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SEPARATIVE RELATIONS FOR MEASURES

A. P. MORSE AND D. C. PrarF

When dealing with Carathéodory (outer) measures, a natural
problem arises: how does one determine a nontrivial, interest-
ing family of measurable sets? In particular cases of a metric
or topological nature, it has been customary fo assume that
the measure is additive on sets which are a bit more than
merely disjoint. The general approach of this paper, purely
set-theoretical in nature, emphasizes a relation R which ‘‘sepa-
rates’’ sets, and describes certain sets, constructed with the aid
of R, which turn out to be measurable whenever the measure
is additive on sets which are separatively related.

We present several applications, some of which have appeared in
the literature and others which have not, to indicate the scope of
our methods.

In §2 we assemble some definitions, notations, and elementary
measure-theoretic results. In § 3 we define separative relations, describe
certain families of sets associated with them, and proceed to prove
measurability of the sets in these families, assuming that a measure
is additive on sets which are separatively related. §4 is devoted to
applications.

The authors express their thanks to the referee for several sugges-
tions which have simplified and shortened this paper considerably.

2. Preliminary definitions, notations, and theorems.

DEFINITIONS 2.1.
1. AwoB={x:zxecA and ¢ B}

2. 0F =Uyjserf ={zx:xef for some feF}
3. shAd={x:xcC A}
4. spA = {x:xD A}

DEFINITIONS 2.2.

1. dmn f = {a: (z, y) € f for some y}

2. dmn' f = {x:zedmn f and | f(x)] < o}
3. rlmf =odmn f

4. rng f = {y: (x, y) € f for some x}

DEFINITION 2.3.
w is the set of nonnegative integers.

We shall assume that the integer 0 and the empty set are the
same. Moreover, we assume that for each new, n = {kcw: k < n}.
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DEFINITIONS 2.4.
1. @ measures .&” if and only if ® is such a function that dmnp =
sb & 0 < @(A) whenever A C.&; and

P(4) < 5, 9(8)

whenever F' is a countable family for which
AcoFc.s.

2. Msr.&” = {¢: ¢ measures .5}
3. A is p-measurable if and only if Aedmn® and for all Te
dmn @

P(T) =P(TNA) + (T A) .

4. mblp = {4: A is p-measurable}
5. sct@T is the function 4 on dmn @ such that, for each Ae
dmn @,

v(4) =o(TnA).

6. sms® = {y: 4 = sct T for some T edmn’ @}
The following Theorems 2.5 and 2.6 are fairly well-known and
rather easy to prove.

THEOREMS 2.5.
1. If peMsr. &, then sms @ C Msr.&” .
2. If pecMsr.¥, then Aemble if and only if

W) = ¥(4) + ¥ (& o 4)

for each + € sms P.
3. If peMsr &, &' C.% and (S o ') = 0, then

P NA) =p(F" NA),

for each A.
Our proof of Theorem 2.6.4 has been considerably simplified by
suggestions made by M. Sion and L. B. Davis.

THEOREMS 2.6.
1. If v+eMsr &, BC & K, C B for each new, and

limy(Bw K,) = 0,

n—o0

then
limy(K, N T) = 4(Bn T)

n-—oco
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for each T C
2. If +eMsr & Bc & lim, (S «» K,) = 0, and

¥(K, N B) + ¥(K, > B) < ¥(5)
for each m € w, then
Y(B) + (& e B) = (&) .

3. If yeMsr & K is an increasing sequence of subsets of &
P(S o Unew K,) = 0, and

%% “lf(K'n+1 SC Kn) < oo,

then
limy(Sx» K,) =0.

Nn— o0

4. If v eMsr.&, A is an increasing sequence of subsets of &
and +f (A,) + (A, 0 Aur) S P(A,4) for each new, then

V(A0 A,) = 2:40()

Proof. By induction on N we find that if New, then
Z %V(Anﬂ oo An) = "/f(AN) + "I"(AN+1) .

neN+1

Letting N tend to infinity completes the proof.

The following alternate annular ring principle is a variant of a
theorem given by A. P. Morse in his 1958-1959 lectures on Real
Variable at the University of California.

THEOREM 2.7. If eMsr.%%, A is an increasing sequence of
subsets of &, CUUnew 40 = L' C (S 0 ') =0, and ¥(4,) +
(s Ay) < P(Ayss) and 4r(4,) + ¥(C) < ¥(°) for each n e o, then

P(C) + (& 0 C) = ¥(F) .

Proof. Since the conclusion is obvious if ($”) = «, we hence-
forth assume ¥(.5°) < . Now we let
B=UA,,

K,=CUA, for each necw,
and complete the proof in Step IV below.

Step I. lim,. . (Bcw A4,) = 0.
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Proof. Since we are assuming (%) < oo, Theorem 2.6.4 assures
us that X.co v(A,y o0 A,) < oo, and thus by Theorem 2.6.8 we have

limy(Bw 4,) = 0.

n—roo

Step II. lim,.. (& o K,) = 0.

Proof. Using Theorem 2.5.83 and the obvious fact that Beco C =
&' oo C, we see that, for each n e,

P(&F @ K,) = ¢(& o (CU 4,)
= 9(&F » C)» 4,)
= 9(&F" 0 C) » 4,)
= ¢(B» C)n 4,)
=y (B 4,).

Hence, by Step I, lim,_, ¥(% «» K,) = 0.

Step III. For each necw,
YK, N C) + (K, » C) = 4(&) .

Proof. 1f new, then

YK, N C) + v(K, 0 C) = ¥(CUA)NC) + 4(CU A,) o C)
= $(C) + ¥(4,  C)
< 9(0) + ¥(4.,)
= (&) .

Step IV. (C) + 4(& o C) £ (&) .
Proof. Use Step II, Step III, and Theorem 2.6.2.

3. Separative relations. We now describe the objects of main
interest in this paper.

DEFINITIONS 3.1.

1. preseparative = {R: B is a relation, rlm R = orng R, R # 0,
and whenever

(A,B)eR,(C,B)eR,A'CcA,B'CB,
it follows that
(AUC,B)eR and (4, B)e R} .
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2. separative = {R ¢ preseparative: whenever (A4, B) ¢ R, there
exists A’esp A such that

(A", BbeR and (4,axn A')eR

for each a e dmn R}.
3. Separative = {R ¢ preseparative: whenever (4, B)e R and a €
dmn R, there exists A’ esp A such that

(aanA',anB)eR and (4, aw A')eR}.
4. shut R = {C: there exists a countable family G such that
crngR=CUocG and (9,C)eR

for each ge G}.
5. Shut R = {C: for every aedmn R, there exists a countable
family G such that

a=(@nNC)UcG and (g,anC)eR

for each ge G}.

DEFINITIONS 3.2.

1. adt R={peMsrorng R:9(A U B) = ¢(4) + ®(B) whenever
(4, B) € R}.

2. Adt R = {peadt R: for every Tecdmn’ @, there exists such a
countable family G of elements of dmn R that @(T <« ¢G) = 0}.

3. Sepad R = {pcadt R: for every Tedmn’ @, there exists an
increasing sequence K of elements of dmn R N Shut R such that
P(T o Unew K.) = 0).

Theorems 3.3, 3.4, and 3.5 below are easily verified.

THEOREMS 3.3.
1. separative C Separative C preseparative.
2. If Re Separative and rlm R ecdmn R, then R e separative.

THEOREMS 3.4.

1. If R < preseparative, then shut R C Shut R.

2. If R e preseparative and rlm R e dmn R, then shut R = Shut R.
3. If R e preseparative, then 0e Shut R and rlm R ¢ Shut R.

THEOREMS 3.5.

1. Sepad R c Adt R c adt R.

2. If R e preseparative and rlm R e dmn R, then adt R= Adt R =
Sepad R.
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THEOREMS 3.6.
1. If R e preseparative, @ € adt R and + € sms @, then + € adt R.

Proof. Let + = sct@T. Using 3.1.1, we see that if (4, B)e R,
then (TN A, TN B)e R, and hence
P(TNAUTNB)=2TNA +eTnNB).

Thus (A U B) = (4) + +(B).
2. If Rec preseparative, € Adt R, and + € sms @, then € Adt R.

Proof. Clearly + cadt R, so suppose = sct @S, T e dmn’ +, and
@(S) < . There is such a countable family G of elements of dmn R
that (Sco 0G) = 0. Hence @ (SN (T < ¢G)) = 0, which implies that

(T o 6G) = 0.
3. If Re preseparative, @< Sepad B, and + €sms P, then €
Sepad R.

The proof of 3.6.3 is similar to that of 3.6.2.

THEOREM 3.7. If R eseparative and (A,, C)e R for each new,
then there exists an increasing sequence A’ such that, for every m € w,

(A, AL, AL )eR (A,,C)eR, and A,CA,.

Proof. Repeatedly use Definition 3.1.2 to determine inductively
such a sequence A’ that for each aedmn R and n € ® we have

A, Cc Af, (A, C)eR, (A, axn A)e R,
A, UA,CALy, (A0, O €eR,
and
(A, UA,, axn A, )eR.

Clearly A, edmn R for each n e w. Hence, using Definitions 3.1.1 and
3.1.2 we see that for each ncw,

(A;u A;,+2 2 Atn—H) eR.

The remaining conclusions are obvious.
Our next theorem is a direct generalization of a well-known
theorem of Carathéodory [2].

THEOREM 3.8. If R e separative, Ceshut R, and @ cadt R, then
C e mbl p.

Proof. Let & =rlmR and esms®. Use Definition 3.1.4 to
find such a sequence A that, for each 7 € w,
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(4,,C)eR and UA,UC=.5.

neEw

Now use Theorem 3.7 to determine such a sequence A’ that, for each
new,

A, CcA,cA,,.,, (A4, CeR,
and
(Ar, Ah, 0 AL )ER.

From the above, and the fact that + cadt R, we see the following:

(1) A’ is an increasing sequence of subsets of &

(3) ¥(&F 2 (CUUnen47) = 0.

(4) ¥(AL) Z ¥ (A4, U (AL r A1) = (A)) + P(ALh v A for
each n € w.

(5) (&) = (4, UC) = 4(A}) + 4(C), for each nec w.
Referring to Theorem 2.7, we infer

P(C) + ¥ (& » C) = ¥(&) -

The reverse inequality is obvious. Hence, since 4r is an arbitrary
member of sms @, we see from Theorem 2.5.2 that C e mbl .

We pave the way towards our next major measurability theorem
by proving two preliminary theorems and stating a result of Trevor
J. McMinn [4].

THEOREM 3.9. If R e Separative, Ce Shut R, acdmn R, ¢ c adt R,
4 = sct pa, and & = rlm R, then

P(C) + ¥(& 0 C) = (&) .

Proof. Use Definition 8.1.5 to find such a sequence A that, for
every new,(4,,anC)eR, and a = (a@NC)UUrewAd,. Now use
Definition 3.1.3 to determine inductively such a sequence A’ that for
each 7 c w,

AiDA,(anAl,anC)eR, (4,acn A)e R,
14-;r,+1D (a ﬂ A',n) U An+1, (a ﬂ Afn+1,a n C) GR’

and
(@nA)UA,,an AL )eR.

For each new,let K, = an A,. We now divide the remainder
of the proof into six steps, the first of which is obvious.

Step I. For each new, K, Cc K,,..

Step II. 4 (& oo (@N C) U Unew K,) = 0.



458 A. P. MORSE AND D. C. PFAFF

Proof. Since A, D A, for each n e w, it follows that

@nCyuyd.o@nC)uUA4d, =«a,

new

and hence CU U,eo A, D@. Therefore,
(& o (@n C)UU K,)
=J@ (@nC)uU @n4y)
= J(@w @n(CuU 4)
= J(@ (CU U A4Y)

= 9(0)
=0.

Step III. For each ncw,
“/”(Kn) + “}'(Km-z @ Kn+1) = "J’(Kn+2) .

Proof. If mew, then

Y (K,) + (K 0 K,y)
=@n Al) +y((@n Al o (@n 4L)
=y@anA) +y(@n A, N (F »a)U (S w4,
=y@n 4) + y((@n AL) o 45
=y ((@n4;) U(@n As.) o ALu)
= Y (K, U (Kpip 2 A7)
=S P (Kosa)-

Step IV. For each ncw, +(K,) + (@ N C) < ().

Proof. If new, then

P(K,) + 9(@n C) = y(@n A,) + y@n )
=y((@n 4;) U(a@n ()
< () .

Step V. y(@n C) + (& o (@n C)) = y(&) .
Proof. Use Theorem 2.7, and Steps I, II, III, and IV.
Step VI. 4(C) + p( o C) < ().

Proof.
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P(C) + (& 0 C)
= (@ C) + (& 0 C)
Sv@nO) + (& »a)U (& ()
=@nC) + (S o (an C))
= ().

THEOREM 3.10. If Rec Separative, Cc Shut R, xcdmn R, pe
adt R, and = sct pa, then Cecmblqy.

Proof. Suppose & =rlm R, fesms+, and 6 = sct+7. Then
0 =scte(TNa). But since TNaca, TNaedmn BR. Thus by the
preceding theorem we have

0(C) + 6( e C) = 6() .

The reverse inequality is obvious, so by Theorem 2.5.2 we have Ce
mbl 4.

THEOREM 3.11. (McMinn). Suppose ® € Msr &4, and for every
T for which @(T) < oo there exists a sequence k such that
P(TerUk,) =0

neEwW

and
k,C k... C .S Aemblsct ok, and k, € mbl sct ¢k,,., for each n € w.
Then A € mbl ®.

THEOREM 3.12. If R e Separative, CeShut R, and @ < Sepad R,
then C e mbl ®.

Proof. Let & = rlm R. Clearly @ ¢ Msr.%. Suppose +r € sms®
and 4 = sct @T with @(T) < co. Then by Definition 3.2.3 there is an
increasing sequence K of members of dmn R N Shut R such that

P(TerUK,)=0.

Hence, by Theorem 3.10 we have, for each nc w,
Cecmbl sct K, and K,cmblsct oK, ., .

Theorem 3.11 now assures us that C e mbl ®.

With the help of Theorem 3.3.1, we see that Theorems 3.13 and
3.14 below follow from Theorems 3.9 and 3.10, respectively. Although
they are not of intrinsic interest, they are useful in establishing our
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last measurability result.

THEOREM 3.13. If R € separative, ¢ c adt R, T e dmn R, 4 = sct 9T,
& =rlm R, and Ce Shut R, then (C) + 4(& o« C) < ().

THEOREM 3.14. If R e separative, pcadt B, Tedmn R, 4 = sct T,
and CeShut R, then Cemblr.

THEOREM 3.15. If R e separative, ¥ € Adt R, and C € Shut R, then
C e mbl ».

Proof. Let & =rlm R and 4 esms®. Since Theorem 3.6.2
assures us that 4 € Adt R, and since (%) < o, we may select a
sequence D of elements of dmn R such that (% o U,eo D,) = 0.
Using Theorem 3.7, find a sequence D’ such that, for each % c w,

D, 0 eR, (D, Dyyy» D) e R,
and
D,cD,cD,,,.
Noting that, for each % cw,
Y (Dri) Z ¥(Dy U (Dyys «2 Dy))
= P(D3) + Y (Dhse o Dis)
we conclude from Theorem 2.6.4 that

D YDy oo Dy) < oo

new

Hence we infer from Theorem 2.6.3 that

limy (& o D) = 0.

n—co

The (3.14) fact that C e mblsct @D, for each % € w, together with
Theorem 2.6.2, now yields

P(C) + ¥(& o C) = Y(&) .

Reference to Theorem 2.5.2 completes the proof.

REMARK 3.16. In general, we cannot show that if Shut R c mbl @,
then @ cadt R. This seems to be due partly to the fact that we did
not require in the definition of a separative relation R that (4, B) e
R implies AN B=0. If we do add this condition, we can arrive at
the above result, as the next theorem shows.



SEPARATIVE RELATIONS FOR MEASURES 461

THEOREM 3.17. If R ¢ separative, & = rlm R, ¢ € Msr &, Shut R C
mblp, and AN B = 0 whenever (A, B)e R, then

pcadt R .

Proof. Suppose (A4, B)e B. Proceeding as in the first sentence
of the proof of Theorem 3.7 with 4, = A for each n € w, we determine
inductively such a sequence A’ that, for every a«edmn R and every
n e w, we have

(AL, @ Al )eR,(A,,B)eR, and AcA,cCA,,,.

Let C' = U, 4, and C = .57 o C'. We complete the proof in three
steps, the first of which is evident.

Step I. Ac.&¥ e C and BcC.

Step II. C eShut R.

Proof. Let Tedmn R, and foreachnewlet G, = A, N T. Clearly
T=(TnNC)UUnrco G, Moreover, since
new implies A,,,cC,
we have
new implies Cc.&¥ w4,
and hence
new implies TNCcTw A,,, .
Therefore, since (4, T'wx A),,,) € B, we have
G, TnC)eR.
The desired conclusion is now at hand.

Step III. @ ecadt R.

Proof. From Step I, Step II, and the assumed measurability of
members of Shut R, we deduce that

P(AUB) =P(AUB)NC) + P(AUB)x» () = p4) + 2(B) .

Reference to Definition 3.2.1 completes the proof.

4. Applications. In this section we examine some specific
separative relations and obtain measurability theorems in metric and
topological settings.

We begin by showing that the classical Carathéodory theorem
on measurability of closed sets in a metric space follows from our
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general results. Following this, we prove a theorem, first published
by T. J. McMinn in [4], but known earlier to A. P. Morse, which
states that additivity of a measure on bounded sets of positive distance
apart in a metric space . ensures the measurability of all closed
sets in A

Turning to some examples with a topological flavor, we establish
a theorem of Bourbaki [1] as a consequence of our theory. Next we
deal with applications which involve additivity of a measure on sets
whose closures do not intersect and the first of which is compact.
Some of these have been anticipated by A. P. Morse, but none have
appeared in the literature. In particular, Theorem 4.16 extends mea-
surability theory to regular spaces and a fairly general class of
measures.

We conclude by showing how some measurability results in a
recent paper by M. Sion and R. C. Willmott [5] dealing with con-
structed measures can be obtained from our approach.

We begin by introducing some necessary metric and topological
terminology.

DEFINITIONS 4.1.
1. o metrizes &7 if and only if p is such a function with domain
& x & that

0= p(x, ») < o, y) = 0@, 2 + (Y, 2) <

whenever xe &, y€.%, and z¢€ .S

2. srowr ={y:0(,y) =1}

We note in passing that a function p of the kind referred to in
4.1.1 is often called a pseudometric.

DEFINITIONS 4.2.

1. Fsigma 9 = {Bc¢.7:.7 Iis a topology and B is a countable
union of closed sets}.

2. Gdelta 7 = {C: 9~ is a topology, C is closed, and C is a
countable intersection of elements of .7 }.

3. 7 is locally compact if and only if .~ is a topology and
each element of 0.9~ has a neighborhood whose closure is compact.

The first theorem of this section shows that we have indeed
generalized the classical Carathéodory theorem on measurability of
closed sets in a metric space.

THEOREM 4.8. If p metrizes &, R = {(A, B): the distance between
A and B is positive}, and @ cadt R, then:
1. R eseparative,
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2. each closed set is an element of shut R, and
3. each closed set is P-measurable.

Proof of 1. Clearly R e preseparative, so suppose (4, B) € R and
the distance between 4 and B is r. According to Definition 3.1.2,
we must verify the existence of a set A'esp A such that (4’, Bl e R
and (A,aw A’)e R, whenever acedmn R. If 0 < r» < «, a routine
argument shows that we may choose A’ to be the set

U sr pox(r/2) .
x€A
If » = o, then either A or B is empty, and we may take A’ = A.

Proof of 2. Suppose C is closed. For each necw, let 4, = {a:
the distance from x to C is greater than or equal to 1/(n + 1)}.
Evidently

CUUnemAn: i

and, for each new, (4,, C) e R. Reference to 3.1.4 completes the
proof.

Proof of 3. Use 1,2, and Theorem 3.8.

With the help of Theorems 3.3.1, 3.4.2, and 3.5.2, one easily
checks that, if R is the relation given in the preceding theorem, then:
R ¢ Separative, shut R = Shut R, and adt R = Adt R = Sepad BR. Thus
the conclusion 4.3.3 is also a consequence of Theorem 3.15 and of
Theorem 3.12. In general, of course, the above equalities do not hold.
The following theorem, discussed at the beginning of this section,
provides an example in which shut R = Shut R.

THEOREM 4.4. If p metrizes &, R = {(A, B): the distance between
A and B is positive and A and B are bounded}, and @ € adt R, then:

1. R e separative,

2. each closed set is an element of Shut R,

3. pcAdt R, and

4. each closed set is P-measurabdle.

Proof of 1. The proof is similar to that of 4.3.1, so we omit it.

Proof of 2. Suppose C is closed and o« edmn RB. For each ncw,
let

A, = {x: the distance from x to C is greater than or equal to
1/(n + 1)}
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and
B,=A,Nna.
Then clearly
a=@nC)uUB,.

Also, (B,,a N C)e R for each new. Thus Definition 3.1.5 assures us
that Ce Shut R.

Proof of 3. Let G = {sr pxn: n e w} and refer to Definition 3.2.2.

Proof of 4. Use 1, 2,3, and Theorem 3.15.

One verifies without difficulty that, if R is the relation described
in Theorem 4.4, then R e Separative and adt R = Adt R = Sepad R.
Hence the conclusion 4.4.4 also follows from Theorem 3.12. Of course,
shut R is not equal to Shut R, since an element of shut B must also
be an element of dmn R, and hence bounded.

After pausing to prove the Bourbaki Theorem, we shall consider
other applications of a topological nature which illuminate the diffe-
rences between our main concepts. In each case we will be dealing
with a relation R and will need to prove that R eseparative or Re
Separative. Since it will always be obvious that R e preseparative, we
shall omit explicit mention of this fact from our proofs.

THEOREM 4.5. If 9~ 1is a mormal topology, .&¥ = 0.7, R = {(4,
B): AN B =0}, and pcadt R, then:

1. R eseparative,

2. Gdelta 7~ c shut R, and

3. Gdelta 7~ ¢ mbl @.

Proof of 1. Assume that AN B = 0. Since .7 is normal, there
exists a set A’e 7 such that

AcA and Ac< wB.

Hence (4’,B)e R and (A,.&” o A')e R. Thus, for each o edmn R,
(A,a e A')e R. Reference to Definition 8.1.2 completes the proof.

Proof of 2. Let CeGdelta ., and select such a countable
subfamily G of .7~ that C is the intersection of the elements of G.
Then

y=CULJ}(§/w9)
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and, for each ge G, we have & o gN C = 0. According to Definition
3.1.4, Ccshut R.

Proof of 3. Use 1,2, and Theorem 3.8.

In Theorems 4.7 through 4.16 we agree that .7~ is a topology,
& =09, and R is the relation defined as follows:

DEFINITION 4.6.

R={(A,B:ANB=0and 4 is compact}.

We begin by examining the relationship between R and the
topological structure of 7.

THEOREM 4.7. If C s such a closed subset of &7 that &7 o C is
a countable union of closed, compact sets, then C e shut R.

Proof. Write &¥ oo C = U,.. 4, With each A4, closed and compact,
and apply Definition 3.1.4.

THEOREM 4.8. Gdelta .9~ < Shut R.
Proof. Suppose CeGdelta 77, select such a sequence A4 of ele-
ments of .~ that
C = n An b

ne w

and let « edmn R. Notice that
a=@nCuUulU@x4i,.

neEw

Also, for each ncw,

amAd,NanCc.xA,nNC=0
and
awmwA,Ca.

Since @ is compact, so is @ «» A, and hence (@ A4,,a N C)e R, for
each n ew. The conclusion now follows from Definition 3.1.5.

THEOREM 4.9. If 7 s either regular or mormal, then Re
Separative.

Proof. We shall assume &~ is regular; the reasoning is similar
if 7 is normal.
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Suppose ANB = 0, A is compact, and @ edmn R. Use Theorem
10, p. 141 in [3] to find such an A’¢. 9 that Ac A’ and A'c.& o
B. Sinceand' NnanBcA NnB=0,an A’ ca, and & is compact,
we see that (¢ N A", a N B)e B. Moreover, because

AnNaacmm AcCcAN S A =0,

we have (4, a v A') e R. Reference to Definition 3.1.3 completes the
proof.

THEOREM 4.10. If 7 1is locally compact and either regular or
normal, then R € separative.

Proof. Suppose AN B =0 and A is compact. We use the fact
that .7~ is locally compact by covering A with elements of .~ whose
closures are compact and then extracting a finite subcover to find such
a Ue 7 that AcU and U is compact. Next, we determine such a
Ve 7 that AcVand Vc.¥ v B. Letting A’ = UNV, we see that

AcCcAcC A,
"AnNBcVnB=0,
and
AcU.

Hence A’ is compact and (4’, B) ¢ R.
Moreover, since & o A’ is closed, it follows that

Anaw A cAnN S wA =0,

for each @« e dmn R. Consequently (4, & o A’) € R whenever o € dmn R.
A look at Definition 3.1.2 completes the proof.
We are now in a position to obtain measurability results.

THEOREM 4.11. If .7 s locally compact and normal, ¥ ¢ adt R,
and B is an element of 7 which can be expressed as a countable
union of closed, compact sets, then B e mbl @.

Proof. According to Theorem 4.7, .&” «o Beshut B. Hence Theo-
rems 4.10 and 3.8 assure us that &~ «» Bembl ®. The desired conclu-
sion is at hand.

THEOREM 4.12. If 7 s locally compact and regular, ¢ ¢ adt R,
and B is an element of 7~ which can be expressed as a countable
uniom of compact sets, then Bembl ®.
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Proof. Suppose B = U,co 4, and A, is compact for each nec w.
It is easy to check that, for each necw, A, B and A, is compact.
Hence .&¥ «» Beshut R, and the measurability of B follows.

THEOREM 4.13. Suppose 7~ s locally compact and normal, Ce
Gdelta 7, and @ecadt R. If, in addition, for each T ¢ dmn’ @ there
exists such a family G of closed compact sets that {T «o ¢G) = 0, then
C e mbl o.

Proof. Theorem 4.8 assures us that Ce Shut B. Using the
additional hypothesis concerning @, the fact that each closed compact
set is in dmn R, and Definition 3.2.2, we see that ® ¢ Adt B. Hence
Theorems 4.10 and 3.15 ensure C e mbl ®.

THEOREM 4.14. Suppose 7 s locally compact and regular, Ce
G delta .7, and pecadt R. If, in addition, for each T € dmn’ @ there
exists such a family G of compact sets that P(T oo aG) = 0, then
C e mbl p.

Proof. In a regular space, the closure of a compact set is compact.
Hence, (4, 0) € R whenever A is compact, so each compact set is in
dmn R. The conclusion now follows as in 4.13.

REMARK 4.15. We observe that R is not necessarily symmetric.
As a matter of fact, if R’ is the symmetric relation defined by

R ={(A,B:ANB=0and 4 and B are compact},

then Theorems 4.10 and 4.14 remain valid if R is replaced by R’.
Thus, if a measure @ satisfies the additional hypothesis in Theorem
4.14, one may deduce that G delta .9~ c mbl @ by checking that @ is
additive on compact sets whose closures do not intersect.

If one is unwilling to place this restriction on @, but wishes to
determine a nontrivial class of @-measurable sets solely from the
assumption that @ is additive on sets which are separatively related,
then the nonsymmetry of R is essential in many cases. This is due
to the fact that the only sets we are able to prove @-measurable in
such generality are the elements of shut R. If R is symmetric, then
shut R = 0 unless .&¥ is sigmacompact.

The above applies also to Theorem 4.13.

In our next theorem, we ask somewhat more of the measure than
before. In partial compensation, we are enabled to drop the assump-
tion of local compactness.

THEOREM 4.16. If 9 s regular or normal,



468 A. P. MORSE AND D. C. PFAFF

pecadt R, CeGdelta 7,

and, corresponding to each T cdmn’ @, there exists such a family G
of compact elements of Gdelta 7~ that (T v 6G) = 0, then C e mbl @.

Proof. We already know that R ¢ Separative and that Gdelta 7 c
Shut B. In view of Theorem 3.12, we need only show that @ ¢ Sepad R.
Let Tedmn’ @ and choose such a sequence K of compact elements of
Gdelta. 7 that

PTrUK,)=0.
By taking unions if necessary, we may clearly assume without loss
of generality that K is an increasing sequence. Because each K, is
closed and compact, we see that (K,, 0) € R and therefore K, € dmn R,
for each » e w. Moreover, for each n ¢ w, K, € Shut R, so by Definition
3.2.3, @ e Sepad R.

We conclude this paper by investigating a separative relation R
whose definition is considerably different in character from those
previously discussed. We employ R to deduce two measurability
theorems which were proved in a quite different manner by Sion and
Willmott in [5].

The following definitions which, for simplicity, have been slightly
modified, are given on pp. 276, 279, and 280 of [5].

DEFINITIONS 4.17.

1. 57 is a filterbase if and only if 27 is a nonempty family of
sets such that for every Mec 2~ and Ne 27, there exists He 5
such that 0 # Hc M N N.

2. 57 is a filterbase in & if and only if 57 is a filterbase and
for every He &7, H is a family of subsets of ./, 0¢e H, and cH = .~

In all subsequent definitions and theorems, we shall assume the
hypothesis “S5# is a filterbase in & to be affixed.

DEFINITIONS 4.18.
1. If xe.%” and He 57, then H[z] = o{hc H: x € h}.
2. If Ac.&” and He 5%, then

H[A] = U{H[x] =clheH:hNA=+0}.
3. ¥ ={Gc < for every xe @, there exists He€ 57 for which
Hx] C G}.
4. 57 satisfies (5 II) if and only if for each H e 57, there exist
H, e 57 and H,ec 5# such that H[H,[A]] c H[A], whenever A C S
5. 57 satisfies (5 III) if and only if there exists such an He &
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that H[A] C B, whenever A is & -closed, Be &, and A c B.

6. 5~ satisfies (5 IV) if and only if there exists such a sequence
H of elements of 57 that, for every N e 57, there exists n ¢ @, such
that H, c N.

Theorems 4.19 are for the most part taken directly from [5], p.
280. They are all immediate consequences of the above definitions.

THEOREMS 4.19.
1. & s a topology and 0% = <.
2. If He 57 and A, C &7 for each i€ I, then

H|J Al = U HIA] .

3. If Hes#, Kes#, AC .S, and HC K, then H[A] C K[A].

4. If HesF, AUBC.%, and AC B, then H[A] C H[B].

5. If He 57 and AU BC %, then H[A]NIB = 0 if and only if
AN HI[B] = 0.

We now define, for future use, a certain relation.

DEFINITION 4.20.

R = {(A, B): for some He 27, H[A]Nn B = 0}.
THEOREM 4.21. R e preseparative.

Proof. In view of Theorem 4.19.5, we see that R is a symmetric
relation, and hence dmn R = rng E. Thus rlm R = o rng R.

Now suppose (4,B)eR,(C,B)e R, A'Cc A, and B cB. Let H
and K be such elements of 5% that H[A]N B = 0 and K[C]N B = 0.
Using the fact that 57 is a filterbase, we find such an L e 5 that
Lc HN K. Now, using Theorems 4.19.3 and 4.19.2, we infer:

L[A] c H[A], LIC]cK[C], and L[AUC]= L[A]U L[C] .

Thus LIAUCIN B =0 and (AUC, B)eR.

Finally, from Theorem 4.19.4, we infer that H[A'] ¢ H[A], and
thus H[A']N B = 0. Hence H[A'] N B'=0and (4’, B') € R. Reference
to Definition 3.1.1 completes the proof.

THEOREM 4.22. If 57 satisfies (5 II), then R e separative.

Proof. Suppose (A, B)e R, and let H be such an element of 5%
that H[A]Nn B = 0. We invoke Definition 4.18.4 once to ascertain
such members H, and H, of 5# that H,[H,[A]] c H[A], and again to
determine elements H, and H, of 5# such that
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H[H[H,[A]ll © H\[H,[A]] .

Let A’ = H,JH,;[A]], and note that A’ D A.
From the above inclusions, it is evident that H,[A’] ¢ H[A]. Hence
HJA'INB =0 and (4, B e R. Moreover, we see that

H,[A] c H,[H,[A]],

and thus H,[A] N (&” «» A’) = 0. By Theorem 4.21 and Definition 3.1.2,
R e separative.

THEOREM 4.23. If 57 satisfies (51I) and (5 III) and @ cadt R,
then Fsigma & < mbl o,

Proof. Suppose BecFsigma & and let A be such a sequence of
Z-closed sets that B = J,., 4.. By Definition 4.18.5, for each n € w
there exists an He 57 such that H[A,]c B. Hence (4,, .5 o B)e
R, for each new. Since (& v B)U Uwew 4, = &, Definition 38.1.4
assures us that & «o Beshut R. The desired conclusion follows from
Theorems 4.22 and 3.8.

THEOREM 4.24. If 57 satisfies (51I) and (51IV) and pcadt R,
then each Z-closed set is @-measurable.

Proof. Suppose C is Z-closed, and let H be such a sequence of
elements of 57 that, for every Ne 27, there exists n e ® such that
H,c N. For each xe.%” oo C there clearly exists an n € @ such that
H,zx]c ¥ » C. Let A, = {x: H,[x] € & < C}, for each n cw. From
Definition 4.18.2 it follows that, for every =z c w,

H,j4,] = U Hslc.& < C.

Hence, for each necw, (4,,C)e R. Since CU U, 4, = &%, we have
Ceshut R. Consequently, by Theorem 3.8, Cembl o.

REMARK 4.25. On page 279 of [5], Sion and Willmott construct
a measure y, using 57 and such a function 7 on a subset .o of
027 to the nonnegative real line that z(0) = 0. They also prove that
veadt BR. Thus their Theorems 7.7 and 7.8 are corollaries of our
Theorems 4.23 and 4.24.
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