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ROUND AND PFISTER FORMS OVER R(?)

J. S. HsiA AND ROBERT P. JOHNSON

An anisotropic quadratic form ¢ is called round if ¢ = a¢
whenever ¢ represents a + 0. All round forms over R(f) are
completely determined. Connections with Pfister’s strongly
multiplicative forms and with the reduced algebraic K-theory
groups k, of Milnor are studied.

The concept of a round form was introduced by Witt (see [5] and
[8]) to give new simple proofs of results of Pfister on the structure
of the Witt ring over fields. In a previous paper [3] we determined
all round forms over a global field. In this paper we completely
determine all round forms over R(¢), the field of rational functions
in one variable over the reals.

We now describe our main results.

Let ¢ be an anisotropic form of dimension > 1 over R(f). Then
¢ is round if and only if ¢ = (n X (1, 1)) B (@, fg) for some f, g<c R(t)
such that f is a product of distinet linear factors and ¢ is a product
of irreducible quadratic factors. Our proof gives a method of com-
puting f and g, which are essentially unique (see 2.5 and 2.6). We
study a generalization of a round form, called a group form, over
R(t) and measure how far group forms are from being round (see [3]
for group forms over global fields).

In the last section we show that a form of dimension 2"(n = 2)
is a Pfister form if and only if it is a round form of determinant
one. Such a form can be written uniquely as 2" x (1, f) for some
f € R[t] which is # a product of distinct monic linear factors. From
this and a theorem of Elman and Lam we see that every element of
k,.R(t) can be written uniquely as I(—1)""'l(—f) with f as above.

1. Preliminaries. We will consider only quadratic forms (often
simply called “forms”) over a field F' of characteristic == 2. We write
¢ @+ for the orthogonal sum and ¢ @+ for the tensor product of
quadratic forms [5, p. 8]. We call ¢ hyperbolic if ¢ = m x (1, —1),
i.e., ¢ is a direct sum of hyperbolic planes.

Define D¢ = {a e F'| ¢ represents a} and G¢ = {a e F'| agp = ¢} where
F = F —{0}. An anisotropic form ¢ is called round if and only if
D¢ = Gg¢ (or equivalently Dg = Gg); an isotropic form is called round
if and only if it is hyperbolic [5, p. 22]. A form ¢ is called a Pfister
form if 9= (1, a) @ «++ @ (1, a.)(a e F).

We will frequently refer to [4] for results on quadratic forms
over F' = R(t). The valuations of F which are trivial on R are of
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three types: if the prime element is ¢ — a(ae R), the valuation is
called real; if the prime element is an irreducible quadratic polynomial
it is called complex; if the prime element is ¢ it is called infinite.
A spot is an equivalence class of valuations [7]. If p is a real or
infinite spot then the completion F', of F' at p is isomorphic to R((r))
(a real series field) where m is a prime element. If p is complex,
F, = C((n)) is called a complex series field. See [4] for results on
quadratic forms over series fields.

If ¢ is a quadratic form over R(¢) and if ae R, we define “¢ at a”
to be the quadratic form over R obtained by replacing ¢ by « in the
matrix of 4. Thus ¢ at a is well-defined for almost all «c R. The
following result is Proposition 2.1 of [4] and is due to Witt.

1.1. A nonsingular quadratic form of dimension = 3 over R(t)
18 1sotropic if and only if for almost all ac R, the form at « is
isotropic over R. Thus if ¢ is a quadratic form of dimension = 2
over R(t) and if 0 == f(t)e R(t), then ¢ represents f(t) = for almost
all xe R, ¢ at a represents f(a).

If we write ¢ = (a,, +++, a,) over a field F' then det ¢ = qa, -+ a,
modulo F?. When F = R(t) we assume det ¢ is written as =+ a pro-
duct of distinct monic irreducible polynomials.

The following result generalizes Proposition 2.2 of [4].

1.2. Let ¢, 4 be quadratic forms over R(t). If ¢ = at «a for
almost all ae R and if det ¢, det +» have the same irreducible quadratic
factors, then ¢ = .

Proof. Clear for dim¢ = 1. We assume this result is true when-
ever dim ¢ < and prove it for dimg¢ =n>1. Let ¢ represent a 0.
Then ¢ @ (—a) is isotropic so by 1.1, 4 P (—a) is isotropic. Thus
represents a. Write ¢ = (o) D4, and + = (a) P+, and apply the
induction hypothesis.

1.38. Let f(t) e R[t] and a € R with f(a) = 0. Then (f(t)) = (f(®)
(one-dimensional quadratic forms) over the completion of R(t) at the
spot with prime element t — «.

Proof. Write f(t) =a,+ a,(t —a) + +++ + a,(t — a)” and apply
the Local Square Theorem [7, 63: 1a], noting f(a) = a,.

2. Round forms over R(t). We will need the following result,
which determines all round forms over a series field.

2.1. Let ¢ be an anisotropic quadratic form over a real or com-
plex series field F.
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(a) If F is complex, then ¢ is round <= ¢ represents 1.

(b) Let F be a real series field. Then F 1is pythagorean and
formally real. So if dimg¢ is odd, ¢ is round =¢ = (1, --., 1). If
dim ¢ = 2m is even then ¢ is round = ¢ = m X (1,1) or m x (1, * 7).

Proof. (a) By [4, 1.2], dim¢ < 2 whenever ¢ is anisotropic
over a complex series field. Now apply [5, 2.4].

(b) It follows easily from the Local Square Theorem [7, 63: 1a]
that F s pythagorean. Now apply [5, 2.4] and [4, 1.6].

Now let F be a tield of characteristic = 2 and let 2 be a set of
discrete or archimedian spots on F (see [7] for terminology). We say
that (F, Q) satisfies the Weak Hasse-Minkowski Theorem if whenever
o and 7 are quadratic forms over F' with o, = 7, for all pe 2, then
o0 = 7 (0, denotes the form ¢ viewed over the completion F, of F
at p).

2.2. Let (F, Q) satisfy the Weak Hasse-Minkowski Theorem. Let
o be awmisotropic over F. Then ¢ is round < for all pe Q,

(1) ¢, is round
or (2) ¢, is isotropic and ¢, (the anisotropic part of ¢,) is round
and universal.

Proof. (=): Assume ¢ is round. Let pe Q2. We first assume
¢, is anisotropic and show ¢, is round. Let be D(¢,). Approximate
b by aeD¢. By the Local Square Theorem, we can obtain ae bF’;.
Thus ¢ = ap = ¢, = bg, s0 ¢, is round.

Now assume ¢, is isotropic and not hyperbolic. Write ¢, = ¢, P H
with H hyperbolic. We will show ¢, = bg/, for all be F, and so 2)
holds. Now ¢, represents b so we find that ¢, = bg, by the argument
of the preceding paragraph. Thus ¢, = bg¢,.

(=): Let aeDé. Applying (1) or (2), we have ¢, = ag, for all
pe 2. By the Weak Hasse-Minkowski Theorem, ¢ = ag, so ¢ is round.

ExaMPLES 2.3. The Weak Hasse-Minkowski Theorem holds in the
following cases:

(1) Let F = K(t) where K is an arbitrary field of characteristic
# 2 and let 2 be the set of all spots on F' that are trivial on K.
Using [6, Theorem 5.3] one can show that (F, 2) satisfies the Weak
Hasse-Minkowski Theorem.

(2) Let F be a global field and let 2 be the set of all non-
trivial spots on F. We have the following precise results in this
case [3, 2.4]: let ¢ be an anisotropic form over F' and let dim ¢ > 2.
Then ¢ is round if and only if: (1) dim¢ = 0 mod 4, (2) at all real
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spots (if there are any) ¢ is hyperbolic or positive definite, and (3)

det ¢ = 1. We note that the Strong Hasse-Minkowski Theorem holds

for (F, 2), i.e., if a form ¢ is isotropic for all pe 2 then ¢ is isotropic.
(3) Cassels, Ellison, and Pfister (J. Number Theory, 3 (1971),

p. 147) have recently shown that the Strong Hasse-Minkowski Theorem

fails for F = K(t) where K = R(2) (#,t independent indeterminants

over R) though the weak theorem holds as we have mentioned in (1).
The next two results determine all round forms over R(t).

2.4. There is no odd-dimensional round form over R(t) except
the form ¢ = (1).

Proof. Note that R({) is non-pythogorean since t* + 1 is not
a square. Now apply [5, 2.4].

THEOREM 2.5. Let ¢ be an anisotropic form of dimension 2m
over R(t). Then the following are equivalent:

(1) ¢ is round.

(2) ¢o=((m—1) x 1, [1)PQ,fg) for some f, g R[t] such that
f is a product of distinct linear factors and f or —f is monic, and
g 18 a product of momnic irreducible quadratic factors (we allow f =1
or —1 and allow g = 1).

(8) For almost all acR, ¢ at a s hyperbolic or positive
definite.

(4) ¢, 1s round for all real or infinite spots p on R(t).

Proof. (1) = (4) follows from 2.2 since there is no universal
anisotropic form over a real series field. We will show (2) = (4) =
8) = (2). (2) = (4) follows from 2.1 and 1.3.

(4) = (3): Assume (4). Write ¢ = (fi(t), «+ +, fen(t)) with the f;(f) €
R[t]. Let aec R such that fi(a) = 0 for all i. Let p be the real spot
with prime element ¢t — «. By 1.3, ¢, = (fi(®), ++-, fin(@). By 2.1,
dp,=mx (1,1) or mx (1, —1). So by [4, 1.6], ¢ at « is =m x (1, 1)
or m X (1, —1).

(8) = (2): Write ¢ = (f,, ++~, fum) With the f;e R[¢]. Let S be the
set of all ae R such that f;(a) = 0 for some 7. Write S = {a,, ++-, a;}
with o, <a, < +++ <a,. If I is any of the intervals (— o, a,),
(a;, @), +++, (@, ) then ¢ at « is hyperbolic for all e I or is positive
definite for all @«e I. The idea now is to merge together adjacent
intervals if ¢ at a looks the same in the adjacent intervals. If ¢ at
« is positive definite (respectively, hyperbolic) for almost all ae R
then we let f = 1 (respectively, —1). Otherwise, there is an ordered
subset {b, < b, < --+ < b;} of S such that if J is any of the intervals
(— oo, by), (b, by), +++, (b;, ) then ¢ at a is hyperbolic for almost all
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a e J or is positive definite for almost all @ €J, and such that whenever
¢ is hyperbolic in one of these intervals then it is positive definite in
the adjacent intervals. Now let f=(t — b) -+ (t — b;) if ¢ at « is
positive definite for almost all « > b;, and let f= —(t —b,) -+« (¢ — b;)
otherwise. Let g be the product of all the (monic) irreducible quad-
ratic factors of det ¢. Then by 1.2, ¢ = (m — 1) X (1, 1)) B 1, f9).

REMARK 2.6. (1). Part (2) of the above theorem gives us a
canonical form for an anisotropic round form of even dimension over
R(t), i.e., f and g are uniquely determined. This fact follows easily
from 1.2. The proof of (8) = (2) gives us a constructive method of
finding f and g (provided we know the decomposition of the f; into irre-
ducible factors).

(2) Part (3) of the theorem provides us with the easiest way
to check whether a given anisotropic form ¢ of even dimension over
R(t) is round. If ¢ = (f, -+, fow) Wwith the fie R(t) and if {a, <
a, < +++ < a;} is the ordered set of all real roots of the fi’s, we
need only compute ¢ at a for one value of « in each of the intervals
(——oo, al)’ (aly a2)7 M) (a’ky oo),

As in [3], we call a quadratic form ¢ over a field F a group
form if D¢ is a subgroup of F. Every round form is clearly a group
form. We now briefly investigate group forms over R(¢).

2.7. Let F be a field with a set Q of discrete or archimedean
spots on F. Assume (F, Q) satisfies the Strong Hasse-Minkowski
Theorem (local isotropy implies isotropy). Then a quadratic form ¢
over F' is a group form <= ¢, is a group form for all pe Q.

Proof. (=): See the proof of 3.2 of [3]. (=): Let a, be Dg.
Then abe Dg, for all pe Q2 so abe Dg.

By [4, 2.3] and [7, 42:11], R(t) satisfies the Strong Hasse-
Minkowski Theorem with respect to the set of all real and complex
spots. Thus by 2.7 and 1.1, we have:

2.8. Let ¢ be a quadratic form over R(t). Then ¢ is a group
form <= ¢ represents 1. If dim¢ = 2 then ¢ is a group form < ¢
at « represents 1 for almost all ae R.

If ¢ is an anisotropic group form over any field then ¢ is round <
the factor group D¢/G¢é = 1. Thus this factor group measures how
far an anisotropic group form is from being round. We now investi-
gate this factor group.

2.9. Let ¢ be a group form over R(t) and assume ¢ s not round.
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Then Dg|Ge is infinite unless ¢ = (m x (1, —1)) DA, —g) wherem =1
and g is a product of momnic irreducible quadratic factors. In this
latter case Dg/Go = 1.

Proof. (1) We first assume dimg¢ is odd and > 1. Clearly
G¢ = F°. If f is any monic irreducible quadratic polynomial over R,
then fe D¢ by 1.1. Thus D¢/Gs is infinite.

(2) Now assume dim¢ is even and ¢ is anisotropic. Then
there is an interval I = (a, b) such that if ael, then ¢ at «a is =
(m x (1)) B (n x (—1)) for fixed positive integers m, n with m %= n
(to see this, apply (3) of 2.5 and (2) of 2.6). Let a <2 <y < b and
define f,,(t) = (t — 2)(t — y) € R[t]. Then f,,(@) >0 if a¢ I so f,,(t) e
D¢ by 1.1. Let y <y, <b, so that Seu (t) € D¢ also. Let h(t) = fo,(t) ~
Sou,(t)-  Then h(t) € Gg by 1.2 since h(a) < 0 for y < @ < y,. It is now
clear that if we choose an infinite sequence of numbers y <y, <
¥, < +++ < b then we obtain an infinite number of distinct cosets of
G¢ in Dg.

(8) Let dim ¢ be even and let ¢ be isotropic (but not hyperbolic),
and assume that ¢ at « is non-hyperbolic for infinitely many ac R.
Then there is an open interval I such that for all el ¢ at a is
isotropic but not hyperbolic. Thus by the proof of (2) above, Dg/Gé
is infinite.

(4) Finally, assume dim ¢ is even and ¢ is isotropic (but not
hyperbolic), and assume that ¢ at a is hyperbolic for almost all ac R.
Then by 1.2, ¢ = (m x (1, —1)) (1, —g) where g is a product of
monic irreducible quadratic factors. By 1.1, D¢ = F (where F = R(t).
Now G¢ = G(1, —g) = F by 1.2 so Dg/Gg = 1.

3. Pfister forms and k, over R(f). We first consider Pfister
forms over R(t).

3.1. Let ¢ be a quadratic form over R(t) with dim¢ = 2™(n = 2).
Then the following are equivalent:

(1) ¢ s a Pfister form.

(2) ¢=2""x%x (,[f) for some fe R[t] which is = a product of
distinet monic linear factors (we allow f = =+1).

(3) ¢ ts round and det ¢ = 1.

Proof. (1) = (3) is clear. (8)=(2) by 2.5 (if ¢ is isotropic, let
f=-1. (2)=(1) is clear.

In (2), f is uniquely determined by ¢ (see 2.6).
We now consider, for the field F = R(t), the algebraic K-groups
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k.F = K, F/2K,F of Milnor [6]. k, is generated additively by the ele-
ments I(c,)- - -l(c,)(c;€ F). We have [(—a)-+l(—a,)=U—b)++-l(—b,)=
L@@ ae)=1Lb)R -+ ®(Q,b,) [2, Main theorem 3.2].

Let n > 1. By 3.1 and [2, 3.2], every element of k,F can be
written uniquely in the form I(—1)""'l(—f) for some fe F whichis + a
product of distinct monic linear factors or is = 1. Thus k,F is
isomorphic to the subgroup of F/F* consisting of the square classes of
products of linear polynomials (note that I(—1)" 7 l(—f) +U(—1)* " l(—g)=
I(—=1)"'l(fg)). Furthermore, there is a natural isomorphism s, of k,
onto I*/I"** where I is the ideal of the even-dimensional forms of the
Witt ring W(F) [2, 6.1].

REMARK 3.2. By [6, 2.3], for n = 1 and for any field E there
is an isomorphism K,FE(t) = K, E P (@ K,_.E[t]/(7)) where the second
direct sum extends over all nonzero prime ideals () of E[t]. Now
let £ = R and let » = 2. The above isomorphism induces an isomor-
phism k,R(t) = k,R D (B k,_,R[t]/(7x)) where the second direct sum
extends over all the polynomials w = ¢ — a, € R (note that k,_, of
the complex numbers is 0). Now k,R and k,_,R are groups of order
2 by [6, 1.6] or [2, 8.2]. Thus there is an isomorphism k,R(t) =
Z, D (@BrZ:). This isomorphism is given explicitly as follows:
U=1)»(—f)(where f is & a product of distinet monic linear factors)
maps to a@P (@ a.)(ac R) where ¢ is 0 if and only if f is monic, and
a, is 1 if and only if ¢t — « divides f.

REMARK 3.3. Let us briefly see what happens when we let our
field F be a global field and let » = 3. Then we have:

(1) Every Pfister form of dimension 2" over F' is isometric to
a form 2" x (1, a) for some ae F. Also 2" x (1, @) = 2" x (1, b) =
abe F? for all real spots p on F. These facts follow easily from the
Weak Hasse-Minkowski Theorem.

(2) By (1) and by [2, Main Theorem 3.2], we see that every
element of k,F can be written as I(—1)*"'l(—a) for some ac F, and
U=1)""U(—a) = (—1)""(—b) = abe F? for all p real. Thus kF =
@ k,F, where the direct sum extends over all real spots p (note that
k., F,= Z,). This fact was first proved by Tate (see appendix of [6]).
Elman and Lam [1] gave a simple proof (using the Strong Hasse-
Minkowski Theorem) which does not depend on [2].

(8) There are round forms ¢ over F of dimension 2" (with
det ¢ = 1) which are not Pfister forms [3, 2.6].

Added in proof. In connection with Example 2.3(3), we point
out here that, without using elliptic curves theory, examples of
rational function fields which do not satisfy the Strong Hasse-Min-
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kowski Theorem can be found in the article: “On the Hasse Principle
for Quadratic Forms”, P.A.M.S., 39 (1973).

The results in §2 have been generalized recently by R. Elman
in his article: “Rund forms over real algebraic function fields in one
variable” (to appear). Instead of using the local-global method as we
have done, Elman’s approach is entirely different; he uses the alge-
braic theory of Pfister forms.
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