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HD-MINIMAL BUT NO HD-MINIMAL

Young K. KwoN

Let U, (resp. U :%) be the class of Riemannian n-
manifolds (» = 2) on which there exist £ non-proportional HD-

minimal (resp. Iﬂ)-minimal) functions. The purpose of the
present paper is to construct a Riemannian n-manifold n = 3

which carries a unique (up to constant factors) HD-minimal
function but no HD-minimal functions. Thus the inclusion
relation

Uip < U;’;f)
is strict for » = 3. By welding % copies of this Riemannian
n-manifold, it is then established that the inclusion relation

k
Ukpc Ugy,

is strict for all k1 =1 and » = 3. The problem still remains
open for n = 2.

1. An HD-function (harmonic and Dirichlet-finite) @ on a
Riemannian n-manifold M is called HD-minimal on M if w is posi-
tive on M and every HD-function @ with 0 < @’ < ® reduces to a
constant multiple of w on M. Let {w,} be a sequence of positive
HD-functions on M. If the sequence {w,} decreases on M, the limit
function is harmonic on M by Harnack’s inequality. Such a harmonic
function is called an HD-function on M, and I/{\ﬁ-minimality can be
defined as in the case of HD-minimal functions.

These functions were introduced by Constantinescu and Cornea
[1] and systematically studied by Nakai [6]. In particular the
following characterization by Nakai is important (loc. cit., ef. also
Kwon-Sario [5]):

(i) A Riemannian n-manifold M carries an HD-minimal func-
tion w if and only if the Royden harmonic boundary 4, of M contains
a point p, isolated in 4,. In this case @w(p) >0 and ® =0 on
AM - {p} . ~

(ii) A Riemannian n-manifold M carries an HD-minimal func-
tion @ if and only if the Royden harmonic boundary 4, of M has s
point p of positive harmonic measure. These are corresponded such
that lim sup,.y,.., ®(®) > 0 and lim sup,.y,,., ®(@) = 0 for almost all
q¢€ 4, — {p} with respect to a harmonic measure on 4,.

Since an isolated point of 4, has a positive harmonic measure,
the above characterization yields the inclusion

k
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for all k£ = 1.
For the notation and terminology we refer the reader to the
monograph by Sario-Nakai [7].

2. Let = 3. Denote by M, the punctured Euclidean #n-space
R" — 0 with the Riemannian metric tensor

gii(@) = |e[*A + |2 "0,  1=ih,j=n

where |z | = [, ()] for © = (2!, 27, +« -, &™) € M,.
For each pair (m, 1) of positive integers m, [, set

H, = {8zeM,||z|=1 and a* = 0},

where k=2""2l—1) — 1, and ax = (ax', a? -, ax™) for x = (', 2% « -,
x")e M, and real a. Let M; be the slit manifold obtained from M,
by deleting all the closed hemispheres H,,. Take a sequence {M;())}>
of copies of M,. For each fixed m =1 and subsequently for fixed
j=0and 1<1¢<2™Y connect M(i + 2™j), crosswise along all the
hemispheres H,;(I = 1), with M/(z + 2™ + 2™j).

The resulting Riemannian n-manifold N is an infinitely sheeted
covering manifold of M,. Let m: N — M, be the natural projection.

The following result is essential to our problem (Kwon [4]):

THEOREM 1. A fumnction u(x) is harmonic on N if and only if
[1 + |z P "lw(®) s 4d,-harmonic (harmonic with respect to the

Euclidean structure) on N. In particular every bounded harmonic
function wu(x) on the submanifold

G = {xeN]}n(m)l>%}

is constant om 7w (x) for each xe M, whenever it continuously
vanishes on

_ N L
oG = {xem | 2(2) | = 3} .
3. For each integer ! = 1, consider the subset of N:

N= U [y 6]
where

Ge = {we MiGi) | |7@)| > <} -

It is obvious that
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¢=UG

and the Riemannian x-manifold G is an infinitely sheeted covering
manifold of the annulus {xe M,[1/3 < |z| < }.
We are now ready to state our main result:

THEOREM 2. The Riemannian n-manifold G (n = 3) carries a
unique (up to constant factors) HD-minimal function but no HD-
minimal functions. Thus the inclusion

1
is strict for Riemannian manifolds of dim = 3.

The proof will be given in 4 — 5.

4, For m =1 construct u,c HBD(N,), the class of bounded
HD-functions on N,, such that 0u%,<1 on N, u,=0 on
M@ — G, and w,, = 1 on Uz, [M]() — G;]. Clearly w,, = 4,
on N and therefore the sequence {u,} converges to an HD-function
% on G, uniformly on compact subsets of G. It is easy to see that
0<u<1lon Gand u|N— G=0. Since

() = | () [~ — 8"
T r@) 1

on G by maximum principle and Theorem 1, it follows that 0 <u <1
on G. Note that lim,, ). U.(®) = 1.

We claim that the function u is HD-minimal on G. In fact,
let ve I?f)(G) be such that 0 < v < % on G. In view of

0 < limsup v(®) < lim sup u(x) = 0
ze G,y 2E€G,T—Y
for all yed@, v can be continuously extended to N by setting v =0
on N— G. By Theorem 1 v attains the same value at all the
points in N which lie over the same point in M,. Thus we may
assume that w, v are bounded harmonic functions on 7(G) =
{z(x) | ® € G} such that w, v = 0 on w(0G).
Again by Theorem 1, (1 + |z |*™wv(x) is 4,-harmonic on 7(G). In
view of the fact that 4,-harmonicity is invariant by the Kelvin
transformation, the function

1 - — x
1 32(11, 2) n—2’
3%—21‘,”]%—2( + lxl )’I)< 9lxl2>

is 4,-harmonic on M, for 0 < |2 | < 1/3 and continuously vanishes for
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|2| = 1/8. Therefore, there exists a constant a = 0 such that

[ = _ 3" %q
o(ots) =
\9| T iz 1+ 32(n—2)l x !n——Z

on M, for 0 < |z| < 1/8 (cf., e.g. Helms [3, p. 81]). Thus

lim v(

-0

v . > = 3""a
9w

exists and v = 3" %au on @, as desired.

5. Suppose that there exists another I?l/)-minimal function
on G. Choose a point qe€ 4, ,, the Royden harmonic boundary of G,
such that ¢ has a positive harmonic measure and
lim sup w(x) = 0
Tel,x—q’
for almost all ¢’ e 4,,, — {¢} relative to a harmonic measure for G.
Let j: G* — G C N* be the subjective continuous mapping such that
J |G is the identity mapping and f(z) = f(j(x)) for all xe G*, the
Royden compactification of G, and fe M(N), the Royden algebra of
N. Here G is the closure of G in N*. Note that a Borel set Ec oG
has a positive harmonic measure if and only if j7*(#) has a positive
harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore, j(q) ¢ 0G
and 0G C j(4y.e)-
For each m = 1, u,(q9) = u,(j(@)) = 1 since j(g9) € G — 0G. Thus
it is not difficult to see that 0 < w < Bu, on G, where
B = limsup w(x) > 0.
zEG,t—q
Therefore, 0 < w < fu on G and w is a constant multiple of v on G

as in 4.
It remains to show that v is not HD-minimal on G. If it were,

# would have a finite Dirichlet integral. But # has a continuous
extension to G U0G with 4 |0G =0. Then by Theorem 1 % must
attain the same value at all the points in G which lie over the same
point in 7(G), a contradiction.

This completes the proof of Theorem 2.

6. Let G’ be the Riemannian n-manifold obtained from G by
deleting two disjoint closed subsets B, C, where

_ / _ 9 :
B—«IxeMO(l)|]x[—2—43ndx go},

C= {xeMg(l)Hxl :';711 and xlgO}.
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For each k=2 take k copies G, G, -+, G, of G’, and identify,
crosswise, B; with C;,, for 1 <7 < m. Here we set C,,, = C,. Then
it is easy to see that the resulting Riemannian n-manifold G* has

exactly k& non-proportional I?f)—minimal functions but no HD-minimal
functions.

COROLLARY. For all k= 1 the strict inclusion
Uk, < Uz,
holds for Riemannian manifolds of dim = 3.

7. For the sake of completeness we shall sketch a proof of
Theorem 1. In view of the simple relation

Au = |x In+2(1 + Ix In—Z)—(n+2)/(7L—-2)‘Ae[(l + |7Z'CU |2—n)u] ,

it suffices to show the latter half.
For each integer &k = 0 let U, be a component of the open set

{517 e Ni 93k—1 < |7r(x) ! < 23k+1} ,
and S, a compact subset of U, which lie over the set
{xe M| |x| = 2%}.

Since U, is a magnification of U, and the 4,-harmonicity is invariant
under a magnification, it is not difficult to see that there exists a
constant ¢, 0 < ¢ < 1, such that

lu(@) | < g-sup {|u@) ||z e U}

on S, for any harmonic function # on U, which changes sign on S,.
Note that ¢ is independent of k.

Let w be a harmonic function on G such that |u| <1 and it
continuously vanishes on 0G. For each m =1, denote by =m, the
cover transformation of G which interchanges the sheets of G: the
points in G N M;(t + 2™j) are interchanged with points, with the
same projection, in Mt + 2™ 4+ 2™j) for =0 and 1 <¢ < 2™
Define v, on G by

V(@) = %{u(m) — ()] .

Clearly v, is harmonic on G, |v,| <1, and v, changes sign on S,
k=22l — 1) — 1. Therefore,

max {|v,(@) | |[ze S} = ¢
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for all I = 1. By induction on [, we derive that |v,| < ¢ on S,,
where k' = 2" — 1. Letting [ — -, we conclude that v, =0 on G,
as desired.
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