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THE UPPER ENVELOPE OF INVARIANT FUNCTIONALS
MAJORIZED BY AN INVARIANT WEIGHT

A. VAN DAELE

Let A be a C*-algebra, G a group of *-automorphisms
of A and ¢ a G-invariant weight. Assume that ¢ takes finite
values on a dense subset of A*. It is shown that there is a
largest element among the G-invariant weights ¥, majorized
by ¢ and weakly adherent to the set of G-invariant continuous
positive linear functionals majorized by ¥,. Moreover this
weight majorizes every G-invariant continuous positive linear
functional majorized by ¢. If A is a von Neumann algebra
it is sufficient to assume that ¢ takes finite values on a o-
weakly dense subset of A+ to get a similar result for normal
functionals. Further characterisations of this weight are
given in terms of the representation associated with ¢. This
relation is then used to prove that if ¢ is lower semi-
continuous, the existence of G-invariant continuous positive
linear functionals majorized by ¢ is equivalent to the
existence of fixed points in the associated Hilbert space 57
and representation of G in £

Finally two examples are discussed.

1. Introduction and notations. Recently a great deal of in-
formation has been obtained about states on a C*-algebra A, in-
variant under a group G of *-automorphisms. Unfortunately the set
of invariant states on A can be very small, in some cases it may be
empty. So one may ask for the existence of G-invariant linear func-
tionals on A which are eventually unbounded. The concept of
unbounded linear functionals has been introduced in [1] and [8]. In
this paper we will be concerned with weights as defined in [1]
which are invariant under a group of *-automorphisms. The theory
of G-invariant weights must make it possible to give an unified treat-
ment of the theory of G-invariant states and the theory of traces.
Indeed a state is a special case of a weight and a trace is a weight
invariant under the group of inner automorphisms. In this paper we
will show that the study of invariant weights can essentially be
devided in two parts. The first of them being related to the theory
of invariant states, the second being more similar to that of traces.

This fact will be discussed in §2 where we construct to some
G-invariant weights @ an other G-invariant weight +, with the pro-
perty that +r, is the largest weight majorized by @ which is the
upper envelope of G-invariant continuous positive linear functionals.
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In § 3 we will construct a G-invariant projection map of the set
& of continuous positive linear functionals majorized by ® onto the
set &7, of G-invariant elements in .&#. This mapping will be used in
§ 4 where we give more properties of the weight +, constructed in
§ 2. Among others we will give a necessary and sufficient condition
for the existence of G-invariant continuous positive linear functionals
majorized by @ if the latter is lower semi-continuous. Finally in the
last section we discuss two examples.

We recall some notions and results as they can be found in [1].
A weight on a C*-algebra is a function @ defined on A+ with values
in [0, o] satisfying the following conditions:
(i) o@+y) =@ + Ply) for all », ye A+
(ii) POz = \p(x) for all real numbers A >0 and x ¢ A*
(we agree that 0.c0 = 0).

The set of elements vxe A such that @&*r) < « is a left ideal
N in A and the set of elements x€ AT with ®{x) < - is the positive
part IN* of the subalgebra M defined as N*N. The norm closures
9N and M of respectively N and M satisfy the relation

M=TN =N NN*.

The subalgebra I is spanned by its positive part and the restriction
of @ to M+ can be extended to a linear form on IN, still denoted by
@». With @ is associated a Hilbert space 5%, a representation 7 of
A and a mapping 4 of N into 5# such that

(i) 4N in dense in 57~

(i) @*y) = (dy, Ax) for all z, ye N

(iii) 7w(x)Ady = Axy for € A and ye M.

Throughout the paper we will be concerned with a fixed weight @
so that it is unnecessary to write 9, M, etc.; if we are given also
another weight +» we will write 9y, My, .-+ for the objects associated
with .

I would like to express my thanks to Prof. E. Stérmer for his
kind hospitality at the Mathematical Institute of the University of
Oslo and for fruitful discussions. I am also indebted to Dr. N. H.
Peterson for helpful comments and to Dr. F. Combes for discussions
concerning the subject treated in this paper.

2. The upper envelope of invariant functionals majorized by
an invariant weight. Let A be a C*-algebra and G a group of
*.automorphisms of A. Fix a weight ® on A and assume that it
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is G-invariant i.e., ®(g(x)) = @(x) for all x€ A* and ge G. As might
be expected there is a unitary representation of G in 57 that
implements the automorphisms. The following lemma is more or less
known (see [2] Lemma 4.7).

LEMMA 2.1. Let ® be a G-invariant weight on A. Then I and
N are G-invariant and there exists a unitary representation {U,} of
G i 57 such that

(i) U,dx = Adg(x) for xeMN and ge G

(ii) UmyU;* =n(9(y))  for ye A  and ge@G.

Proof. The invariance of M and IM follows trivially from the
invariance of ®. From || Ag(x)||* = P(g(x)*g(x)) = P(a*x) = || Az |® it
follows that the mapping Az — Ag(x) is well defined, continuous and
can be extended to an isometry U, of S# Clearly U, .U, =1 so
that U, is unitary. It follows from a trivial calculation that {U,} is
a representation of G and that the relations (i) and (ii) hold.

Definitions and notations 2.2. For any weight ® on a C*-
algebra A we will denote by & the family of continuous positive
linear functionals majorized by @, i.e., f(2) < ®(z) for all ze A* and
fe . By 2% we denote the set of operators S€ w(A4) such that
there is a positive real number A\ such that ||S4x]|| < M|« || for all
xeN. If moreover @ is G-invariant we denote by &, and .2, re-
spectively the G-invariant elements in .&# and 27 This makes
sense if we let G act on % and .2 in the natural way.

From the work of Combes [1] we may expect that &# and 27
respectively ., and 277, will be related to each other. We will
clarify this relation without any restriction for the weight ¢. Doing
so we will be able to treat very general cases. The sets &, o, F,,
and 2%, and the relations we are going to prove in the next lemmas
will be extensively used throughout the paper.

LEMMA 2.3. 2% is a G-invariant left ideal in w(A)'. For any
Se 9 there is a uwique vector « im the closure of w(N*)SF such
that SAx = w(x)a for all xeN.

Proof. Take S, S, S,€.2; Ten(A) and xeN. The relations

(S, + Sz || < |1 Sidz || + || S 4 ||
and
|| TSAz || < || T || SA=z ||

show that 22 is a left ideal. The relations ||U;'SU,Adx|| = || S4g(x)||
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and |[g(@)|| =|/x|| for ge G show that .9 is invariant. Assume
[|SAz || <||x||. Let {u;} be an approximate left identity in N so that
lim xu; = « for all 2. € M and therefore lim 7(x)SAu, = lim SAzu, = Sz
because Se.o¥. Let p = >~ w(x;)*v, be an arbitrary element in
TN*) 24 From the relation

S (%, Sdw;) = lim >} (v, SAwau;) = lim (p, SAu;)

if follows that w(p) = 3.2, (7;, SAx;) defines a linear functional ® on
T(N*)S#. Moreover

lo(p) | = lim | (p, SAu,) | < lim || p || || SAu, || < || p |

so that ® is continuous, can be extended to 7(¥t*)5# and that
there exists a unique aen(It*)57 such that o(p) = (p, ). This
means (v, SAx) = (m(x*)y, ) for all xeN and ve 5~ so that SdAx =
m(x)a for all xeN.

LEMMA 2.4. 97 is a left ideal in the fized point algebra of w(A).
For any Se 5%, there is a wunique G-invariant vector a € mw(N*)SF
such that SAx = w(x)a for all xeMN.

Proof. The first statement follows trivially from Lemma 2.3.
By this lemma we have also the existence of a in #n{(%t*)°#~ such
that Sdx = z(zja. As Se . 2%; it is G-invariant and
SAx = U,SU; Az = U,SAg™ ()
= Ugﬂ<g_1<x)>a = 77(“’) U,
by the use of Lemma 2.1. By invariance of 3t we have that also

U,ee 7(N*) 57 and by uniqueness that U,a = w. This completes the
proof.

REMARK 2.5. In the previous lemmas we gave a first character-
isation of .2 and 9%, in the next we will show the relation between
¢ and &, respectively .57, and .#,. But first remark that .22 = n(A)’
implies that Ie .2 and so Ax = 7w(x)a for some ac 5% so that

@(x*x) = (T(z*r)a, o) for all xeN.

It follows that @ coincides on IN* with a continuous positive linear
functional. Conversely this property would imply that

Plar) = [[da | = M@ [P

for some A > 0 so that I€ . 2 and n(4) = 27
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LEMMA 2.6. For any fe . & there is a unique S€ 9% such that
0<S<1 and f(x*x) = || SAz|]* for all xeN. Conversely for any
Se 2 such that ||S|| < 1 there is a fe & such that

f@*w) = || Sdz | for all zeN .
Similarly for &, and 7.

Proof. We prove the lemma for &, and .%¢,. Let fe . &, then
by ([1], Lemma 2.3) there is a T;e w(A)’ such that 0 < T, <1 and
fx*x) = (TiAw, dx). Define S = T}* then 0 < S<1 and ||S4z|}? =
f*o) < || fll|l=]® so that Se o7

If S’ is another element in w(A)’ such that 0 < S’<1 and
fla*e) = || S'Ax | then || SAx | = || S'4x|]? sc that S* = S and by
uniqueness of the square root that S = S’. It then follows from the
invariance of f that S is also G-invariant so that Se . 97;. Conversely
let Se 2#7 such that || S| £ 1. By Lemma 2.4 there is a G-invariant
ac 27 such that SAxz = m(z)a. A trivial calculation shows that f
defined by f(2) = (n(2)a, @) for z€ A is in &, and satisfies the required
relation.

We will proceed in the same way as in the proof of Proposition
18.11 of [10] in order to construct a largest G-invariant weight -,
majorized by @ and with the property that it is the upper envelope
of G-invariant continuous positive linear functionals. Therefore we
will need a property of &, called “c-filtrating” by Combes [1]. The
following result can be found in ([4], Lemma 3.1) and is due to
Dixmier. For sake of completeness we write down the short proof
given there.

LEMMA 2.7. Let N be a left ideal in a von Neumann algebra
M. For any two elements S, S, in the unit ball of N and €> 0
there 1s a S€ N such that

1—¢)S#S; < S*S<1 fori=1,2.

Proof. Put
T.=1—¢) @1 —@1—¢ S*S)'SiS; for i=1,2
T=T +T,
S=@Q+ T)r1"

We will show that S is the desired element. First a trivial calcula-
tion shows that (1 — ¢)S#*S; =1 —- @1 + T)"and S*S=1—- 1+ 1)
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so that (1 — ¢)S*S; < S*S < 1. Clearly T;e N*N since N is a left
ideal, so Te N*N and by ([2], Lemma 4.11) T"*e¢ N and therefore
also Se N.

We can now prove our first main result.

THEOREM 2.8. Let A be a C*-algebra, G a group of *-automorphisms
of A and ® a G-invariant weight on At such that M is norm dense
im A. There exists a largest G-imvariant weight v, majorized by
@ such that «, is the upper envelope of a family of G-invariant
continuwous positive linear functionals on A. Moreover +, majorizes
every G-invariant continuous positive linear fumctional majorized by
P.

Proof. Define the function v, on A" by

yo(x) = sup {f (%), f€ F} -

It follows directly from the definition that ,(\&) = M () for all real
A >0 and that o(x, + ) < (@) + Yo(a,) for all z, 2, A*. We
claim that also (2, + 2,) > V(@) + Yo(®@,) so that +, is a weight on
A+,

Suppose first that +(x,) = o, then for every integer = there is
a fe &, such that f(x) > n and 80 Jo(x, + 2,) > f(x, + x,) > n. We
get o(w, + 2,) = . So we may suppose that () and +(x,) are
finite. For any ¢ > 0 we find f,, f.€ %, such that (x;) — & < fi(x,;)
for + = 1,2. By Lemma 2.6 there exist operators S; in .2%; such that
0< S; <1 and fi(y*y) = || S;dy || for all yeN. By Lemma 2.4 75 is
a left ideal in the fixed point algebra of w(A) so we can apply
Lemma 2.7 to get an Se€.2%, such that (1 — ¢)S*S, < S*S<K 1.
Again by Lemma 2.6 we find fe . &, such that f(y*y) = ||S4y |} for
all yeN. It follows that (1 — &) fi(y*y) < f(y*y) and by continuity
of f; and f and the density of I that

(1 — &) (Yo(@s) — &) < (1 — o) filw) < f(wy) «
Summing up we get
(1 — &) (Yo(@) + o) — 26) < f(®1 + @) < Yro(®, + @)

and this holds for all € > 0 so that (%) + V(@) < o, + 2,) and
that +, is a weight.

As &, is G-invariant, so is . If fe &, then f< ® so that
2y < . From the definition we have also that + is the upper en-
velope of G-invariant continuous positive linear functionals. Finally
suppose that «, is another G-invariant weight majorized by ¢ with this
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property. So for any xze A* such that +(x) < o there is a G-
invariant continuous positive linear functional f < 4+ such that

"#1(%) - f(x) < 1.

But 4, < @ implies fe &, and f(x) < o(x) so that ¥ (x) < 4ro(x) + 1
for all € My, and therefore (%) < ¢(x). A similar argument holds
for the case (%) = . So the proof is complete.

COROLLARY 2.9. For any weight ® on a C*-algebra A4 such that
I is dense in A there exists a largest weight + majorized by ® and
lower semi-continuous on A*. This weight majorizes every functional

in &,

The corollary follows by taking for G the group consisting only
of the identity automorphism. It is an extension of Propsition 1.10
of [1]. We next will show an analogous result for a g-weakly lower
semi-continuous weight on a von Neumann algebra. It is almost a
consequence of Theorem 2.8.

THEOREM. 2.10. Let A be a won Neumann algebra, G a group
of *-automorphisms of A and ® a G-tnvariant c-weakly lower semi-
continuwous weight on A* such that M 1s o-weakly dense in A.
There exists a largest G-invariant weight «r, majorized by @ such that
Iro 18 the upper envelope of mormal G-tnvariant positive linear fumc-
tionals on A.

Proof. Define the function +r, on A* by
Po(®) = sup {f(x), f€ &, and f is normal}.

To prove that +, is a weight we can use the same argument as in
Theorem 2.8. By ([10], Prop. 13.10) 7 is normal and all elements
fe &, constructed in Lemma 2.6 are of the form w,ow and hence
are normal. Further in this case we must use the o-weakly density
of M in A and the normality of f; and f to get

L — &) filz) < f(@) .
Apart from these two remarks the proof carries over completely.

REMARKS 2.11. Theorem 2.10 reduces partly to Proposition 13.11
of [10] if G consists only of the identity automorphism. The proofs
are then almost the same.

Let @ and +, be as in Theorem 2.8. Define the function + on
AT by () = P(x) — () if x€ M* and +ry(x) = o for x ¢ M+, Clearly
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v, is again a G-invariant weight with My =M and 4, < p. If f
is any G-invariant continuous positive linear functional majorized by
o, then fe 7, and f< 4, So for all xeIM*, f(x) < y(r) and
f(@) < ¥.(x) so that 2f(x) < #(») and 2f < ®. Similarly nf < ¢ for
all positive integers » so that f(x) = 0 for x€ MM+ and by continuity
that f = 0.

We conclude that a G-invariant weight @ such that 3% = A can
be decomposed into two G-invariant weights +, and + such that

(1) P@) = Yo(®) + yu(x) for ze A*

(ii) +, is the upper envelope of G-invariant continuous positive
linear functionals.

(iii) + majorizes no G-invariant continuous positive linear func-
tional.

This result enables us to devide the theory of G-invariant weights
into two parts. In the first case we may assume that the weight
majorizes no G-invariant continuous positive linear functional, in the
second case we may assume that the weight is the upper envelope
of such functionals. It is clear that the last case will be treatable
by the use of known results for G-invariant states.

In the next section we will construct a unique normal G-invariant
projection map ¢ of the ultra-weak closure % of .9 onto the ultra-
weak closure 5%; of .9%;. We follow closely the arguments of ([6]
Theorem 1). We will have that ¢ is also a projection map of 5%~
onto 2¢; and of % "*.9%% onto .23*.9%,. Therefore it will be possible
to define a unique G-invariant projection map ¢’ of & onto &, that
is w*-continuous on bounded sets. The map ¢ will be used to prove
more results on +, in §4.

3. A @G-invariant projection map of &4 onto .&,.

NoTAaTiONS 3.1. Let @ be a G-invariant weight on A. We will
denote by E, the projection onto the fixed points in & So we have
U,E, = E, for all ge G and therefore also E,U, = E,, Moreover
there exists a net of convex combinations, which we denote by

PIRNOT AT
geaq 1€l

converging strongly to E,, ([9] sect. 144), (A’ are functions on G
with values in [0, 1] such that \(g) = 0 except on a finite set and
See M(g) =1). By E, we will denote the projection [z(4)E, 5#1];
clearly E, e n(A) and E, is G-invariant because w(A) and E, S# are
so.
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PrROPOSITION 3.2. Let @ be a G-invariant weight on A. There
exists a unique normal G-invariant positive projection map ¢ of %
onto %, the ultra-weak closures of % and ¢, We have

#(S)E, = E,SE, for any Se =7 .
In particular ¢(577) = 2%, and $(5* %) = %+ 0.

Proof. We first define ¢ on .97; then we prove strong continuity
of ¢ on bounded sets and extend it to 9. Let Se€.%; by Lemma
2.3 there is a vector a such that SAx = w(x)a for all xeN. Let
{3 N (9)U,};c; be a net of convex combinations converging strongly
to E,. For all xe M and all 1€ T we have

( 3,1(0) UgSU;‘)/Ix = 3 N(0) U,S4g™(@)
= 3 M) Usa(g~ @)
= 3 Ni(g)n(@) U,a

geCG

= 7(x) (E&M(g) Ug> a.

Because the net {3 \i(9)U,SU;};.; is bounded, it then converges
strongly to an operator #(S) € w(A4)’ such that ¢(S)4x = n(x)Ex. So
16(S)4z || < ||z || B ]| and ¢(S)e 2. As E is G-invariant it fol-
lows by a similar calculation that ¢(S) is G-invariant. Clearly ¢ is
linear and positive. If Se .24, then U,SU;* =S for all ge G so
that ¢(S) = S and ¢ is a positive projection map of %  onto .9%.
Now let ge G then SAxz = n(x)a implies U,SU;'Ax = n(x) U, and

o(U,SU; YAz = n(x)E, U, = n(x)E,
so that ¢(U,SU;") = ¢(S) and ¢ is G-invariant. We also have that
HS)E, = strgellim ez(‘; N(9)U,SU;E,
= str. ling N(9)U,SE,

iel geqG

= E,SE,

Using this last relation we prove that ¢ is strongly continuous
on bounded sets. Take S,€ .9, by Lemma 2.4 there is a G-invariant
vector a,€ 57 such that Si4x = n(x)a,. Let S, = U|S,| be the polar
decomposition of S,. Then |S,| Az = U*S,4x = n(x) U*a, and as S,
is G-invariant, we have also that U* and U*«, are G-invariant. It
follows that E,|S,| =|S,| and so S,E, = S,. Now let ve 5% then
3(S)y = ¢(S)E,y and for any & > 0 there is a vector
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> Tovie n(A)Eoo7
such that || Ey — 3, T: |l < ¢ where T;e n(A) and v,€e E,54 So

16711 = 6 1| <|lo(S) (Boy - 377

+ o) 3 7o

<ellg@®)1l+ SN TSy |
<clIS+ SN TsS)vl-

But ¢(S)v; = 6(S)Eyy; = E,SEyv; = E,Sv; and therefore
TSy Il < ellSI+ 21 Tell 11871l -

Therefore if Se .2 satisfies the conditions:
NsSh<1, Sl <en™ || T;|[

then || ¢(S)7 ]| < 2¢. Thus ¢ is strongly continuous on bounded parts.
So by continuity we can extend ¢ to the ultra-weak closure % of
2. The extension is still denoted by ¢. Clearly ¢ will be a G-
invariant projection map of .2 onto 57, and still satisfy ¢(S)E, =
E,SE,. We show that the extension is also positive. Therefore let
Se 27 and 0 < S<1; if F is the largest projection in 2% we have
S=S8F=FSF. So SeFrn(AYF = 27*2%. By ([3] Lemma 2.2)
27 * 9% is ultra-weakly dense in 57* 3% and by the Kaplansky
density theorem we have that the unit ball of the hermitian part of
¥ * 2% is strongly dense in the unit ball of the hermitian part of

2 * 2. So S is strongly adherent to
{(T{Teor*20,T=T|T|<1}.
We then have that S* is strongly adherent to
(T*{ Te *2,; T=T|T|<1)

and by the work of Kaplansky [7] that S = (S*'* is strongly ad-
herent to {|T|§{ Te o *25; T =T* || T||<1}. As o is a left ideal
Te o7 * 2 implies Te. 2 and |T|e 2% so that S is strongly ad-
herent to {T | Te 27,0 < T < 1}. We may conclude that ¢ is positive
and so that ¢ is a normal G-invariant positive projection map of 27
onto .%%;,. The normality follows from ([5], Appendix II).

If ¢, is another normal G-invariant projection map of Z# onto 77,
then for any Se. &
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5. ( ZN@U,ST;) = 68)

and by continuity ¢,(3(S)) = ¢.(S) = ¢(S). So ¢ and ¢, coincide on
% and therefore also on 7.

To complete the proof we must show that ¢( % * 7%") = 2%.* 5.
Take Se€ . 2 such that ||SAx|| < ||x]|| then

(@ U,S*SU M, 42) = 3,0(g) || SU a |
= 30 | Sdg™ (@) I
SDANOVENEFIS
So that (3(S*S)4x, 4z) < || 2| and ¢(S*S)"* € 2%, and ¢(S*S) € 2#:* 57,
As o7 * 9% is spanned by its positive elements and those elements
are of the form S*S with Se .2 ([2] Lemma 4.11) we get
NF ) & T .
This completes the proof.

COROLLARY 3.3. Let F and F, be the largest projections in

respectively 2% and ¢, the ultra-weak closures of 5% and %3,
then ¢(F) = F,.

Proof. As F,c 2 we have F, < F and F, = ¢(F,) < ¢(F). As
s(F)e 57, and 0 < ¢(F) <1 we have ¢(F) < F, so that ¢(F) = F..

PROPOSITION 3.4. Let ® be a G-invariant weight on A. Then
there exists a G-invariant projection map ¢’ of F into F, satisfying

§(fi + 1) =¢(f) + ¢ (f) and ¢'(Nf) =N'(f) Sfor all f, [, foe F
and positive real numbers . If moreover M is norm dense in A,
then ¢’ 1s onto F,, w*-continuous on bounded sets and unique.

Proof. First we define ¢'(f) for fe &. Given fe & there is a
unique Se. 2%  such that 0< S<1 and f(z*2) = (S*SAz, Ax) by
Lemma 2.6. Then ¢(S*S)e 97;* 2, by Proposition 3.2 and

HS*S)*e o by ([2] Lemma 4.11) .

By Lemma 2.4 there is a unique invariant vector a e z(N*)=F such
that ¢(S*S)"*Ax = n(x)a for all xeN. Define ¢'(f) by

¢'(f)?) = (7R, @) .
Clearly ¢’ maps & into #,.
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Let fi, f:€ % such that f, = \f, for a real number » > 0. It is
clear that the corresponding S, S,€ .%  satisfy S, = A\'2S, and that
a, = \M*a, for the corresponding vectors. Then ¢'(f) = \¢'(f,). Fur-
ther suppose f, f;, f€ % such that f = f, + f,. We then have

S*S = 8§*S, + §*S,
for the corresponding elements in .27 By linearity of ¢ we get
#(S*8) = ¢(8,*S) + 8(S*S,) -
As in the proof of ([5] Th. 1 p. 85) we can find operators
U, U,cn(AY
such that
#(S;*S)* = Up(S*S)'” for i =1,2
and
(U*U, + U,*U,)p(S*S)* = ¢(S*S) 2.

Let a,, a,, @« be the vectors in 7w(N*)57 corresponding to ¢(S,*S))'7?,
#(S.*S,)"* and #(S*S)"*. Then

T(@a; = ¢(S;*8;)""Ax = Ug(S*S) " Au
= n(x) U .

So that «, = U,x by unicity and invariance of #(0*)o# A similar
argument shows that a = (U*U, + U,*U,)a. We apply all this to
find the following

[¢'(f) + ¢'(F)]() = (z@)a,, @) + (T(R)exs, )
= (n(x)a, U U) + (n(2)a, U;* Ucx)
= (7@, @) = ¢'(f)(2)

for all ze 4, showing ¢'(f, + f.) = ¢'(f) + ¢'(fa)-

We next show that it is a projection map. Let f be in the
image of ¢. Then there exists a Se 22; and a G-invariant vector
ae 7(N*) 27 such that f(x*x) = (S*SAx, Ax), SAx = n(x)a for xeN
and f(z) = (7(z)a, @) for ze A. Then ¢(S*S) = S*S and ¢'(f)(z) =
(m(z)e, @) for ze A. The G-invariance of ¢’ follows straight forward
from the G-invariance of ¢. So we proved the first part.

Assume now that 9% is norm dense in A. If fe &, there exists
a Se€ .9, and an invariant vector a € w(IN*)S# such that f(z*z) =
(S*SAzx, Ax) and SAx = m(x)a for xze . Then $(S*S) = S*S and
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8'(f)(z) = (n(2)a, a) for z€ A. But also f(z*x) = (n(xv*w)a, @) for xeN
and it follows by the density of ¢ in A that

f(@) = (z(2)a, a) = ¢'(f)(2)

for all ze A. So ¢’ is a projection map onto .%,. To complete the
proof it remains to show that ¢’ is w*-continuous on bounded sets
for then a similar argument as in Proposition 3.2 provides the uni-
queness.

Let f; be a sequence in & converging to f in the w*-topology
and such that ||f;|| < 1. We must show that ¢'(f;)(2) converges to
#'(f)(z) for and ze A. Denote by S;, S the corresponding elements
in .2 and by «;, a the vectors in 5% corresponding to ¢(S;*S;)"* and
#(S*S)2. Take first z = x*x with xeN. From the relations

¢'(f)(@*e) = (8(S:*Si) A, Ax)

the corresponding once for f and the normality of ¢ we get that
lim ¢'( f)(@*2) = ¢*(f)(x*x). As I is linearly spanned by elements
x*x with xeN we have that lim ¢'(f))(2) = ¢/(f)(z) for all ze .
Then by the fact that [[¢'(f;) || < [|f:]|< 1 and the density of It
this relation holds for all ze A.

So the proof is complete.

4. More properties of the upper envelope of .#,. In this
section we will get some more information about the G-invariant
weight +,, constructed in Theorem 2.8 and from now on called the
upper envelope of .#,. We will also relate the existence of fixed
points in 57 to the existence of nontrivial elements in .&#,. Finally
we will consider the set of weights majorized by .. In this section
again F and F, will stand for the largest projections in the ultra-

weak closures .o and %, of resp. %" and ..

THEOREM 4.1. Let @ be a G-invariant weight on A such that IN
is norm dense in A. Let F, be the largest projection in the ulira-
weak closure 77, of 5%, and -, the upper envelope of .. Then
Jro(w*x) = (Fydx, Ax) for all xeMN.

Proof. By Lemma 2.4, .9; is a left ideal in the fixed point
algebra B of m(A). Then by ([2] Lemma 4.11) 2%7* %5 is a facial
subalgebra of B and ultra-weak dense in 7,*.%, = FBF, by ([3]
Lemma 2.2). So by ([3] Lemma 2.8) there is an increasing net {T'};.
of positive elements in .2;*.%%; tending ultra-weakly to Fi. Again by
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([2] Lemma 4.11) there exists a S;e . 2%; such that T; = S;*S; and by
Lemma 2.6 there exists a f;€. %, such that f;(x*x) = || S;4z || for all
xeN. So (F,Ax, Ax) = sup;.; (S;*S;Az, Ax) = sup;.;fi(x*x). But
fi€ F, so by definition f; <+ and (F,dz, Ax) < (x*x). On the
other hand if fe &, there exists a Se . 27; such that 0 < S< 1 and
fx*x) = || S4z|* by Lemma 2.6. This implies that S*S < F, and
so that f(z*x) < (Fy Az, Ax). It follows that also

Jro(x*x) = sup f(z*z) < (Fodz, Ax) .
fesxy
This completes the proof.

COROLLARY 4.2. Any weight @ on A, such that M = A, is lower
semi-continuous on M+ if and only if 2% is wltra-weakly demse in
w(A) .

Proof. Let G be the group consisting only of the identity auto-
morphism, then &, =.%, %= and F=F,. If 2o =nA)
then F =1 and +(2*2) = (4=, Az) = ¢(x*x). It follows that @ is
lower semi-continuous on M*. If on the other hand @ is lower semi-
continuous on M+, then by ([1], Prop. 1.7) @ |IN* is weakly adherent
to & so that

Uz, Ax) = p(a*x) = Yo(x*z) = (Fodx, Ax) .
So that F, = F = I and 57 = n(4)".

COROLLARY 4.3. Let @ be a G-itnvariant weight on A, assume
M norm dense in A and @ lower semi-continuous on IM*. Then
F,=[n(A)E,5#). Moreover @ majorizes mo nonzero G-invariant con-
tinuwous positive linear functional iff 57 has mo fized points.

Proof. From the proof of Proposition 3.2 we know that for any
Se %, we have S,E, = S, where E, = [7n(A)E,2#]. By continuity
we get F, < E,. From Corollary 4.2. we have F' = I. So again from
Proposition 3.2 and Corollary 3.3 we have

F.E, = ¢(I)E, = E,IE, = E, .

As F,en(A) we get F,TE, = TE, for all T e n(A) so that also F|, > E..
The last statement then follows from the relations +r(x*x) = (Fo4x,4x)
and F, = [n(4A)E,57].

Remark that the existence of nonzero elements in &, implies
trivially the existence of fixed points. The converse however is not
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so clear.

o COROLLARY 4.4. Let @ be a G-invariant weight on A such that
M = A. Then there is an increasing net {fi}ic; i F, such that
Pro(®) = sup fi(z) for all ze€ AT such that () < co.

Proof. From the proof of the theorem there is an increasing
net {f.}i.; in &, such that

(Fodz, Ax) = po(x*x) = sup fi(x*x) for all zeN.
iel

In applying this result to the weight +, we get

o(z) = sup fi(2) for all ze My,  ie.,
iel
for ze A* such that ~(2) < .

Applying Corollary 4.4 with trivial G to any lower semi-continuous
weight on A such that It = A we get the existence of an increasing
net {fi}ic; & F such that ¢(2) = sup;.,fi(2) for all ze M+,

COROLLARY 4.5. Let @ be G-invariant weight on A such that
M = A. Assume there is a family {f}ic; in F such that

P(x) = WZI. fi(x) for ze M+ .

Then there is a family {fi"}ie; i Fo such that o(x) = ;e ()
for all xe N+,
Proof. By Lemma 2.6 we get operators T;€ . % *_2% such that
P(x*x) = 3, (T Az, Ax) = (A, Ax) for xe M.
2el
So that I =>;.; T:.. As @ is lower semi-continuous we have F = I

by Corollary 4.2 and ¢(I) = F, by Corollary 3.3.
So by the normality of ¢ we get

F, = % o (T)
and so
yo(@*x) = (Fodw, Av) = Z; (¢(T) Az, Ax)
= 2, ¢'(f) (¢*2) for zeM

by the use of Proposition 3.4. As ¢'(f;) €. %,. we proved the corol-
lary.
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REMARK 4.6. In Theorem 4.1, as well as in the Corollaries 4.4
and 4.5 we find that two lower semi-continuous weights coincide on
M+, It is not yet known if this implies that they will coincide on
all of A([1], p. 74). However if we assume the existence of a two
sided ideal M, contained in 9N and dense in A then this weights will
coincide everywhere. Indeed there exists an approximate identity
{u;} in NN, for A. So for any ze A*, {z"*u;z'*} is a net in M+
tending to z from below. (see also [8], Cor. 3.2)

PROPOSITION 4.7. Let @ be a G-invariant weight on A such that
I is morm demse in A. For any G-invariant Te mw(A) such that
0< T F, there is a G-invariant weight + such that < 4, and
J(x*x) = (Tdx, Ax) for all xeN. For any G-invariant weihgt A
such that + < 4, and + is lower semi-continuous on IM*, [ IM* s
the upper emvelope of a family of G-imvariant continuous positive
linear fumnctionals. For any weight +» on A such that - < @ and
A | T 4s the upper envelope of G-imvariant continuous positive linear
functionals there exists an operator T € w(A) such that T is invariant,
0< T<F, and y(x*x) = (TAx, Az) for xcMN.

Proof. First let Ten(A) such that 0<< T< F,. Define the
function 4 on A* by

(@) = (TAx?, Ax'?) for xe M~
= oo for xe A", xe I~

Clearly +(A\x) = Mp(x) for all real A > 0 and
Y(@) < |[Foda'™ || < || 427 ]| = P(x) for xe M~ .

We prove that «(x + y) = y(®) + (y) for all x, ye A*. It is clearly
sufficient to show it for z, ye M. As F, < F we have T < F and

Te Fr'(A)F = 5 *% = 2% *% by ([3] Lemma 2.2) .
So T is weakly adherent to elements of the form
SV SAT:  with S, Tee % .

But «(x) = (T4x'?, Ax'*) and if «;, B; are the vectors in 57 corre-
sponding to S; and T; (Lemma 2.3) we also have that

(i ST Ax'?, Ax1/z> = ﬁ (z(x)B;, @;) -

So given z, ye M* we can find vectors a;, B; € 5~ such that
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¥@) — 3 (@(@)8, @) | <1

for z equal to =,y or x + y. So we get |(x + y) — (&) — v(y) | < 3
and by homogenuity that ( + y) = (@) + ¥(y). If moreover T is
G-invariant then + is clearly G-invariant. So we proved the first
part of the proposition.

Let v be a G-invariant weight, majorized by # and lower semi-
continuous on IM*, then by ([1] Prop. 1.7) + | M+ is weakly adherent
tc the family of positive continuous linear functionals majorized by
vr.  So by ([1] Lemma 2.6) T is weakly adherent to the family

(Se. % * % 10< S< T}

where T is the operator in 7w(A)’ such that +(z*z) = (T4x, Ax) for
xeMN ([1] Lemma 2.3). So we may apply ¢ and use its normality to
get that ¢(T) is weakly adherent to

{6(S){Se x*2%, 0<S<T}.

But as + is G-invariant, so is T and ¢(T) = T. Also ¢( % * %) =
7 %, so that T is weakly adherent to

(S} Sye 7555, 0< S, < T} .

Again by ([1] Lemma 2.6) we have that | I+ is weakly adherent
to the family of G-invariant continuous positive linear functionals
majorized by .

To prove the third part, let + be a weight such that « < ® and
A | M+ is the upper envelope of G-invariant continuous positive linear
functionals. By ([1] Lemma 2.3) there is a Texn(4) such that
0< T<1 and +(z*x) = (T4zx, Ax) for xzeN. Then again by ([1]
Lemma 2.6) T is weakly adherent to the family

{Se x5 i0< S T}.
So Te 7% 9% = 2%.* %, by ([3] Lemma 2.2). It follows that
T=FTF, < F,.
COROLLARY 4.8. Let @ be any weight on A such that M = A.

Given T € w(A) such that 0 < T < F there exists a weight « < @ such
that (x*x) = (TAx, Ax) for all xeN.

Proof. Apply the fiirst part of Proposition 4.7 to the case where
G is trivial.
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REMARKS 4.9. Corollary 4.8 is in a sense the inverse of ([1]
Lemma 2.3). On the other hand Lemma 2.6 shows a similar relation
for the set {S{Se. ¥ ™*2;0< S<1} and the set of continuous
positive linear functionals majorized by ®. One may ask if for all
Tern(A) such that 0< T <1 there exists a weight + such that
+ < @ and (a*x) = (Tdzx, Ax) for all xeN. It can be shown to be
true if A is a von Neumann algebra. Indeed the only trouble is to
show that the function + defined on A" by +(x) = (T4x"?, Ax'?) if
xeM* and (x) = = if x€ AT but ¢ M+ satisfies

Y@ + y) = P(x) + P (y) -

If now A is a von Neumann algebra we can again find operators u
and ve A such that

(1) & =ul@ + y'" ¥y =@ + y)'*

(i)  (w*u + v*0)(x + v)'* = (& + y)'?, see proof of ([5] Th. 1 p. 85).
So that

V(@) + y(y) = (T4, A2') + (TAy'”, Ay'")
= (TA(x + v, (w*w) (@ + y)'*)
+ (TA(@ + y)'", m(@* ) A@ + y)'*)
= (T4 + ', A + y)'*) = y(@ + y)

for », ye M+,
5. EXAMPLES.

5.1. Let G be a compact group acting as *-automorphisms on a
von Neumann algebra A. Assume that the function ¢g— g(x) is
strongly continuous for all x€ A. Let ® be a G-invariant ultra-weakly
lower semi-continuous weight on A such that I is ultra-weakly dense
in A. We will show that @ |9 is weakly adherent to the set of G-
invariant normal functionals majorized by . Consider Te .2 * 2,
there exist S;, T;€ .2 such that T = >\, S#T;. By Lemma 2.3
there exists vectors «;, 8;€ 5 such that S;4x = n(x)o; and TAx =
n(x)G; for all xeN. For all ge G and @, yeN we have

(U;7'TU Az, dy) = i:{ (m(9(y*®)) Bsy i) -

By the normality of 7 ([10] Prop. 13.10) we have that the function
g— U 'TU, is weakly continuous.
So we can define for all Te . 27* 2  an operator ¢,(T) by

6.(T) = SG U-TU,dg
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where dg is the normalized Haar measure on G.

It is clear that ¢, is a linear positive G-invariant map into the
fixed points of w(A4)’. Consider now also the projection map ¢ of
Proposition 3.2. As @ is ultra-weakly lower semi-continuous, 2¢* 7%~
is dense in 7w(A)" (Corollary 4.2) and ¢ is defined on =(4). By
normality and G-invariance of ¢ we get

s = | #(USTUYdg = 4(T) .

On the other hand ¢(¢,(T)) = ¢.(T) because ¢ is a projection map
onto the fixed points of 7(A4)’. Therefore ¢, = ¢| % * 2. Let S,
be an increasing net of positive elements in .22 *. 27" tending to I.
Clearly by the definition of ¢, we will have that ¢,(S,) — I. On the
other hand ¢,(S,) = ¢(S,) and ¢ is normal so that &(S,) — ¢(I). By
Corollary 4.2 we have F' = I and by Corollary 3.2 that ¢(F) = F..
It follows at once that F, =TI and by Theorem 4.1 we get that
@M = r, | P where +, is the upper envelope of normal G-invariant
continuous linear functionals.

5.2. In our first example we found that the weight @ was the up-
per envelope of invariant normal functionals. It is not hard to find
an example for the other extreme. Let A be a semi-finite von
Neumann algebra with no finite portion, i.e., with no finite nonzero
central projection. Let ® be a faithful normal semi-finite trace on
A. If G is the group of all inner automorphisms, then @ is a G-
invariant o-weakly lower semi-continuous weight on A and IN is o-
weakly dense.

Since A is properly infinite there are no finite normal traces on
A. The weight +, constructed in Theorem 2.10 is the upper envelope
of normal finite traces majorized by @, hence +, = 0.
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