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RELATIONALLY INDUCED SEMIGROUPS

EUGENE M. NORRIS

This paper gives sufficient conditions, of a relation-theoretic
nature, in order that a quotient of the state space of a re-
cursion (or topological machine) be a topological semigroup
iseomorphic to the endomorphism semigroup of the recursion,
generalizing recent function-theoretic results.

Relations. By a relation R from a set A to a set B, we mean that
R is a subset of A x B. If A and B are topological spaces, we say
that R is closed to mean that it is a closed subset of the product
space. If R is a relation from A to B and S is a relation from B to C,
their composition is the relation So R from A to C defined by (a,c) e
So R if and only if there is some be B with (a,b) € R and (b,¢c)€S.
This is contrary to the notation in [1], but agrees with the usual
(non-algebraist’s) notation for the composition of functions. The
inverse of a relation R is the relation R~ defined by (b, a)e R if
and only if (a,b) e R. A relation from A to A is reflexive if R con-
tains 4, = {(a, a): a € A}, symmetric if R~ < R (whence follows R~ = R),
and transitive if Ro- RS R. R is an equivalence relation if it is
reflexive, symmetric, and transitive. For any relation R from A to B
and any subsets A’S A, B< B, A’R denotes the set {beB:(a,b)e R
for some aec A'}; RB' is then defined to be the set B'R™. We write
aR rather than {a}R and Rb for R{b}, for simplicity’s sake. It is
known that if A’ is compact and R is closed then A’R is closed; if
A, B, and C are all compact Hausdorff spaces and R and S are closed
relations from A to B and B to C respectively then So R is also
closed. It is also known that if A is compact and R is a closed
equivalence on A then the quotient space A/R = {aR:a¢c A} is com-
pact Hausdorff. See Kelley [3] for topological details.

After Riguet [5, 6], a relation R from A to B is called difunc-
tional if Ro R'o RS R; we observe that any function is difunctional
and any symmetric, transitive relation is difunctional; in elementary
geometry, the relation of orthogonality is difunctional, as Riguet
noted. We use Riguet’s 1950 results freely [6] and note in particular
that if R is a difunctional relation from A to B satisfying A = RB
and B = AR, then R'o R and Ro R™ are equivalence relations on A
and B, respectively, closed if R is closed and 4 and B are compact
Hausdorff. Furthermore, A/(R™'o R) = {Rb: be B} and B/(R-R™) =
{aR: a e A}. For any difunctional relation R, the slices aR and o'R
either coincide or are disjoint, a property well-known for equivalence
relations; the same property holds for slices Rb, Rb’, since R™' is
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difunctional if and only if R is difunctional. In fact, this property
of slices characterizes difunctional relations. Unfortunately, the com-
position of difunctional relations need not be difunctional.

Recursions. A recursion is a triple (7, X, -), where T and X
are spaces and T x X —— X is a continuous binary operation, the value
t- 2 of which at the point (¢, ) is usually denoted by juxtaposition,
unless emphasis seems wise. For 7= T and X'< X, we write 7'X’
(or occasionally 77 X’) to denote the set {tx:te T’ and ze X'}. We
frequently avoid the use of curly brackets, writing Tx for T{x} and
so forth. In particular, if R T x X and ¢,z are elements of T,
then #(zR) = {t} - (#R), the translate of the slice zR. A recursion is
c.o.d. if both spaces are compact Hausdorff or both are discrete.

For the sake of completeness we state below an easily established
folkloric lemma that A. D. Wallace attribute to G. E. Schweigert [7],
and a generalization, the Induced Function Theorem (IFT for short),
proved in [1]. The lemma is frequently used in what follows.

LemMMA 0. If A, B, and C are all compact or all discrete spaces,
if f1 A— B and g: A— C are continuous functions with f surjective
and if the condition f(a) = f(a') tmplies g{a) = g(a’) for all a,a’ holds
then there is a wunique continuous fumnction h: B— C, satisfying
h(f(@)) = g(a) for all a in A.

Induced Function Theorem. Let A and B be both compact Haus-
dorff or both discrete spaces, RS A X B a closed relation from A to
B, and E and F' closed equivalence relations on A and B, respectively.
If A= RB and RoEo-R™SF then there is a unique continuous
function h making the following diagram of projection and quotient
Sunctions analytic:

A—R— B
L,
A/E ————— BJF.

Furthermore, if in addition to the previous hypothesis B = AR and
R™'oFo RS E, then h is a homeomorphism.

Results.

THEOREM 1. Suppose (T, X, -) is a c.o.d. recursion and RS T x X
18 a closed difunctional relation satisfying, for all t',t",t and sc T,

(1) tR=t'"R=t({R) =t'(tR)

(2) tR=t({"R)=1t(sR) = t'(t"(sR))



RELATIONALLY INDUCED SEMIGROUPS 205

(83) T=RX and X=TR

(4) for each t,t' in T there is some t” in T with t('R) = t”"R.
Then X/(RoR™) is a topological semigroup with multiplication *
satisfying tR*t'R = t(t'R) identically.

Proof. From difunctionality and hypothesis (3), R~'o R and Ro R™
are equivalence relations on T and on X, respectively, and are closed
if T and X are compact. The Induced Function Theorem implies that
there is a unique homeomorphism # making the following diagram of
projection and quotient maps analytic.

Te«—R—X

l l

T/(R'oR) ————— X/(R-R™)
In the following diagram,

Tx X—— X

w |

X/(R-R™) X X/(RoeR™") ———— X/(RoR™)

we note that ({,x)e R iff tR = q(x) and Rx = p(t) iff h(Rx) = tR.
If (¢, ) and (¢, ') satisfy [hp X q] (¢, ) = [hp X q] (¢, &) then h(p(t)) =
h(p(t)) and q(z) = q(x’), so that tR =tR. If ¢t e Rx then zct"R,
hence tx € ¢(t”R) = t'(t”R) by hypothesis (1). We also have t'z’ € ¢'(t”R)
since Rz = Rx'. Hypothesis (4) allows us to conclude that (tz, t'2') €
RoR™, i.e., q(tx) = q(t's’). Hence Lemma 0 applies to give a unique
continuous ‘function* making the diagram analytic. We observe that
tR*q(x) = tq(x) for all te T and all xe X. Now* is associative, for
if ¢, ¢'t" € T, then there is some se T such that ¢{(¢’R) = sR, and hence
tR*YR)*t"R=t(t' R)*¢"R =sR*t"R=s(t"R) = t(t'(t"R)) = tR*¢'(t"R) =
tR*(’ R*t”R), using hypothesis (2).

THEOREM 2. Suppose (T, X, +) is a c.0.d. recursion and R T x X
18 a closed difunctional relation satisfying

(1) T=RXand X=TR

(2) the set Z={ze€ T:tR = 'R = t(zR) = t'(2R)} is not empty

(8) for each t,t' e T there is some t" € T with t('R) = t"R

(4) if tR = t'(t"R) then for any z€ Z, t(zR) = t'(t''(zR)).
Then {zR:ze Z} is a topological semigroup in the quotient topology
with multiplication* satisfying zR*2'R = 2(2'R) for all 2,72 € Z.

Proof. For simplicity, let Z = {2R: z<c Z} be the subspace of the
quotient space A/(R-R™*). We dispose topological considerations first.
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One verifies easily that if T and X are compact, then Z is closed,
and it follows by standard results that ZR and finally Z are compact.
Of course, if T and X are discrete, so is Z.

On the algebraic side, we observe that Z- ZR< ZR, for if z,2'e Z
and tR = z(?'R), then it will be seen that te Z (such ¢ exists by hy-
pothesis (8)). To this end, suppose that t’R =1¢"R, and let ¢(2R) =sR
to infer that t'(tR) = t'(2('R)) = s(z'R), by hypothesis (4). Since z¢ Z,
then #'(zR) = t"(zR) and hence sR = t’(zR); it then follows from
hypothesis (4) that s(z’R) = t”’(2(’R)), so that ¢ (tR) = t"(tR), implying
that teZ. Hence Z-ZR< ZR.

If # and 2’ are points in ZR satisfying (x,2’)e Ro R™, then
(2x, z2’) € Ro R~ also, and hence we may infer from Lemma 0 that
the function Z x Z—- Z given by z*2#R = z- (¢R) is continuous.

Finally, if R’ is the relation from Z to Z defined by (z,2’R) e R’
if {z} x 2 RS R, then we can easily see that R’ is closed and difunc-
tional, so that R’ and the compact or discrete recursion (Z, Z, *)
satisfy the hypothesis of Theorem 1. Theorem 2 now follows.

Representation. Assuming the hypothesis of Theorem 2, let S be
the semigroup (with compact open topology) of all continuous functions
from the quotient space A/(R-R™) into itself, and let end denote the
subsemigroup of S defined by fe end if t- f(Z) = f(t-Z) for all te T
and all Z in X/(Ro R™"). The function F: T— S, given by F,(t'R) =
t'- (tR), is easily seen to be continuous and maps Z into end; let F”
denote the restriction of F' to Z. In a similar way, the map G: Z —
ZR/(R- R™) given by G(z) = zR is a continuous surjection. Lemma
0 is seen easily to apply, giving a continuous function H: ZR/(R- R™*)—
end satisfying Ho G = F, from which we see that for any ze Z and
any te T, [H(zR)] (tR) = t(zR). Routine computation, using hypothesis
(3) and (4), shows that H(zR*2'R) = H(?'R)> H(zR), so that H is an
anti-homorphism.

THEOREM 3. If, in addition to the hypothesis of Theorem 2, for
some z,€ Z and all te T it is the case that t(z,R) = tR = z,(tR), then
H is an anti-iscomorphism and ZR/(Ro R™) is a monoid with z,R its
identity; furthermore, the set z,R is a set of gemerators for X, i.e.,
T(z,R) = X.

Proof. That z,R generates X is clear from the equations t(z,R) =
tR and TR = X. That z,R is the identity follows from the fact that
for any ze Z, zR*2,R = 2(2,R) = 2R = z,(2R) = 2,R*2R. If H(zR) =
H(z'R) then zR = 2,2R) = 2,2’ R) = #’R, so that H is injective. To
see that H is also surjective, let fe end, and suppose f(z,R) = t,R;
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we will see that t,e Z. To see this suppose 'R = "R and compute:
t'(t.R) = t' f(zR) = f(t'(2,R)) = ft'R); similarly, ¢"(E) =/f{"R); it
follows that t,€ Z. Now for any te T, we see that f(tR) = f(t(z,R)) =
tf(z,R) = t(t,R) = [H(t,R)](tR), implying that H is surjective.

REMARKS. Theorem 2 obviously generalizes Theorem 1 and also
contains a previous result of the author [4]. When R is a continuous
function from 7T onto X it is a closed, difunctional relation and
RoR™ = 44, so that X/(Ro R™") is homeomorphic to X, and the set
ZR is just the image of Z; R is surjective just in case X = TR.
Hence Theorem 1 generalizes the theorem of [7] and Theorem 2, the
theorem of [8], which in turn elegantly generalize theorems of Aczel-
Wallace, Hosszu, Barnes, Fleck, Weeg, Oehmke et. al. (see [8] for
references). Other applications will be announced elsewhere. In
view of recent results of Fay [2], the present work allows one to
induce semigroups “in” the objects of many categories. The details
of this extension will be left for another time.
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