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ON THE COUNTABLE UNION OF CELLULAR
DECOMPOSITIONS OF #-MANIFOLDS

W. VOXMAN

Suppose that Gi, G, --- are cellular upper semicontinuous
decompositions of an n-manifold with boundary M(n + 4) such
that for 1 =1,2, ---,M/G; is homeomorphic to M. Let G be
the decomposition of M obtained from the decomposition of
G; in the following manner. A set g belongs to G if and
only if g is a nondegenerate element of some G; or g is a
point in M — (U, HZ). It will be shown that if the various
decompositions fit together in a ‘‘continuous’’ manner and if
G is an upper semicontinuous decomposition of 3, then M/G
is homeomorphic to M.

Our principal result thus extends previous results obtained by
the author ([6], [7]) and Lamoreaux [4], by removing the 0-dimen-
sionality restriction in [6] or, alternatively, by eliminating the finite-
ness condition in [7]. Furthermore, with the aid of recent work of
Siebenmann [5], generalizations to n-manifolds (n = 4) may be made.
As was observed in [7], some conditions must be imposed on the
manner in which the decompositions are pieced together. The example
described by Bing in [2] demonstrates that the continuity condition
to be described below is a necessary one.

Notation and terminology. Suppose G is an upper semicontinu-
ous decomposition of a topological space, X. Then X/G will denote
the associated decomposition space, P will denote the natural projec-
tion map from X onto X/G, and H, will denote the collection of
nondegenerate elements of G. If U is an open subset of X, then U
is said to be saturated (with respect to G) in case U = P7[P[U]].
If Z is a covering of a subset of X, then P[Z'] = {P[U]: Ue %}.

The statement that M is an n-manifold with boundary means that
M is a separable metric space such that each point of M has a neigh-
borhood which is an n-cell. If A is a subset of M, then A is cellular
in M if there exists a sequence C,, C,, --+ of n-cells in M such that
(1) for each positive integer 4, C;,, C Interior C;, and (2) Nz, C; = A.
If M is an n-manifold with boundary, the statement that G is cellular
decomposition of M means that G is an upper semicontinuous decom-
position of M and each nondegenerate element of G is a cellular subset
of M.

If M is a metric space, A a subset of M, then S,(4) denotes the
e-neighborhood of A and Cl A denotes the closure of 4 in M. If K
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is a collection of subsets of M, then K* = U{k: ke K}. The word
map will always be used to indicate a continuous function. If % is
a collection of subsets of M and A c M, then

St(4, z)=U{Uez: AN U= O} .

The main result. The principal theorem will be proved by means
of repeated applications of the Lemma which appears below. We say
that a cellular decomposition G of a manifold M satisfies condition S
if for each saturated open cover Z© of H/, there exists a closed map
h from M onto M such that (1) G = (A (®): xe M}, (2) if xe M — Z*,
then i(x) = x, and (3) for each ge G and g C Z*, there exists a Ue %
such that g U h(g) < U.

LEMMA 1. Suppose G is a cellular decomposition of an n-manifold
with boundary M(n + 4). Then M|G is homeomorphic to M if and
only if G satisfies condition S.

Proof. Clearly if G satisfies condition S, then M/G is homeomor-
phic to M. Suppose now that M/G is homeomorphic to M and that
7 is a saturated open cover of Hj. Without loss of generality we
may assume that Z is locally finite. Suppose xe % * and U, ---, U,
are those sets in % which contain x. Set

¢, = max {d(P(x), M/G — P[U]), «--, d(P(x), M/G — P[U.])}

and define fi(x) = ¢,/2. Then f, is a lower semicontinuous function
from Z/* into (0, ), and, hence, there exists a continuous map f,
from Z7* into (0, =) such that 0 < f, < fi.. For xe Z*, define f,(x)
to be d(P(x), M/G — P[Z *]), and finally define f(x) to be min
{fi(®), fi(x)}. Siebenman’s projection approximation theorem [5] may
be applied to find a homeomorphism % from Z* onto P[Z *] such
that d(P(x), k(x)) < f(x) for each xe Z*. Then h = kP is the desired
map. To see this we need only check that for ge G and g Z*,
there is a Ue % such that h(9) Ugc U. Let y = k'P(g). By our
construction there exists a Ue % such that both P(y) and k(y) belong
to P[U]. But k(y) = P(g); therefore, y and g belong to U, which
completes the proof.

Suppose M is a metric space and K is a collection of mutually
disjoint subsets of M. If ge K, then K is said to be continuous at
¢ in case for each positive number &, there exists an open subset V
of M containing ¢ such that if ¢’c K and ¢'N V # &, then g = S.(¢")
and ¢’ < S.(g).

THEOREM 1. Suppose G, G,, +++ are cellular decompositions of
an n-manifold with boundary M(n = 4) such that
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(1) If geH; and gN Hg, + &, then ge Hy,.

(2) For each k=1,2, -+, if ge H,, then {Hy:%+ k} U {g} s
continuous at g.

(8) Fori=12, .-+, M/G; is homeomorphic to M.

(4) G={g:9eUr. H;, or g is a point of M — (U, He)} is an
upper semicontinuous decomposition of M.

Then M|G is homeomorphic to M.

Proof. We show that G satisfies condition S. Let % be a
saturated open cover of Hi. The required function s will be defined
as a limit of a sequence of closed, onto maps which are obtained in
the following steps.

Step 1. Let K, = {p e M: there exists a sequence of nondegenerate
elements, each from a different H,, which converges to p}. Note
that K, is a closed subset of M. We construct a saturated (with
respect to G) open refinement of 27~ which covers Hj and misses K.
For each ge H,, let U, be saturated open set with compact closure
such that

(1) If ¢, = min {diam g, 1/2d(g, K)), 1}, then U, S, (9).

(2) If g;e H;, and g;€ H;, (1 # j) and g; and g; are contained
in U,, then 1/2diam g; < diam g; < 3/2 diam g,.

(8) U, is contained in some We %~ which contains g.

Parts (1) and (2) are possible because of the continuity condition im-
posed on the decompositions. Define %, = {U,: ge H;}. Let Z,
be a saturated open locally finite star refinement of % and 97 =
{UeZ,: UN H{ + @}. Observe that it follows from (1) that if pe K,
then p ¢ Z*. Furthermore, from (1) and (2) we have that if pe K,
and {z;} is a sequence of points in Z/* which converge to p, then the
sequence {St (x;, )} also converges to p.

By Lemma 1, there exists a closed map &, from M onto M such
that

(1) G, = {h'(x): xe M}.

(2) If xeM — 77*, then h(x) = w.

(3) If ge@G, and g C Z*, then there exists a set of Ue %, such
that g U h(g) c U.

In addition, since %/, is saturated with to respect to G, part (3)
holds for all g € G which are contained in Z/*.

Step 2. The decomposition G} = {h,(g): g€ G} is clearly cellular
and upper semicontinuous. Let P’ be the projection map from M
onto M/G;, and P the projection map from M onto M/(G,U G,). Then
P'h, P~ is readily seen to be a homeomorphism from M/(G, U G;) onto
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M/G;. But it was shown in [7] that M/(G, U G,) is homeomorphic to
M (using Siebenman’s generalization [5] of Armentrout’s “projection
approximation” theorem [1], the results of [7] may be extended to
n-manifolds for n # 4).

Let K, = {pe M: there exists a sequence of nondegenerate ele-
ments, each from a different H, s, which converges to p}. We
construct a saturated (with respect to %,[G]) open refinement of h[Z/]
which covers H,,; and misses K,. Suppose ¢’ = h,(g) where g e H, —
H,. Choose U, to be saturated (with respect to ,[G]) open set such
that

(1) If & = min{diamg¢’, 1/2d(9’, K.), 1/2}, then U, c S, (g').

(2) If g;e Hye,and g; € Hye,0(t # j) and g; and g; are contained
in U,, then 1/2diam g, < diam g; < 3/2 diam g;.

(3) h(U,) < Syd9)-

(4) If W= N{U: Ueh|z.] and h,(g) c U}, then U, C W.

(5) If Ve%, and gUh(9)c V, then U, C V.

(6) U, NCl(hIHL) = @-

Let Z; = {U,: 9’ € Hy 1} and let Z, be a saturated open locally
finite star refinement of %/ covering H;f;. Let

% = {Ue %2: Un .H}?;[Gz] i @} .

Note that A{'(Z*) C Sy,(Hg) and k7' 75%) < Sye(HE).
By Lemma 1, there is a closed map %, from M onto M such that
(1) G ={h'(x):xe M}
(2) If xe M — 7;*, then hy(x) = 2.
(38) For each ¢’ € G} contained in Z}*, there exists a Ue %/, such
that h,(¢") U ¢’ < U.

Claim. For each ge G contained in Z*, there exists a We %,
such that g U hh,(9) c W.

Proof of Claim. Suppose g€ G and g < Z*. Then there exists
Ue 7, such that h(9) Ugc U. If ge H, or if h(g) is not contained
in 7;*, then h,h(9) = h(g), and we are done. Suppose then that
g€ H, and h(g) N 77* + @. Since Z7; is a refinement of A,[Z] and
%, is a locally finite star refinement of %/, we may find U, e %, and
U, e Z7], where h(g) = ¢’, such that h(g)c U,cSt(U,, z») < U,.
We first show that there exists a Ve %, such that U,c V. Of
course, h(9) = ¢’ U,. Let V, V,, -+, V, be those members of %,
which contain g. Then by our construction of %7,

U, Ch(V)N e NA(VS)
Since #,(9) c U,,, it follows that gc VN --- N V,. But for at least
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one i =1,2,---, or n, h(9g) N gU V;. Therefore, by (5) in our con-
struction of %), it must be the case that U, is contained in V..

We need only observe now that if Ze %, and h(g9) C Z, then
Zc V., This is clear since Zc St(U, %, < U, < V,. Hence, we
have that St (k,(g), %.) is contained in V; and since

h.hi(9) < 8t (hi(9), Z) »

the proof of the claim is complete.

We continue inductively. Assume now that covers Z/, ---, %,
Wy oy Xy 7y o+, 7, have been defined so that the conditions
listed below are satisfied. We denote h;h,_, --- h, by ﬁ,,, and h, = h, =
identity. For ¢ =1,2, ..., n, let K; = {pe M there exists a sequence
of nondegenerate elements converging to p where each element is a
member of a different Hj, 5.1}

(1) zi =1{U,:¢ eH,, _ta} is a collection of saturated (with
respect to h%_I[G]) open sets which refines hH[?/@_x] and misses K.
For each ¢’, U, is chosen to contain g’ such that

(a) If & = min{diam ¢’,1/2d(¢’, K;)1/i}, then U, C S, (g').

(b) If g;e Hy, s, and g, € Hy, 4 (J # k) and g; and g, are
contained in U,., then 1/2diam g; < diam g, < 3/2 diam g;.

(2) % is a saturated open locally finite star refinement of %/
and 7= {(Ue % UNH},_ 5, 3 # O}

(8) Fori=1,2,---,nand1=5j=<7—1,

Bt e Bihhit (7)) < Sys(hi_ (HZ))
and
Bt oo e hihhit( 76%) C Siys(hs_ (HE)) -

(4) For v=1,2,+--,m, h; is a closed map from M onto M such
that if G} = {h._.(9): g€ G} then

(1) G = {hi'(x):xe M}.

(2) If e M — ¥;*, then hi(x) = .

(8) For each ¢’ G; which is contained in %/*, there exists
Ue %, such that h,(¢") U g < U.

(5) Fori=1,2 ---,mand 0<j7<i—1,if geG and h;_,(g)
is contained in %*, then there exists Ue %/,,, such that k,(g) U
}}:z(g) cU.

(6) Z!*0Cl(ho(Hs U -+ UH; ) = @

Step n + 1. Let G, = {h.(9): 9 € G,.}. A proof similar to that
employed in Step 2 shows that M/G,., is homeomorphic to M. Let
K,., = {pe M: there exists a sequence of nondegenerate elements con-
verging to p where each element is a member of a different H, 1}
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We construct a saturated (with respect to fzn[G]) open refinement of
h.[Z,] which covers Hj [, and misses K,... Let g’ = h.(g) where
geH, — (H; U---UH;). Choose U, to be a saturated open set
containing ¢’ such that

(1) Ife, =min{diamg’, 1/2d(¢’, K,.), 1/n + 1}, then U, S, .(g').

(2) If g;e Hi, s, and g; € Hp, 6,0 (¢ # J) and g; and g, are contained
in U,, then 1/2 diam g; < diam g; < 3/2 diam g,.

(8) For i=1,2, -+, m, (hhiss -+ + ha)™(Uy) C Sypenllisi(9))-

(4) For i=1,2,.--,m, if U’ is the intersection of those sets
in Z; which contain ﬁi_l(g), then

Uy Cha(U) O Baltpy o+ (U 0 o+ N Ra(TU™)

(5) For 0 <1< m, if ﬁi(g) U ha(g) c Ue %,, then U, c U.

(6) U,NClh,(H5U -+ UH:) =2
Let Z/p, = {U,: g’ € Hy, +1}, let XU ner bE A saturated open locally finite
star refinement of Z/.,,, and let ;. = {Ue Z\..: UN hn[HGn MEX%]%
By Lemma 1 there exists a closed map #&,,, from M onto M such
that

(1) Gy = {Bi(2): v e M}

(2) If xeM — 7%, then h,. ,(z) = x.

(8) For each ge G, contained in %}, there exists Ue %,
such that g U A,..(g9) C U.

Claim. Suppose ¢’ = ﬁn+1(g) is contained in %%, (¢ is an element
of G); Suppose 0 < ¢ <% + 1. Then there exists Uec %/, such that
g’ Uhi(g) c U.

A proof patterned after the proof of the Claim in Step 2 may be
used to establish this Claim.

Define = Lim k,. To see that h is well defined, we observe
that for each x e M, there exists an integer N such that for n > N,

ha(x) = hy(2) = h(@) .

This is clearly the case if xe H, since if N is the first integer such
that @€ H},, then hy(x) does not belong to the succeeding %/, and,
hence, is left fixed. If x¢Cl H} then choose N such that

d(x, Cl HY) > % .

Then hy(x) ¢ X (see (8) in the inductive Step n + 1) and it follows
that R(z) = h.(x) for each » > N. Finally, consider the case where
we (Cl Hf) — H. If there exists an open set U such that U N Hf =
@ for all but a finite number of ¢, then it again follows from (8) of
Step » + 1 that the required positive integer N exists. On the other
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hand, if no such U exists, then there is a sequence {g,} of nondegen-
erate elements from distinct decompositions G;, which converges to «.
But it was noted in Step 1 that in this case x ¢ Z,* and thus h(z) = 2.

We next show that % is continuous. Suppose {x;} is a sequence
of points in M converging to a point x. If there exists an open set
U containing & such that Un Hf, = @ for all but at most a finite
number of ¢, then it follows again from (8) of the induction Step
n + 1 that {h(x;)} converges to h(x). If no such U exists, then there
are two cases to consider.

Case 1. xe(ClHf — H§). Suppose for each i, x;€9,,€G,,. We
may assume that the z; lie in Z/* since if not h(x;) = x;. But as it
was observed in Step 1, since the sequence {g,} converges to w», we
have that the corresponding sequence {St (¢.,, %)} also converges to
x. It follows from the Claim in Step n + 1, that &(z;) e St (9., %),
and, therefore, {i(x;)} converges to h(x).

Case 2. xe H}. Let n be the first integer such that xeg,ec H;, .
But then h”(g.,,) is a point and our construction in the inductive steps
reduces this case to Case 1.

That % is onto may be seen by the following argument. Suppose
p is a point in M. We assume that peg’e G where ¢’ < Z* (if not,
h(p) = p). For each positive integer 4, there exists a point x; in Z*
such that h(x;) = ». It follows from the Claim in Step n + 1 that
for each ¢, x;€ St (¢’, ). Since St (¢’, Z,) has compact closure (see
Step 1), there exists an accumulation point a of the sequence {z}.
For simplicity of notation let us assume that {x)} converges to z.
We show that ha(x) = p.

Let ge G be the member of the decomposition which contains .
Choose N large enough so that ﬁn(g) = h(g) for each n = N. First
we suppose that there exists a positive integer K = N such that for
n= K, Syx(9) N Hi, = @. Of course, the sequence {ﬁK(x ;)} converges to
hx(%). But it follows from (3) of Step = + 1, that for ¢ sufficiently large,
we will have h.(x;) = h; (%) =h(z;). Thus h(zx)=p, since h,(x;)=p for all i.

Now suppose that each open set containing # intersects an infinite
number of the Hf, and, hence, each open set contalmng hN(x) will
also intersect 1nﬁmtely many of the sets Hj i Thus, foy(x) belongs
to K., (see Step n + 1). Since {fy(x)} converges to hy(x), it follows
from conditions (1) and (3) of Step n + 1 that the sequence

{St(hy(;), Zw)}

also converges to fy(). .
But the Claini in this step ensures that for j > N, k() U hy(x,)
belongs to St (hy(x;), Zy). In particular then for ¢ > N,
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iz\a(wz) U k\N(wi) c St (Ev(wz), ZUy) »

and since, k;(z) = p, it again follows that h(x) = p. Thus % is an
onto map.

It is easily seen from our construction of 4 that G = {h™'(x): x € M}.

Finally, we must show that & is closed. It suffices to show that
if K is a compact subset of M, then A™*(K) is also compact. Since
h is onto, for each x ¢ K, there exists a unique element g,€ G such
that h(g,) = ». If g, Z*, let U,, be a member of Z/, which con-
tains g,. If g, is not contained in Z/* let U, be an open set con-
taining ¢, with compact closure. Note that it follows from Step 1
that if g, is contained in Z/*, then St (U,,, %) has compact closure.
Since if g, < %, then g, U k(g,) © St (U, , ), and if g, is not con-
tained in Z/*, then h(g,) = g,, the collection {U, :2c K} is an open
cover of K. Let Uy, +++, Us,,, be a finite subcover of K, where the
first ¢+ terms are members of Z,. To finish the proof we need only
observe that

h_l(K) c St (gxly %1) Uee- U St (gziy ?/1) U Ug Ueee U ngn

Ti+1

and that the right hand set has compact closure. Thus, the condi-
tions of property S have been satisfied, and, hence, M/G is home-
omorphic to M.

A decomposition of a metric space is said to be nondegenerately
continuous if for each ge G, Hy U {g} is continuous at g.

COROLLARY 1. Suppose G is a cellular nondegenerately continu-
ous upper semicontinuous decomposition of E°. Suppose there exists
a countable number of planes in E°, Q,, Q,, +-+ such that for each
g€ H,, g is contained in at least one of these planes. Then E®G is
homeomorphic to E°.

Proof. For ¢ =1,2, ---, let G; be the decomposition of E® such
that H;, = {ye H: g Q). Then E®/G; is homeomorphic to E* [3],
and since it is readily verified that G,, G,, --- satisfy the conditions
of Theorem 1, E%/G is homeomorphic to E°3.
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