ B d ([1.4, 3.6]")) x Q).

It is easily seen that <p(Y2 x ζ?&2+i) separates Tn x Q into two
components A and B, where Cl (A) (the closure of A) contains eΛ([1.4,
3.6]%) x Q and Cl (B) contains (Tn x Q)\(e*((1.3, S.l)n) x Q). Let A!, Br

denote the closures of the intersections of A, B with e*([1.3, 3.7]%\
(1.4, 3.6)%) x Q, respectively. Then <p~ι(A') and φ~ι{Bf) are the closures
of the components of (4) above. Recalling the comments concerning
ANR's made at the end of the proof of Lemma 3.5, there exists a strong
deformation retraction of Af \J Bf onto φ(Y2 x Qk2+i)'> let Dt:A'UB'—+
Ar U B\ 0 ^ ί ^ 1, be a homotopy which gives such a strong defor-
mation retraction, where Do = id and Dx is a retraction of A! U -B'
onto φ(Y2 x Qjfc2+1). Let r: A; U ΰ ' ^ δ ' be the retraction defined by
r I B' = id and r \ A! = A ( A'. Then define a homotopy DJ: B' -> 5 '
by DJ = rD^ IJ5', for 0 ^ ί ^ 1. It is clear that D't defines a strong
deformation retraction of Br onto φ(Y2 x Q/C2+i). Using J5' it follows
that Cl (A) is contractible, and it is clearly a Q-manifold. But it is
known that all compact, contractible Q-manifolds are homeomorphic
to Q [4]. Thus Cl(A) = Q. [One is tempted to apply Lemma 4.1
here, but it will not work because it is not known that Cl (A) is
triangulated.] We can easily use similar tricks to show that the
inclusion

(Tn x Q)\(e*((1.3, 3.7)*) x Q)aCl(B)

is a homotopy equivalence.

Let Y[ = YΊ x Ikl+ι x ••• x Ik2 and let Γ2

r - p^Φ"1 (Cl (A)), where
p&2: N x Q—>N x P2 is the projection mapping. Put R = (N x Pή\
(Int (ΓO U Int (Γ2')). Then i? is a compact PL submanifold of N x P*
and Bd (iϊ) - Bd (Y2

r) U Bd (F2'). It follows (as above) that if
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C = [ r V ( ( l 3, 3.7)^ U Int (£ /a))] x {0} c φ(R x Q,2+1) ,

then the inclusion i: C c φ(R x Qk2+i) is a homotopy equivalence. Let

j : Ca [Tn\(lnt(Dn) U e*(Int (£f/2)))] x Q

denote inclusion, which is also a homotopy equivalence.
If n ^ 3, then π^C) = Z 0 Z ® © Z(n copies of Z) If n =

2, then it easily follows that TΓ^C) = Z*Z*Z (where * denotes free
product). In any case we have Wh (π^Q) = 0 (see [13], page 373,
for references). Using Theorem 4.1 we can find a homeomorphism

7': [Γ*\(Int (Dn) U e*(Int (£f/2)))] x Q ~+ φ(R x Q,2+1)

such that 7 ; I C — id. Using the Homeomorphism Extension Theorem
of § 2 we can adjust Y to get a homeomorphism

7: [Γ»\(Int(JD ) u en(Int(B?l2)))] x Q-> φ(R x QH+i)

which satisfies

7 I C = id, 7(Bd (Dη xQ) = φ(Y2x Qh+1) ,

and

7(Bd (e"(£Γ/2)) x Q) = Φ(Bd(Y0 x Qk2+1) .

Note that Tn x Q = φ(R x Qk2+1) U Cl (A) Uφ(Y[ x Qk2+1), where
Cl (A) has already been observed to be a Hubert cube and ψ{Y[ x Qk2+ι)
is a Hubert cube by Lemma 4.1. By applying the Homeomorphism
Extension Theorem again to

7 I Bd (Dn) x Q: Bd (Dn) x Q -> Bd (Cl (A))

and

7|Bd(^(£ 1] 2)) x Q: Bd (β CBΓ/2)) x Q —^(Bd(Γ0 x Q*2+i) ,

it easily follows that 7 can be extended to a homeomorphism

Using Lemma 6.2 it follows that S can be covered by a bounded
homeomorphism δ: Rn x Q —> Rn x Q. Using Theorem 6.1 the existence
of our required / now follows.

8* Proof of the theorem. We are given a triangulated Q-manifold
X and an open embedding h: Rn x Q —> X, where n ^ 2. We want to
prove that X\h (Int (B?) x Q) is a triangulated Q-manifold.

Let φ: X—>\K\ x Q be a homeomorphism, for some countable
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locally-finite simplicial complex K. Then there exists a finite sub-
complex Ko of K such that φh(B? x Q ) c Int(|ϋΓ 0 | x Q) and Bά(\K0\)
is a PL subspace of \K| which is PL bicollared. Let us regard \K0\
as a PL subspace of some In (where I* Π \K\ = |KQ\), with Bd (\K0\) c
Bd(In) and Int (|iΓ0|) c l n t (In). Choose a regular neighborhood M of
\K0\ in J% which meets Bd (In) regularly. Then we get a new com-
plex \L\ = ikf (J (|ϋΓ|\|JKi|), which is a countable locally-finite simplicial
complex containing M as a P L subspace.

It follows from [17] that there exists a homeomorphism ^ : \L\ x
Q —> IKI x Q such that ψ is the identity on (\L\\M) x Q. Then
α/r"V: -X" —" i LI x Q is a homeomorphism which satisfies

f~ιφh{Bt x Q)d Int ( I ) x Q .

Since M is a PL manifold our result now follows from Theorem 7.1.
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