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POSITIVE-DEFINITE DISTRIBUTIONS AND
INTERTWINING OPERATORS

RoE GOODMAN

An example is given of a positive-definite measure 2 on
the group SL(2, R) which is extremal in the cone of positive-
definite measures, but the corresponding unitary representation
L# is reducible. By considering positive-definite distributions
this anomaly disappears, and for an arbitrary Lie group G
and positive-definite distribution 2 on G a bijection is estab-
lished between positive-definite distributions on G bounded by
2 and positive-definite intertwining operators for the repre-
sentation L”#. As an application, cyclic vectors for L* are
obtained by a simple explicit construction.

Introduction. The use of positive-definiteness as a tool in abstract
harmonic analysis has a long history, the most striking early instance
being the Gelfand-Raikov proof via positive-definite functions of the
completeness of the set of irreducible unitary representations of a
locally compact group [5]. More recently, it was observed by R. J.
Blattner [1] that the systematic use of positive-definite measures gives
very simple proofs of the basic properties of induced representations,
and the cone of positive-definite measures on a group was subsequently
studied by Effros and Hahn [4].

The purpose of this paper is two-fold. First, we give an example
to show that positive-definite measures do not suffice for the study
of intertwining operators and irreducibility of induced representations,
despite the claim to the contrary in [4]. Specifically, we exhibit a
positive-definite measure ¢t on G = SL(2, R) such that g lies on an
extremal ray in the cone of positive-definite measures on G, but the
associated unitary representation L* is reducible, contradicting Lemma
4.16 of [4].

Our second aim is to show that when G is any Lie group, then
the correspondence between intertwining operators and positive func-
tionals on G asserted by Effros and Hahn does hold, provided one deals
throughout with positive-definite distributions instead of just measures.
The essential point is the validity of the Schwartz Kernel Theorem
for the space Cy(G), together with a result of Bruhat [3] about
distributions on G X G, invariant under the diagonal action of G.
Using this correspondence, we obtain cyclic vectors for representations
defined by positive-definite distributions, using a modification of the
construction in [7]. (The proof of cyclicity given in [7] is invalid,
since it assumes the existence of a measure on G corresponding to
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an arbitrary intertwining operator. Cf. [6] for a proof of cyclicity
using von Neumann algebra techniques.)

1. Notation and statement of theorems. Let G be a Lie group,
and denote by <7 (G) the space C2(G) with the usual inductive limit
topology [10]. Fix a left Haar measure dx on G; then d(zy) = 4,(y)dx,
where 4; is the modular function for G. If ¢ € =2 (G), define ¢*(x) =
s dy(x)"'. Denote by <'(G) the space of Schwartz distributions
on G. A distribution a is positive-definite if a(¢*+¢) = 0 for all ¢ € 2 (G),
where convolution is defined as usual by

(@) = | Hasa)dy -

If @ and B are distributions, say that @ € g if g — a is positive-definite.

Given a positive-definite distribution g, one obtains a unitary
representation L* of G by a standard construction: Let L,¢(x) =
#(yx) be the left action of G on = (G). Then (L,@)*x(L,p) = ¢**r,
so the semi-definite inner product p(¢*++r) is invariant under left
translations. Define I, = {¢ € 2(G): i(¢*+¢) = 0}. The quotient space
9, = (/1. is then a pre-Hilbert space with inner product (¥, ¢), =
2(3*xqp), where ¢ — ¢ is the natural mapping of <7 (G) onto =,. Let
&%, be the completion of <,. The operators L, pass to the quotient
to give a strongly continuous unitary representation y — L% of G on
2.

Suppose now that ae &’(G) satisfies 0 € a €< . Then I,2 I,

and there exists a unique self-adjoint operator A on 5%, such that
(1.1) (A8, T)p = aly*+g) .

The operator A obviously satisfies

(1.2) 0<A<T

(1.3) LA = AL"

since the Hermitian form a(¢*+¢) is nonnegative, bounded by (¢, ), =
[|#]% and invariant under left translations by G. It was asserted
(without proof) by Effros and Hahn in [4, §4] that when g is a measure,
then every operator A satisfying (1.2) and (1.3) is given by formula
(1.1), where @@ is a positive-definite measure. Unfortunately, this is
false in general, as shown by the following example:

THEOREM 1. There is a positive-definite measure t on the group
G = SL(2, R) such that:

(i) The only measures a satisfying 0 € a L ¢ are the measures
e, ce [0, 1].
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(ii) The representation L* of G defined by p is reductble.

If we allow positive-definite distributions in formula (1.1), however,
then we obtain all intertwining operators, as follows:

THEOREM 2. Let G be a Lie group, and let ¢ be a positive-
definite distribution on G. Suppose A is an operator on 57, satis-
Sfying (1.2) and (1.3). Then there exists a umnique positive-definite
distribution « on G such that (1.1) holds. Furthermore, the local order
of a can be bounded in terms of the local order of u and the dimen-
sion of G.

REMARKS 1. Theorems 1 and 2 show that the cone of positive-
definite measures on SL(2, R) is not a face of the cone of positive-definite
distributions.

2. For a study of unbounded intertwining operators, cf. [9].

3. In case /t is a positive-definite measure, then the distribution
« in Theorem 2 has finite global order at most 2(dim G + 1).

A sequence {¢,} € = (G) will be called a od-sequence if ¢,(x) = 0,
limng é.(x)dx = 1, and Supp (¢,) — {1} as n — . Any d-sequence is an
G
approximate identity under convolution, of course.

COROLLARY. Let {¢,} be a delta sequence, and set w, = ¢;+¢,.
Then the vector & = I\, W, will be a cyclic vector for the representation
L#, provided n, > 0 and \, —— 0 sufficiently fast as n— oo,

2. Proof of Theorem 1. Let G = SL(2, R) in this section. We
distinguish two closed subgroups of G: the subgroup B consisting of

t ), with s, ¢ real, s # 0, and the subgroup V

s
consisting of all matrices v = (}0 (1)>, ¢ real. One has BNV = {1},

all matrices b = (3

while VB consists of all unimodular matrices(g g)such that a # 0.

The map v, b — v-b is a diffeomorphism from V x B to the open subset
V-B of G. Let dv and db be left Haar measures on V and B, respec-
tively, and let 4, be the modular function of B. Left Haar measure
dx on G is then given by the formula

@.1) SG F)ds = HE F(0b) 4, (b~)dbdv = SBSV £(bv)dbdw
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[2, Chap. VII, §3, Proposition 6].
Suppose that p is a unitary character of B. Then p(b)db is a
positive-definite measure on B, and the measure # on G defined by

|, F@du@) = | 70)4,06)""p®)db

is positive-definite [1]. As in §1, we denote by L* the corresponding
representation of G on S#.. The representation L* is equivalent to
the “principal series” representation of G induced from the one-dimen-
sional representation p of B. Using the integration formula (2.1), we
can identify the representation space 57, with L.V, dv). (This gives
the so-called “non-compact picture” for the principal series [8].) Indeed,
if ¢, € =7(G), then an easy calculation using (2.1) shows that

@, ) = | @,
where
S0 = | 604,06 p®)ab

The restriction of L“ to the subgroup V becomes simply the left
regular representation of V in this picture.

LEMMA 1. Let A be a bounded operator on L,(V) which commutes
with left translations by V, and suppose that there exists a Radon
measure o« on G such that

(2.2) (Ae(g), e(¥)) 1y = A(yr**g)

Jor all ¢, € 2 (G). Then there is a Radon measure v on V such that
Af = fr, for fe2(V).

Proof. Since A is translation invariant, it is enough to establish
an estimate

(2.3) AN = Cell fll

for all fe <7 (V) supported on an arbitrary compact set K<V (|| fll»
denoting the sup norm). Let S#=(V) be the space of C~ vectors for
the left regular representation of V. By Sobolev’s lemma, 5~ =(V)C
C=(V), and A leaves the space 57~ =(V) invariant. Hence, Ae(g) is a
C= function for every ¢ ¢ = (G).

If fe=z(V) and ge &(B), write f @ g for the function f(v)g(b).
Via the map v, b — vb we may consider f X g as an element of = (G).

Then &(f ® g) = \,f, Wwhere %, = S g(0)4,(0)~"p(b)db. In particular,
B
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if {f.} and {g,} are d-sequence in &7 (V) and < (B) respectively, then
A, =1 as n— o and f,& g, is a -sequence on G (by the integration
formula (2.1)). Hence, we deduce from (2.2) that

Ag(g)(1) = alg)
for all g€ &7(G). Fix ge =r(B) such that v, = 1. Then for any f ¢
2(V) we have f = &(f ® g), and hence
(2.4) AN =al(f®9) -

Since « is a Radon measure, the right side of (2.4) satisfies (2.3),
which proves the lemma. (In fact, v is the measure f — a(f ® 9).)

Completion of proof of Theorem 1. Now take for p the character
p(b) = sgn (s), when b = (g g_l). Then it is known [8] that the
induced representation L* in this case splits into two parts, and when

%, is realized as L,(V), then any nontrivial intertwining operator is
a scalar multiple of the classical Hilbert transform

Af@ =lm 1| f@ - yydy.

60 TT Jiyi>é

(We identify V with R via the map x — @ 2) )

The Hilbert transform does not satisfy estimate (2.3). For example,
if
_ ., sin (kx)
Fie) = 8(0) 5 5508

where ¢ € =(R) is fixed with ¢(x) = 1 for |x| =< 1, then Supp (f.) &
Supp (¢) and sup, || fall. < e [11, p. 182].
On the other hand,
AFA0) = Syelklog ™ + OQ)

as n — <o, where

¢t .

¢ = —S 27t sin (kx)dx .

TJ—t

Since ¢, — 1 as k — o, and since XY(klog k)™ = + <o, it follows that

sup, | Af.(0)| = oo .

3. Proof of Theorem 2 and Corollary. Let G be an arbitrary
Lie group (assumed countable at infinity), and let ¢ be a given positive-
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definite distribution on G. If we set [|¢]|, = p(¢*x¢)'", then ¢ — ||¢]|,
is a continuous seminorm on & (G). Suppose now that A4 is a bounded
operator on the representation space 57,.. We may associate with A
a bilinear form B, on & (G) by the formula

(3.1) Bu(v, ¢) = (AG, J9). -

Here ¢ — ¢ is the canonical map from < (G) into 57, as in §1, and
J¢ = ¢ (complex conjugate). By the Schwarz inequality and the
boundedness of A we see that

3-2) | Bu(v, 9)| = A NI 1114 ] -

Clearly, 4 — || Jr||. is also a continuous seminorm on < (G). Although
[|J4 ||, need not be bounded in terms of ||+||,, nevertheless, the local
order of this seminorm is the same as the local order of ||-||.. (If
KcC G is a compact set and o is a continuous seminorm on =2(G),
we say that p has order < » on K if there is a finite set of differential
operators {D;} on G each of order < r, such that o(¢) < max;||D;é|l.

for all ¢ with Supp (¢) < K.)
The main analytic fact we need is the following version of the

“kernel theorem” for continuous bilinear forms:

LEMMA 2. Suppose B is a bilinear form on 2(G), and p,, 0, are
continuous seminorms on 2 (G) such that

(3.3) | B(g, ¥) | = 0.(9)0a()

Then there is a distribution T on G X G such that

B(g,¥) = T($ Q) -

Furthermore, if K, and K, are compact subsets of G, and if 0; has
order < r; on K;(j =1,2), then T has order < r, + 7, + 2(dim G + 1)
on any compact set M C Interior (K, X K,).

Proof. Since multiplication by a C~ function is an operator of
order zero, we may use a partition of unity and local coordinates to
reduce the problem to a local one in R¢ d = dim G, such that K; =
{lz] =2l = R and M = {(z,y); |2| =1, |y| =1} S R* X R

Let ¢,€ =7 (RY satisfy ¢, = 1 on {{«| < 1} and Supp (¢,) & K,. Set
e.(x) = go(x)e™*, where ne N* and n-x = nx, + -+ + n,2,. Then if
D is a differential operator of order r, one has ||De,|l. = CA + |n])".
Hence, the a priori estimate (3.3) implies that for some constant C > 0,

3.4 | Bew, €.) | = C(L + [m)™*(1 + [n])™

for all m, n e N°
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Suppose now that f is a C= function on R* x R? with Supp (f) &
M. Then the Fourier series of f can be written as

F@, ) = Simn f(m, n)e,(@)e.()

where {f(m, n)} are the Fourier coefficients of f. Define
(3.5) T(f) = 3. f(m, n)Bew, e.) -

The series (3.5) is absolutely convergent, and by (8.4) we have the
estimate

3.6 |T(N| = Cisup {.f0m, )| (L + [mlyna+i(L + | m])sravy

where C, = C3,.. 1 + [m))™ 1 + |n[)~®" < . Since the right side
of (3.6) is a seminorm of order 7, + 7, + 2d + 2 on M, this proves
the lemma.

Completion of proof of Theorem 2. Suppose now that the operator
A in formula (3.1) commutes with the representation L*. Then the
distribution 7 on G x G such that B,(¢, ) = T(¢ ® ), which was
constructed in Lemma 2, satisfies for all z¢ G,

3.7) T0.f) = T(f) » fezGx G,

where 0,1 (x, y) = f(z 'z, 27'y).

The structure of distributions satisfying (3.7) was determined by
Bruhat [3, Prop. 3.3]. Let ¢ denote the distribution on G determined
by left Haar measure, and let @: GX G — G X G be the map &(z, y) =
(x, zy). Then (3.7) forces T to have the form

() = Q@ a)(f9) ,

where « is a distribution on G. Symbolically,
7(f) = || £ (o, w1)dudaty) .

In particular, if ¢, + e 2(G), then
(A, 7)u = T(U¥ @ ¢)
- | [v@sen dadaw)
= a(*xg) .

Hence, o serves to represent the intertwining operator A, and is
obviously positive-definite if A = 0. Since @ is a diffeomorphism, the
order of ¢t @ a on a compact set MC G x G is the same as the order
of T on &~*(M). By Lemma 2 and inequality (3.2), the local order



90 ROE GOODMAN

of ¢ ® a (and, hence, the local order of a) can, therefore, be bounded
in terms of the local order of ¢ and the dimension of G, as claimed.

Proof of Corollary. Using Theorem 2, we are able to rehabilitate
the attempted proof of cyclicity in [7]. Given a J-sequence {v,} on
G, let KC G be a compact set such that K = K™ and Supp (v.,) & K
for all n. Since || ||, is a continuous seminorm on < (G), there are
right-invariant differential operators D,, ---, D, on G such that

(3.8) 191l = max || Dy |l

for all « supported on the set K=
Now set w, = 4f*/,, and let {\,} be any sequence such that
A, > 0 and

(3.9) S an.max || Dy, |12 < oo .
n 7

The series & = >\, W, then converges absolutely in 27, (since ||w, ||, =
[l l2). Let 7~ be the G-cyclic subspace generated by &, and let A
be the projection onto .#"*. Since A& = 0, we have >\ \,(AW,, ¢), =
0 for all g€ & (G). But éxy = L. (8)4, where L.(f) = Sf(m)L;,(a:)dx
is the integrated form of the representation. Since A commutes with
~, - d

L,, this gives (A®W,, 9), = (AV., ¥.*¢).. Thus taking ¢ =+, and
letting k — co, we see that

(3.10) lim (A@,, §1)u = (AFa, Fa)

(note that ¢ — ¢ is continuous from <7 (G) to £#,). Furthermore, by
the Schwartz inequality, the boundedness of A, and the calculation
just made, we have the estimate

{(AB, F)ul S 1l [l
< Cmax || Dy L -

(Here we have used estimate (3.8), the right-invariance of D;, and
the inequality || f+gll. = || fll-llgllz,.) Thus we may apply the domi-
nated convergence theorem to conclude from (8.9) and (3.10) that
SN (A, b)) = 0. But A, >0 and A = 0, so in fact (A, ¥.). =
0 for all n. (So far we have simply followed the line of proof of
[7], replacing uniform convergence of the series > \,w, by the stronger
condition (3.9), in return for allowing g which are distributions rather
than measures.) Finally let a be the positive-definite distribution on
G representing A, which exists by Theorem 2. Then a(v ) *r,) =0 for
all n. By the Schwarz inequality, this implies that a(g=y,) = 0 for
all e 27(G) and all n. Letting » — <, we conclude that a = 0.
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