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A TOPOLOGICAL CHARACTERIZATION OF COMPLETE,
DISCRETELY VALUED FIELDS

SETH WARNER

It is shown that the topology of a topological field F is
given by a complete, discrete valuation if and only if F is
lIocally strictly linearly compact. More generally, the topology
of a topological division ring K is given by a complete, discrete
valuation and K is finite dimensional over its center if and
only if K is locally centrally linearly compact, that is, if and
only if K contains an open subring B, the open left ideals
of which form a fundamental system of neighborhoods of
zero, such that B, regarded as a module over its center, is
strictly linearly compact.

In [5], Jacobson showed that the topology of an indiscrete, totally
disconnected, locally compact division ring is given by a discrete
valuation (that is, a valuation whose value group is isomorphic to the
cyclic group of integers). Consequently, an indiscrete topological
division ring K is locally compact and totally disconnected if and only
if its topology is given by a complete, discrete valuation whose residue
field is finite [4, Prop. 2, p. 118, Prop. 1, p. 156]. From this, it follows
rather readily that the center C of K is indiscrete, that K is finite
dimensional over C, and that C is either a finite extension of the
p-adic number field for some prime p or the field of formal power
series over a finite field [4, Theorem 1, p. 158].

Our purpose here is to generalize Jacobson’s theorem by character-
izing those topological fields whose topology is given by a complete,
discrete valuation, and more generally, those topological division rings
K such that K is finite dimensional over its center and the topology
of K is given by a complete, discrete valuation.

For this purpose, we assume some familiarity with basic properties
of linearly compact and strictly linearly compact modules and rings,
as developed in [10] or [3, Exercises 14-22, pp. 108-112]. We recall
that a (left) topological A-module E (it is not assumed that E is
unitary) is linearly topologized if the open submodules of E form a
fundamental system of neighborhoods of zero; & is linearly compact
if E is Hausdorff, linearly topologized, and every filter base of cosets
of submodules has an adherent point; E is strictly linearly compact
if E is linearly compact and every continuous epimorphism from E
onto a Hausdorff, linearly topologized A-module is open (equivalently,
if E/U is an artinian A-module for every open submodule U of E). A
topological ring A is respectively linearly topologized, linearly compact,
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or strictly linearly compact if the associated left A-module A is.

DEFINITION. A topological ring A is locally strictly linearly compact
if A has an open subring B that is strictly linearly compact for its
induced topology.

To handle the noncommutative case, we need the following defini-
tion:

DEFINITION. A topological ring B is centrally linearly compact
if the open left ideals of B form a fundamental system of neighbor-
hoods of zero and if B, regarded as a module over its center Cj, is a
strictly linearly compact C,-module. A topological ring A is locally
centrally linearly compact if A contains an open subring that is
centrally linearly compact for its induced topology.

Thus a commutative topological ring is (locally) centrally linearly
compact if and only if it is (locally) strictly linearly compact. Note
that if B is a centrally linearly compact ring, then for any subring
B, of B that contains the center C;, B is a strictly linearly compact
Bimodule (in particular, B is a strictly linearly compact ring); indeed,
since the open left ideals of B form a fundamental system of neigh-
borhoods of zero, B is a linearly topologized B,-module, and since a
B,-submodule is also a Cy-submodule, every filter base of cosets of
B,-submodules necessarily has an adherent point.

By a topological division ring (field) K we mean a topological ring
that is algebraically a division ring (field); that is, we do not assume
that ©+— 2™ is continuous on the set K* of nonzero elements.

LeEMMA 1. If B is an open, centrally linearly compact subring
of an indiscrete topological division ring K, then there is anm open,
centrally linearly compact subring B, of K that contains 1.

Proof. Let B, be the closure of the subring generated by B and
1. The open left ideals of B then form a fundamental system of
neighborheods of zero in B,; each open left ideal a of B is a left ideal
of B, for as a is closed, {xe B:xa & a} is a closed subring of B,
containing B and 1 and hence is all of B,.

Since B is open, B == (0); let b be some nonzero element of B,
and let ¢ be its inverse in K. Then, B, = Bbc & B,B¢, so B, =& Be
since, as we saw above, B is a left ideal of B,., Thus B¢ =2 B, 2 B,
so Bc is a linearly topologized Cz-module, where C, is the center of
B. Hence Be is a strictly linearly compact C,-module, as it is the
image of the strictly linearly compact C,-module B under the con-
tinuous homomorphism #+xc. Consequently, the closed C,-submodule
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B, of Be is strictly compact; as C; is contained in the center of B,, B,
is a fortiori strictly linearly compact over its center.

We recall that an element a of a topological ring is topologically
nilpotent if lim a™ = 0.

LEMMA 2. Let K be a Hausdorff topological division ring, let B
be an open subring of K that contains 1, and let t be the radical of
B. If B 1is strictly linearly compact, then B is a (left) moetherian
ring, B/t is a division ring, the topology of B is the t-adic topology,
and t is the set of all topological milpotents of B.

Proof. As B is open and as ¥+ yx is a homeomorphism for each
xe K*, Bx is open for every x e K*, and hence every nonzero left ideal
of B is open. Let 8 =y, t". Assume that 8+ (0). Then 8 is
open, so B/3 is an artinian B-module and hence an artinian ring.
Consequently, its radical r/8 is nilpotent, so there exists » such that
1" = 8. Hence (0) #= 1 = "' = ..., in contradiction to [10, Theorem
9]. Therefore, N5-. " = (0).

Since every nonzero left ideal of B is open and hence closed, B
is a (left) noetherian ring, B/r is an artinian ring, and the topology
of B is its r-adic topology by [13, Theorem 16]. Consequently, every
element of r is a topological nilpotent. Therefore, as B is complete,
B is suitable for building idempotents [11, Lemma 4; 6, Definition 1,
p. 53]. Thus every idempotent of B/x is the coset of r determined by
an idempotent of B [6, Proposition 4, p. 54]. But as K is a division
ring, B has no idempotents other than 0 and 1. Thus B/t is an
artinian, semisimple ring whose only idempotents are 0 and 1. By
the Wedderburn-Artin theorem, therefore, B/r is a division ring. In
particular, if x¢t, then x + r is not a nilpotent of B/r, so x is not
a topological nilpotent.

THEOREM 1. If K is an indiscrete, Hausdorff topological field,
then the topology of K is given by a complete, discrete valuation if
and only if K is locally strictly linearly compact.

Proof. Necessity. It is well known that a complete, semilocal noe-
therian ring, equipped with its natural r-adic topology, is strictly linearly
compact [ef. 13, Corollary of Lemma 2]. In particular, the valuation
ring of a complete discrete valuation is strictly linea.rly compact.

Sufficiency. By Lemma 1, there is an open, strictly linearly
compact subring B of K that contains 1. By Lemma 2, B is a com-
plete, local noetherian domain, and its topology is its natural m-adic
topology, where m is the maximal ideal of B. In particular, B is not
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a field since B is not discrete. Therefore, as B is open in the topological
field K, the topology of K is defined by a complete, discrete valuation
[12, Theorem 6].

THEOREM 2. If K is an indiscrete, Hausdorf topological division
ring, then the topology of K is given by a complete, discrete valuation
and K is finite-dimensional over its center C if and only if K is
locally centrally linearly compact; im this case, C is indiscrete, and
hence its topology is given by a complete, discrete valuation.

Proof. Necessity. As K is finite-dimensional over C, the valuation
induced on C by that of K is not the improper valuation; hence as C
is closed, the topology of C is given by a complete, discrete valuation
v. Let e, +-+,e, be a basis of K over C such that ¢, = 1, and let
ee; = >p e, Let xeC be such that »(\) = 0 and »(\) = —
min {v(a;;): 1 4,5,k =< n}. Let f,=1and f, =2xe¢, for 2=k < n.
Let V be the valuation ring of C, and for each m =0 let V,, = {x e
Viv(ix) =z m}. Let B=Vf, + -+ +Vf,, and for each m = 0 let b,, =
VuSfi+ +o+ + V,.f.. Easy calculations establish that B is a ring and
that b, is an ideal of B for each m = 0. By [2, Theorem 2, p. 18],
Fi(\y, ooy N) = D07 NS is a topological isomorphism from the C-
vector space C™ onto the C-vector space K. Hence B is an open subring
of K, and (b,,)nz, is a fundamental system of neighborhoods of zero in B,
each an ideal of B. We saw earlier that V is strictly linearly compact;
hence as B = F(V"), B is a strictly linearly compact V-module and,
a fortiori, is a centrally linearly compact ring.

Sufficiency. By Lemma 1, there is an open, centrally linearly
compact subring B that contains 1. Let t be the radical of B. As
the r-adic topology is the given indiscrete topology of B by Lemma 2,
there exists a nonzero ac B such that lima” = 0. Let K, be the
closed subfield generated by C and a, let B, = K, N B, and let x, be
the radical of B,. Since the open left ideals of B form a fundamental
system of neighborhoods of zero for B, the open ideals of B, form a
fundamental system of neighborhoods of zero for B,. Moreover, the
center C, of B is simply C N B; indeed, if ¢ce Cy and if xe K, then
ax € B for some n as lima™r = 0, whence (a"x)c = c(a™x) = (ca™)x =
(a™c)xz, so x¢ =cx. Thus C;=CNB< K,NB =B, so B, is a closed
Cz-submodule of B and hence is a strictly linearly compact Cz-module.
Consequently, B, is a strictly linearly compact ring, so by Lemma 2,
the topology of B, is the r-adic topology, and r and 1, are respectively
the set of topological nilpotents in B and B, whence 1, =t B,
Hence Nz, #B)~ = Ng-.t* = (0). As the topology of B, is indiscrete,
12 = (0), so 12B is open as it contains a nonzero left ideal of B. By
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[13, Theorem 10], r,B is a finitely generated B,module; let t,B =
B, + +++ + Bwx,. Also as B is a strictly linearly compact Cz;-module
and as 1B is open, B/r,B is an artinian Cz-module, hence an artinian
B,module; now B/r,B admits the structure of B,/r-module, and B,/x,
is a field by Lemma 2; consequently B/r,B is an artinian, therefore,
finite-dimensional, and hence noetherian B/x,-vector space; thus B/t,B
is a noetherian Bi-module. Let ,.,, ++-,2,€ B be such that B =
By + +++ + B, + t,B. Then B= By, + +-- + Bx,. Consequently,
Xy, +0e,%, is a set of generators of the K-vector space K, for if
ze K, there exists ¢ such that a'z € B, whence a'z = bz, + «++ + b2,
where b;e B,, and thus z = (a™%b)x, + <+« + (@”*b,)x, € K, + ++- +
K2,. By [1, Theorem 16], the centralizer K| of K, has degree < n
over C. But K; 2 K, as K, is commutative. Moreover, the topology
of K, is given by a discrete valuation by Theorem 1, as B, is an open,
strictly linearly compact subring. Therefore, as [K,: C] < n, the valua-
tion induced on C is not the improper valuation; hence the topology
of C is given by a complete, discrete valuation. As

[K: C] = [K: KJJIKy: C] < n?,

the given topology of K is the only topology for which K is a Hausdorff
topological vector space over C [2, Theorem 2, p. 18]; by valuation
theory, that topology is given by a complete, discrete valuation.

The idea of using [1, Theorem 16] is suggested by Kaplansky’s
treatment of locally compact division rings in [8].

Jacobson’s theorem concerning totally disconnected locally compact
division rings follows at once from Theorem 2. Indeed, if K is an
indiscrete, totally disconnected, locally compact division ring, then
K contains a compact open subring B [9, Lemma 4]; the open ideals
of B form a fundamental system of neighborhoods of zero [7, Lemmas
9 and 10], and therefore the compact ring B is clearly centrally linearly
compact; by Theorem 2, K is finite-dimensional over its center, which
is indiscrete, and the topology of K is given by a complete, discrete
valuation.
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