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SHAPE GROUPS AND PRODUCTS

THOMAS J. SANDERS

In recent papers S. Mardesic and J. Segal have used
ANR-systems to obtain an alternate approach to Borsuk’s
shape theory. At the same time, they have extended the
theory to include all compact Hausdorff spaces. In this paper
some of the results of Mardesi¢ and Segal are used to obtain
Borsuk’s fundamental groups, and to extend some of Borsuk’s
results that relate shapes and products to arbitrary products.
A result relating (direct) products and shape groups is also
obtained.

The reader is referred to Chapter 1 of [11] for all categorical
definitions; e.g., inverse system, terminal object, inverse limit.

If X={X,, Pu, A} and Y = {Y,, q,;,, B} are inverse systems in a
category .7, a morphism of inverse systems f: X —Y consists of an
increasing function f: B— A and a collection of . o&/~morphisms f,: X, —
Y, such that if b < b then fip;wren = Qufo. If X, =1limX and
Y. =1limY exist and f: X —Y is a morphism of inverse sysgms then
for eaé.}_l— b e B the composition f,p,4: X.—Y, satisfies if b < b’ then

FoPrwy = FoDrwrranPren = Qv SfoDrwn -

By the universal mapping property of Y., there is a unique .&7morphism
fo: X..—Y, such that if be B then ¢,f.= fi0;». The .&~morphism
S is said to be induced by f.

Under the usual definitions of composition and identities, there is
a category, denoted inv (.%7), whose objects are inverse systems in
& and whose morphisms are morphisms of inverse systems. The
reader will note that this category is not the category used by Mardesié¢
and Segal [6]. It is not difficult to show that if f: X—Y and
g: Y — Z are morphisms of inverse systems and if X, Y, and Z. =
lim Z exist then (9f). = guf w-

" An ANR-system is an inverse system X = {(X,, ®,), P..., A} in the
category of pointed topological spaces where A is closure-finite (i.e.,
for every ac A, the set of predecessors of a is finite) and each X, is
a compact ANR for normal spaces. This definition differs from that
usually given in that the authors in [6] required each X, to be compact
ANR for metric spaces. This condition is easily relaxed; as was done
in [5]. As in [5], we use notions and results from [6] in this setting
without specific citations.

485



486 THOMAS J. SANDERS

If X is a compact Hausdorff space, z,€ X © M, an inclusion ANR-
system in M associated with (X, ;) is an ANR-system X = {(X,, x,),
0, A} associated with (X, x,) where

(1) each X, is a neighborhood of X in M

(2) X=es X,

(8) if a £ a then 4,,: (X, x,) — (X,, @) is an inclusion map.
If A = N (the set of natural numbers) then X is said to be an inclusion
ANR-sequence and is denoted X = {(X,, &), 4}, If X is contained
in a parallelotope I° = [, c0 L., I, = I, then [5] (X, x,) has an associated
inclusion ANR-system (sequence if 2 is countable).

Another useful category is the category of ANR-systems, developed
by Mardesi¢ and Segal in [6]. The objects of this category are ANR-
systems X = {(X,, %.), P.., 4} (recall our definition differs somewhat
from that used in [6]). A morphism in this category f:X—Y =
{(Ys, 1), @w, B}, called a map of systems, consists of an increasing
function f: B— A and a collection of maps (i.e., continuous functions)
fo: Xspy— Y, such that if b <b then fioPrurey = Qv for; i.€., the
diagram

D
Xy — Xf(b)

| |

Y, 7%,

commutes up to homotopy.

2. The shape groups. In [6], Mardesi¢ and Segal define the con-
cept of homotopy between two maps of systems. To be more precise,
two maps of systems f, g: X—Y are said to be homotopic, written f =g,
provided that for every be B there is an ac A, a = f(b), g(b), such
that fiD9rme = 0vPsme. Noting the similarities between the category
inv (&) and the category of ANR-systems one can define a similar
relation in inv (.&7).

Let .o~ be a category. Two morphisms f, g: X—Y of inverse
systems in &7 are ~-related (f ~ g) if for each be B there is an

index a€ 4, a = f(b), g(b) such that 940 = 9:Dsb)as
THEOREM 2.1. The relation ~ s an equivalence relation.
Proof. The proof is as in Theorem 2 of [6].

THEOREM 2.2. Let f, f"X—Y and g,9"Y—2Z. If f~ f and
g~ g then gf ~ g'f".
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Proof. See Theorem 3 of [6].

A morphism f: X—Y is a ~-equivalence provided there is a
morphism g: Y — X (called the ~-inverse of f) such that gf ~ 1,
and fg ~1,. In this case, X and Y are said to be ~-equivalent

X~ X).

THEOREM 2.3. The relation ~ is an equivalence relation of inverse
systems in .S/

Proof. See Theorem 4 of [6].

THEOREM 2.4. If f,g9: X—Y are ~-related morphisms and X,
and Y, both exist then f., = (..

Proof. By definition, f.: X,.— Y, is the unique .%7~morphism satis-
fying for all be B, ¢,f.. = fi0sm. Similarily, g.: X,,— 7Y, is the unique
7~morphism satisfying for all be B, ¢,9.. = ¢yP,». Choose a = f(b),

g(b) such that fipsu.= 0Dsmer NOW Dsiy = Drale AN Pyisy = DyyaPa
so that

9w = GsPsvy = FPymrala = JsPs1aPe = FoPris) -

By the uniqueness, f..= ¢..

COrROLLARY 2.5. If X ~ Y and X, Y., both exist then X, and Y.,
are o7-equivalent objects.

Proof. If f:X—Y and ¢g:¥Y— X are such that gf ~ 1, and
fg~ 1y then g f. = (9f)e = 1x, and fug. = (f@e = ly_.

If X = {(X,, ®), Do, A} is an ANR-system, let 7,(X) = {(7,.(X., 2,),
Ouar, A} denote the inverse system of groups where 7,(X,, %,) is the nth
homotopy group of (X,, z,) and if a < a’ then 0,,.: 7,( X, %) — T, (X,, ©,)
is the homomorphism induced by p,.; i.e., if [f]en, (X,, ®,) then
Oaarl€] = [Paart]-

If f: X—Y is a map of systems, f induces a morphism of inverse
systems f,:7,(X)—7,(Y) where f. = fiB—A and (fi).: T Xs0),
Zrwy) — To( Yy, 4,) is the homomorphism induced by f,. This gives a
covariant functor w, between the category of ANR-systems and the
category of inverse systems of groups.

THEOREM 2.6. If f, g: X —Y are homotopic maps of systems (f =
g) then the induced morphisms f, g.: 7.(X)— 7 (Y) are ~-related
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Proof. For each be B, choose a € A such that a = f(b), g(b) and
JoPrwa = GDowa- Then if [£] € m,(X,, @),

(fo)xLrwalél = [foPrwa€] = [9:050008] = (98)xCsmal€] -
COROLLARY 2.7. If X =Y then n,(X) ~ 7, (Y).

Mardesic and Segal have shown in [6] that if X and Y are ANR-
systems associated with (X, x,) and (7Y, v,), respectively, then a map
f:(X, x) — (Y, y,) has an associated map of systems f: X —Y. If X
and X’ are ANR-systems associated with (X, 2,) then any map of systems
1. X — X’ associated with the identity 1,.: (X, %)) — (X, %,) is a homo-
topy equivalence. By Corollary 2.7 and Corollary 2.5, i.:lim 7, (X) —
limz,(X’)is an isomorphism. Suppose f: (X, %) — (Y, y;)——is a map,
(—_X:,_ X' are ANR-systems associated with (X, z,) and Y, Y’ are ANR-
systems associated with (Y, y,). Let 4: X— X’ and j: Y—Y' be homo-
topy equivalences associated with 1, and 1,,, respectively. Let
f:X—Y and f':X'—Y' be maps of systems associated with f.
It follows [5] that jf = f'i: X—Y'. By Corollary 2.7 and Corollary
2.5, one has that j.f. = fLi.: h('_rr_lnn(g) —al(i_nznn(z').

If (X,x,) is a pointed compact Hausdorff space and X is any
ANR-system associated with (X, x,) then the nth shape group' of
(X, z,) is given by 7m,(X, ) = limz,(X). If f: (X, ) — (Y, y,) then
the homomorphism f..: 7,(X, mo):—g,,( Y, y,) is said to be induced by
f. It is easy to show that (1,.). = 1z, x,sp 804 (fg)e = fuge. Corol-
lary 2.7 also shows that the nth shape group is a shape invariant.
It is shown in §3 that this definition of 7, extends that given by
Borsuk in [1].

THEOREM 2.8. There is a homomorphism p: 7, (X, x,) — T (X, %)
such that for all ac A, (0.)« = 0.0 Where (D,)s: T,(X, %) — 7T, (X,, ©,) 8
the homomorphism induced by p,: (X, x)) — (X,, 2,).

Proof. The collection of maps p,: (X, %) — (X,, ,) induces homo-
morphisms (9,)«: T (X, %) — 7.(X,, #,) such that if @ < a’ then (p,), =
Oua'(Pa)s. By the universal mapping property of z,(X, ;) there is a
unique homomorphism p: 7,(X, x,) — 7,(X, x,) such that for all ae A,

(Do)« = OaD-

THEOREM 2.9. If Xe ANR then 7, (X, %) ~ 7w (X, ).

Proof. Since Xe ANR, there is a special ANR-system X =

1 Note the nth shape group is actually an isomorphism class of groups.
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{(X, o), 14,,,} associated with (X, 2)). Then 7,(X) = {7.(X, @), 1 x,sp}
has as inverse limit the group 7,(X, x,).

THEOREM 2.10. If X is a compact Hausdorff space, x,€ X and
X, is the component of X containing x, then w (X, %) = 7,.(X,, ®o)-

Proof. Assume Xc I? and X = {(X,, @), %, A} is an inclusion
ANR-system associated with (X, x,). For each ac A let X,, denote
the component of X, containing x,. Since a compact ANR is locally
contractible, it is locally path connected. It follows that each X,
is a compact path connected ANR.

Claim. X, = {(Xu, ®), %o |x,, A} is an inclusion ANR-system
associated with (X,, «,). It suffices to show that X, = MN,cs Xo. Cer-
tainly X, M. 4X,o since X, a compact connected subset of I implies that
if N is any neighborhood of X, there is a path connected neighborhood
Uof X, such that UcC N. Let x€Nees Xoo — Xo« Then e X — X, so
let X, denote the component of X to which # belongs. Then there are
disjoint open sets U, U, such that U;N X = X; (1 =0, 1). Since I” is
normal, there are open sets V,, V, such that X;cV;cV,c U, (¢ = 0, 1).
Since V= V,UV, U [I? — (V,U V,)] is a neighborhood of X in I’ there
is an ae€ A such that X,cV. Now X,,cV,and x¢e V, a contradiction
since V,NV, = @. Thus X, = Nees X. and the claim is proven. By
a well-known theorem, 7,(X,, %) = 7,(X,, %) so that 7,(X) = 7,(X,).
It follows then that z,(X, %)) = 7.(X,, ).

If 2,2, € X and w: I— X is a path in X connecting 2z, and x, then
for each ac€ A, w induces an isomorphism ®,: 7, (X,, %) — 7.(X,, ).
If a < o' then i,,®, = w, and it is not hard to show that z,(X, x,) ~
(X, ). Thus we have the following theorem.

THEOREM 2.11. If x, and x, are in the same path component of
X then 7.(X, x) ~ 7,(X, ).

Question. Is Theorem 2.11 valid if one replaces path component
with component? Using Theorem 4.1 of [4], one can easily show the
following is true.

THEOREM 2.12. If X is a movable compact metric space and if
x, and x, are in the same component of X then =, (X, x)~ (X, x,).

3. Equivalence of the inverse limit and Borsuk’s definition of
.. Let X be a compact metric space and x,e¢ X. Assume that X
is embedded in @ (Hilbert cube). Let (S, a) denote the pointed n-
dimensional sphere. An approximative map of (S, a) toward (X, x,),
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& =1{&, (S, a) — (X, ,)} is a sequence of maps &,: (S, a) — (Q, x,) such
that for every neighborhood (V, ;) of (X, x,) in @ there is an index
k, such that if k= k, then &, = &, in (V, ). Two approximative
maps § and 7 = {9, (S, @) — (X, x,)} are said to be homotopic, § = 7,
if for each neighborhood (V, z,) of (X, ;) in @ there is an index £k,
such that if &k = k, then &, = 7, in (V, 2,). The homotopy class of an
approximative map £ is denoted by [£].

If & 9:(S, a) — (Q, x,) are maps, their join, &=7:(S, a) — (Q, %)
is defined as follows. Let P and P’ be n-dimensional balls on S such
thatae S — P,aeS— P and P c S — P. Leta, B:(S,a) x I—(S, a)
be homotopies such that a(z, 0) = 8(z,0) = « for all zeS and a(S —
P, 1) =a = B(S — P, 1). Define

fa(x,1) if xeS— P
7B(x,1) if zeS— P.
NOte: if [E]y [77] € nn(Xy xo) Where (X’ xo) c (Q, xo) then [5]*[77] = [6*7]]
is the group operation in =,(X, x). Let m%X, x,) denote the group

of fundamental classes of approximative maps of (S, a) toward (X, x,)
with operation * defined as follows. If [£], [7] € z3(X, ,) then

[El+[7] = [{&exs, (S, @) — (X, @)}] -

Then [3] 7YX, ®,) is the nth fundamental group defined by Borsuk
in [1].

(&7)(@) =

THEOREM 3.1. If X = {(X}, @), 4} ©s an tnclusion ANR-sequence
m Q associated with (X, x,) C(Q, x,) then wX, x)~limr,(X) =
Zn(X, xo)' —

Proof. Let N (X, ) — 7, (X,, x,) be given as follows. If [£]e
(X, x,) then since (X,, x,) is a neighborhood of (X, x,) in @ there is
an index m, such that if m = m, then &, =§,, in (X, x,). Define
Melé] = [€n,] € Tu( X, ). If [€] = [7] then there is an m, such that
if m = m, then &, = 7, in (X, x,) so that )\, is a well-defined function.
If [&], [7] e z¥(X, @,) and m, is “large enough” then

Me([E1[7D) = Ml{Em¥m, (S, @) — (X, m)}]
= [Emg* V]
= [En ][]
= Mel€lxni[7]

Thus each ), is a group homomorphism.

Note. If N,[¢] = N [7] for all %, then [¢] = [7]. Let (V, ) be a
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neighborhood of (X, ;) in Q. Choose k so that (X, x) c(V, #,). Then
€] = Me[7] implies there is an m, such that if m = m, then ¢, = 7,
in (X, ) < (V, x,).

We will now show that (z3(X, ,), {\:}) is a terminal object in the
category inv (7,(X)) [9], from which it will follow by uniqueness of
inverse limit that z%(X, ) ~ 7,.(X, %,). To show (X, x,), {\:}) is in
the category inv (7,(X)), one must show that if k¥ < &’ then \, = o\,
where 0,;.: 7, (Xy., %) — T,.(X,, ©,) is the homomorphism induced by 7,,.:
(X, ) — (X, x)). Choose m, = my, my.. Then NJ[E] = [£.] = OuilE].

It remains to show (z¥(X, x,), {\;}) is a terminal object; i.e., if G
is any group and o,: G — 7,(X,, %) are group homomorphisms such
that if k¥ < k' then ¢, = 0,,.0,, then there is a unique group homo-
morphism o: G — %X, x,) such that ¢, = \,0 for all k. The uniqueness
follows immediately from the above note.

FExistence. Let ge G. Define o(g) = [{&, (S, @) — (X, z,)}] where
&: (S, @) — (Q, x) satisfies &, €0,(g) €7, (X,, o). First, {&, (S, a)—
(X, x,)} is an approximative map of (S, a) toward (X, x,). If (U, x,)
is any neighborhood of (X, x,) in @ choose k, such that k = k, implies
that (X, ) € (U, ). Then 04(9) = Ourr:0411(9) so that & = &, in
(X4, ) (U, @,). Next, o is a well-defined function for if £ = {&,, (S, a) —
(X, )} and & = {4, (S, a) — (X, x,)} are such that &,, &, € g,(g) for each
k, then if (U, x,) is any neighborhood of (X, x)) in @ choose k, such
that if ¥ = k, then (X, z,) < (U, #,). Then &, = &, in (U, %,) and hence
[€] = [£]. Also, o is a group homomorphism. Each ¢, is a homomorphism
so that 0,(g.g:.) = 0.(9.)*04(g:). Thus if &, € 0.(9.), 7 € 0:(gz) then &.x7, €
0.(9.)+04(9:) = 04(9.9:). That is, 0(g.g:) = [{&ex7s, (S, @) — (X, @5)}]. But
0(9.)*0(gs) = [{&* s, (S, a) — (X, 2,)}] so that ¢ is group homomorphism.

Finally, 0, = qy0 for each k. Since \o(g) = [€n,] € T (Xh, @), it
suffices to show &,, = &, in (X, @). If k= m, then by the definition
of my, & = &,, in (X, x). If m, =k then 0,(9) = 04n,0.,(9) so that
En, = & in (X, ).

This completes the proof of the theorem.

4. The product of a family of inverse systems. Let 2 be an
index set. For each we 2, let X* = {X¥, p.., A°} be an inverse system
of topological spaces (a similar construction can be made for groups,
R-modules, etc.). Let I" = {(F, 0): F is a finite nonempty subset of
2 and 0: F— U, A° is a function such that g(w) € A® for all w e F}.
Order I" by (F,0) < (F',0’) iff FC F’ and o(w) < 0'(w) forall we F.
For (F,o)el let X5y = Hoer Xl If (F, 0) < (F’,0’) then let
Diro o)t Xiron — Xirm b€ the composition of the natural projection

7: Ha)eF' Xg)'(w) I HweF X?'(w)
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and the product map II P%wew: Hoer Xovw — owerXai. It is not
difficult to show that X = {Xs..), Dr.0z.0n, '} I8 an inverse system.
The inverse system X is called the product of the family {X“: we Q}
and is denoted X = J],.. X“. It can be shown that J],..X“ is the
categorical product of the family {X“: w ¢ £2}.

ExAMPLE. If each A is a singleton, each X¥ = I, = I is the unit
interval and X* = {[,, 1,} where 1,: I, — I, is the identity map then
the above construction gives the usual representation of I = ],., I,
as the inverse limit of {I% D, F(2)} where F(2) is the set of all
nonempty finite subsets of 2 ordered by inclusion and p,.: I¥ = [loee
I, — I*, is the natural projection (see [6]).

THEOREM 4.1. lim [T,.0 X° = [Toe0 lim X©.
— —

Proof. Let X* =lim X*. We show [],.. X" is a terminal object
in the category inv (]’[:,, X“). For (F,o)el, let P [loea X°—
X7,y be the composition of the natural projection 7: [T, X* — [luer X,
and the product map TI 9%.: [Hoer X — IHoer X% It is not hard
to show that if (F, o) =< (F",0) then Dr.owr.enPir.en = Piro. Thus
(Moee X°, {Dir,0}) is in the category inv (JT X*).

It remains to show that JJ... X“ is a terminal object. That is,
if Y is any space and f 5., Y — X, is a family of maps such that
if (F, 0) < (F", d') then pir.0) 5,00 f 00 = firos then there is a unique
map f:Y — [l,e0 X such that for all (F,o0)el’, ppof = fira I
we and acA® let o,:{w}— A® be the function ,(w) = a. Then
({w}, 0.)eI” and f7 = fluoy: Y —X; is a family of maps such that
if a £ a’ then ({w}, 0,) < ({(w}, 6..), so that p2,.f¢ = f¢. By the uni-
versal mapping property of X“, there is a unique f*: Y — X* such that
pefe = fe for all ae A°. Let f:Y — [[.co X be the unique map thus
defined. Then f satisfies 97,0nf = fir. Furthermore, if g: Y —
Iloeo X* is any map that satisfies pir,ng = fir.0 then Diw),000 = Fuonoy =
fe. It follows then that f = g.

COROLLARY 4.2. If X* = {X¢, pe,, A°}, we 2, is a family of ANR-
systems where X 1is associated with X*, then [l,..X* ts an ANR-
system associated with [[,.q X°.

Proof. It suffices to note that if each A is closure-finite then
so is I" and that the product of a finite number of ANR’s is an ANR.
Suppose X° = {Xi, piw, A°}, 0 € 2; Y* ={Y}, ¢}y, B}, ne 4, are
inverse systems (or ANR-systems) and 6: 4 — 2 is a one-to-one function
such that for each A e/ there is a map f*: X?® —¥% Recall, a map
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f* X" —Y* consists of an increasing function f*: B* — A’ together
with a family of maps f2 X%, — Y7, be B’, such that if b < b’ then
Qo fi = fi (in the ANR-system case, ¢}, fi, = fi). Define f: 'y — Iy
by f(F, 0) = (6(F), f,) where f,: O(F) — Uo.co A” is given by f,(0(\) =
fio(\) e A, Then Xyiro = Ioecor X? i = HweFX,?;();(X)) so define
frot Xsiro— Y, as the product map [T f2.: HZeFX,?Z(Q(X))'_’HieFYaZ(ZP
One then checks that if (F, o) < (F”, ¢’) then f(F, o) < f(F", ') and
Qim0 fir0n = firo (In the ANR-system case, ¢r.o .00 f 5,00 = Firo)-
Thus there is 2 map f: Jloeo X — IL:e. X"

If Z- ={Z;, ., C},7eT, is another family of inverse systems
and ¢: 2— T is a one-to-one function such that for all w e Q there is
a g Z°“’ — X then there is a “natural composition” given by ¢6: 4 —
T and fg°": Z#’» — Y% It is left to the reader to verify that the map
determined by the composition is the same as the composition of the

respective determined maps.

There is a “natural identity”, 6: 2 — Q the identity function and
each 1°: X — X, the identity map. It is left to the reader to verify
that the identity 1: JJ,eo X — IlocoX® is determined by the natural

identity.
We now restrict our attention to the ANR-system case when Q2 =

A and 6 is the identity.

THEOREM 4.3. If f°, g*: X* —Y* are families of maps of systems
such that f* = g° for all ® e Q then f = g:[loee X — [luco X"

Proof. For each be B” there is an q, € A°, a, = f“(b), g“(b) such
that fipome, = 98Djome,. Let T,t B*— A® be an increasing function
such that 7z,(b) = a, for all be B*. If (F, o) ey, consider (F,t)el'y
where 7: F— Uoco A is given by 7(w) = 7,(0(w)). First, (F,7) =
f(F, o), g(F, o). Since ¢ is the identity, f(F, o) = (F, f,) where f (@)=
fe(o(w)). Then (F, ) = (F, f,) since

(@) = 7,(0(®)) Z Gy = f(0(®)) = fo(®) .
Similarly, (F, o) = g(F, ). Furthermore,
o DF ooy o) = 95w Dgoot@n, otw)
implies
S ol = 9raParor:

Thus f=g.

COROLLARY 4.4. If Sh(X*) = SK(Y®) for all we Q2 then
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Sh(]:[we!) Xw) = Sh(]:[wea Yw) .

Corollary 4.4 allows one to define the product of shapes as follows:
Hwe!? Sh(Xw) = Sh(]._.[wef) Xw).

In [5] Mardesi¢ gives the notion of a shape retraction. For our
purposes we use the following definition: if j: X —Y is an embedding
then a map of systems r: Y —X is a shape retraction iff rj = 1, where
J: X—Y is a map of systems associated with j. It is routine to verify
this definition is equivalent to the one given by Mardesié. If there is
an embedding j: X —Y and a shape retraction r: Y — X then X is said
to be a shape retract of Y.

COROLLARY 4.5. If r*:Y*— X*“ is a shape retraction for all
then 7:Jlpeo Y* — [lueo X° is also a shape retraction.

Proof. Let Y, X* be associated with Y*, X, respectively, and
¢ X* —Y* the required embeddings. Let j: JT,c0 X° — Iloeo Y* be the
embedding determined by the family {j°: w € 2}. It is routine to verify
that the map determined by the family {j*: X* — Y} is associated with
j. We have that r°j® = 1, where 1,: X* — X* is the map associated
with the identity. By the above theorem, 7j = 1p,.,x0-

5. Products of ASR and ANSR-sets. In [5] Mardesi¢ gives
definitions for absolute shape retract (ASR) and absolute neighborhood
shape retracts (ANSR). These correspond to Borsuk’s FAR and FANR-
sets, respectively, in the metric case. We will use the following
characterizations: A compact Hausdorff space X is an ASR (respec-
tively, ANSR) if there is a compact AR (respectively, ANR) Y and
an embedding j: X —Y such that X is a shape retract of Y (see [10]
and [5]).

THEOREM 5.1. If X = [Jweo X* then Xe ASR iff X°c ASR for
all we Q.

Proof. If Xe ASR there is a Ye AR, an embedding j: X—Y and
a shape retraction r: Y — X. Since each natural projection p,: X —
X° is a retraction, the associated maps of systems p,: X — X are shape
retractions. It follows [5] that p,r: ¥ — X* is a shape retraction.
Thus, each X“ is an ASR.

Conversely, if X“ec ASR for all we 2, then for each we 2 there
is an AR-set Y* such that X“ is a shape retract of Y. Since the
product of any family of AR-sets is an AR-set, we have by Corollary
4.5 that Xe ASR.
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THEOREM 5.2. If X = Jlueo X* then Xe ANSR iff X°c ANSR
for all w and X c ASR for all but a finite number of w.

Proof. If X*c ANSR for all w and X“e ASR for all but finitely
many , say @, @, -+, ®,, then for all  there is an ANR-set Y*
and a shape retraction r*: Y* — X such that Y*e AR if w + 0, (k =
1,2, +++,m). Then [],.,Y*c ANR and there is a shape retraction
7: Moeo Y* — Tlueo X* so that J],.o X“ e ANSR.

Conversely, if X e ANSR then as in the proof of Theorem 5.1, each
X“ec ANSR. We may assume without loss that X I’ = [I;cs0 I?
and XC I* = [loeo I*. By Theorem IV. 2.10 of [10], there is a closed
neighborhood W of X in I and a shape retraction r: W— X. There
is a finite subset of 2, {0, ®,, +++, ®,} and neighborhoods U; of X
in I™ (4 =1,2, ++-, n) such that

X=TIXcU x [ I*cw.
we R i=1 wF0j
Let i: X —W, j,: X® — I'* denote the inclusion maps and let p,: X —
X be the natural projections. Choose inclusion maps j.: I'c — W for
w+w; (t=1,2 ¢+, %) and i,: X*— X such that j,j, = 4, and p,i, =
1;,. Then ri = 1; so that for w # w; 1 =1,2, .-+, n),

?wl’.ﬁ];w = _pw’r_iiw = l)wz:a) = l{a) .

Hence p,rj.:1"* — X* is a shape retraction for o = w; (1 = 1,2, «-+, n).
Thus X¢, w =+ w; (¢t =1,2, -+, n), is an ASR-set.

6. Products and shape groups. An inspection of Theorem 4.1
shows that the proof does not involve the fact that each X* is a
topological space. It remains valid, for example, whenever the objects
are groups. This fact together with the fact that the (usual) homotopy
group of a product is the direct product of the (usual) homotopy
groups of its factors, [11] Exercise B.5, p. 419, gives the following
theorem.

THEOREM 6.1. If (X, #) = [ueo (X°, 32) then (X, @) =
Hweﬂzn (Xw’ xit)o)‘

Proof. For each w let X* = {(X¢, x2), p2,,, A*} be an ANR-system
associated with (X“, x¢). Then

En(X7 950) = En(w].g;)(Xw, xg)))
= lim z,(IT X*)
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= lim TL',,{X(F,a), Dir.0)(Far)y ['}
P aNo—

= lim {7[1,,(]___[ (Xoa)(a)), w‘;’w)), Oir,0)(F" 100y F}
D — weF

= lim {H ﬂ”(X(:(w), xﬁ(,,,)), H Os(w)or ()7, r}
—— weF weF

= lim [T {m.(X2, @2), P2, A%}

= H lim {ﬂn(X:’, x:,)’ pg’a” Aw}

weD —

= I m(X*, 27)

Note. In recent correspondence M. Moszynska indicated that she
has defined the concept of “limit homotopy groups” which correspond
to our definition of the shape groups. Her approach, to appear in [8]
and [9], is more categorical than ours. For completeness we have
included our definition and proof that the shape are isomorphic to
Borsuk’s fundamental groups. The approach to the latter (Theorem
3.1) is somewhat different than the approach she used (see [9]).
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