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CROSS-SECTIONS OF DECOMPOSITIONS

J. P. RlLEY

The following question was raised by R. H. Bing: "Is
it true that if G is a monotone decomposition of Ez into straight
line intervals and one-point sets, then Es/G is homeomorphic
to EZV9 In his paper "Point-like decompositions of EB" he
described a possible counter example. This example has the
interesting property that it has many tame cross-sections, but
if its decomposition space is homeomorphic to Ez, its set of
nondegenerate elements would have to form a wild Cantor
set. This suggests that it would be interesting to study the
connection between the embedding of a cross-section and the
embedding of the set of nondegenerate elements in the decom-
position space.

1* Introduction* Most of the terminology and notation used in
this paper is standard. The reader is referred to [1], [3], [4], and [6].

If S is a 2-sphere in E3, then by Int S we will mean the bounded
component of E3-S and by Ext S, the unbounded component.

Let G be an upper semi-continuous decomposition of E3 and let
H be the set of all nondegenerate elements of G. We will say that
a set R c E3 is a cross-section of G if (i) R ΓΊ h is a singleton for each
heH, and (ii) the natural map P restricted to R is homeomorphism
onto P{H). We note that cross-sections exist only for certain decom-
positions. A simple example may be constructed as follows: Let an =
1/n, for n = 1, 2, and let bn = — 1/n for n — 1, 2, . Let the
set of nondegenerate elements of our decomposition consist of the
closed interval from (0, 1, 0) to (0, —1, 0), the closed interval from (an,
1/2, 0) to (an, 1, 0) for each positive integer n, and the closed interval
from (bn, —1/2, 0) to (bn, —1, 0) for each positive integer n.

II* Cross-sections of decompositions* The following question
naturally arises: How are the embeddings of a cross-section R and
P(H) related when E3/G is homeomorphic to E3Ί We will give some
partial results to this question.

THEOREM 1. Let G be an upper semi-continuous decomposition of E3

into points and straight line intervals pointing in only a countable
number of directions whose lengths are bounded away from zero such
that P{H) is a compact ^-dimensional set. If there exists a cross-
section C of G then C is tame.

Proof. In the special case where the elements of H point in only
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one direction, we can easily show the tameness by a modification of
the proof of Theorem 2 of [7].

Suppose that H = (J~=i Hn where the elements of Hn are all
parallel and if hx e Ht and h2 e Hό where j Φ i then hλ is not parallel
to h2. Let Cn be the set of all points ceC such that ceh for some
heHn. Let Gn be the upper semi-continuous decomposition of E*
whose only nondegenerate elements are the elements of Hn and let
Pn be the natural map. Then E3/Gn is homeomorphic to Ez and
Pn(Hn) is tame in E3/Gn. So by the special case Cn is tame and by
Corollary 2 to Theorem 3 of [7], C is tame.

The following two lemmas will be stated without proof. Their
proofs are similar to that of Lemma A of [7] and use standard techni-
ques. Lemma B is similar to Theorem 2.3 of [3].

LEMMA A. Let G be an upper semi-continuous decomposition of
E3 such that P(H) is a compact ^-dimensional set. Let he H and
suppose that there exist 2-spheres St and S2 such that h c Int Sλ Π Int S2

and (Sλ U S2) Π (U H) = 0 . Then there exists a 2-spheres S such that
hc Int S, S U Int S c S, U Int S19 and if keH then & c Int S iff ka
Int S, Π Int S2.

LEMMA B. Let Sl9 S2, * ,Sn be a finite collection of 2-sphere
whose interiors cover \j H and which miss (j H. Then there exists a
finite collection of 2-spheres Ru R2, , Rn such that Rt = Sl9 (R{ U
Int Ri) Π (Rj U Int Rό) = 0 ifίφj, and h c Int Riiffhd Int St and h Π
Int Sj = 0 for j < i.

THEOREM 2. Let C be a wild Cantor set in E3 with the property
that if x and y are distinct points of C, then there exist disjoint 2-
spheres S1 and S2 such that (S1 U S2) Π C = 0 , x e Int Sλ Π Ext S2 and
y e Int S2 Π Ext S^ Then there exists a monotone decomposition G of
E3 such that C is a cross-section for G, E3/G is homeomorphic to E3

and P(S) is tame.

Proof. Let C be a wild Cantor set in E3 with the required
property. For each xeC we choose a 2-sphere S^x) as follows:

Let Nι(x) be a 2-sphere of radius 1/2, centered at x. Let C^x) =
{teC\tg Int N^x)}. Then for each y e C^x) choose disjoint 2-spheres
S(y) and R(y) such that (S(y) U R{y)) Π C = 0 , x e Int S(y) f) Ext R(y),
and y e Int R(y) Π Ext S(y). Now choose a set yu y2, , yn of elements
of d(α?) such that {Int R(yx), Int R(y2)9 , Int R(yn)} covers C^x). We
now apply Lemma A to get a 2-sphere Sx{x) such that xe Int S^x),
S^x) n C - 0 , Cx{x) c Ext Sx{x) and Sλ(x) c Sfa) U Int Sfa) for i = 1,
2, , n. Therefore, there exists a finite collection of points xl9 x2, ,
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xmω of C such that C c Int S^x,) (J Int S^) U U Int S^x^). We
replace £ζ = {S^xJ, S^fe), , Sx (α?m(1))} by another collection of 2-
spheres ^ 7 = {^n, Γ12, •••, TW)} satisfying the conclusions of Lemma
B with respect to S^.

We will now proceed to construct a sequence ^ 7 , ^ 7 , ^ 7 , of
finite covers of C. Suppose that ^ I _ i has been chosen. For each
point xeC we choose a 2-sphere iVfc(α;) centered at x with radius l/2fc.
We then proceed to choose J7~k by the same process as in the cons-
truction of ^ 7 . We note that if ylf y2 e Tkj Π C then d(yl9 y2) < 1/2*"1

since T i& Π C c JV̂ α?) for some α e C. Now for xeC we define /^ to
be Π?=i (TH U Int TH) where Tki is the 2-sphere in Tk whose interior
contains x. Let G be the decomposition of E3 whose only nonde-
generate elements are the nondegenerate elements of {hx \ x e C). It
follows easily that G is upper semi-continuous and it is clear that C is
a cross-section for G. A theorem of Harrold [5] shows that E3/G is

homeomorphic to E* and from the criteria of [3], we see that P(H)
is tame.

The Cantor set constructed in [2] is an example of a wild Cantor
set satisfying the hypothesis of Theorem 2.

We can note that if C is a wild Cantor set in E3 which does not
satisfy the condition of Theorem 2, also, if C is a cross-section of a
decomposition G whose decomposition space is homeomorphic to E3

then P(HG) is a wild Cantor set which does not satisfy the condition
of Theorem 2.
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