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COUNTEREXAMPLES IN THE BIHARMONIC
CLASSIFICATION OF RIEMANNIAN

2-MANIFOLDS

LEO SARIO AND CECILIA WANG

Crucial counterexamples in the biharmonic classification
theory of Riemannian 2-manifolds have been deduced from cer-
tain general principles. The present note is methodological in
nature: the aim is to supplement the theory by showing that
very simple counterexamples can be directly constructed.

Whereas earlier work has been devoted to the class H2 of
nonharmonic biharmonic functions, here the class W of all
biharmonic functions is discussed. This is of interest, since the
classes OWB and OWD of Riemannian manifolds without (noncon-
stant) bounded or Dirichlet finite biharmonic functions are
strictly contained in the corresponding classes OH2B and OHiD,
as is seen by endowing the unit disk with a suitable conformal
metric. Moreover, for W-functions the biharmonic equation
need not be reduced to the Poisson equation but can be dealt
with directly.

These aspects, however, are not essential. Our sole aim is to pro-
duce simple counterexamples. In particular, the function log log(e* + α)
on a horizontal strip (Theorem 4) shows immediately that there are
parabolic 2-manifolds which carry H2D-ίunctions. We also include
some examples of 3-manifolds.

1* It is well known that there are no bounded harmonic func-
tions on a parabolic manifold. In contrast, we shall show:

THEOREM 1. There exist parabolic manifolds which carry non-
constant WB-functions.

Proof. Consider in the complex (x, 2/)-plane the strip {— oo < x <
co 0 ^ y ^ 2π) with the lines y = 0 and y = 2π identified by vertical
translation so as to obtain a doubly connected Riemann surface S.
The choice of the strip instead of the punctured plane is not essential,
but it will slightly simplify the computation. Clearly SeOG, e.g., by
virtue of the modular test (cf. [7]). On the Riemannian manifold
Sχ = (S, X(z) I dz I) with λ = eβ, the function u = cos 2y is bounded
biharmonic. In fact, Aλu = e~2xA cos 2y — — 4 cos2ye H(S), where Δλ

and A are the Laplace-Beltrami operators with respect to the metric
X(z)\dz\ and the Euclidean metric, and H stands for the class of
harmonic functions. Thus SxeOG — OWB.
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2* THEOREM 2. There exist hyperbolic manifolds which do not
carry nonconstant WB-functions.

Proof. We shall show that the Euclidean 3-space E3 is such a
manifold. Clearly E3 ί OG. In order to prove that E3gOWB, let
ue WB(EZ). We recall that every biharmonic function in Ez can be
written as h + r2k with h, k e H(ES) (cf. [1]), and any harmonic h can
be expanded in orthogonal spherical harmonics Snm(θ, ψ),

(cf. [1] and [2]). Thus u has the expansion

« = Σ ί * * Σ (α»« + 5K»r2)SniK .
n = 0 m = 1

We multiply both sides by Snm sin 0, integrate with respect to θ and
α/r, and conclude by the boundedness of u that anm = 0 for π > 0, all
m; and 6wm = 0 for all (n, m). Thus u = aQ.

3* THEOREM 3. There exist parabolic manifolds which do not
carry nonconstant WB-functions.

Proof. Let Sλ be the strip Sλ with a "cap" at x = — oo, that is,
we view Sλ as a simply connected parabolic manifold Sλ punctured at
a point corresponding to x = — oo. We assume that there is a
ue WB(Sλ). Its restriction to Sλ has the expansion

% = 2 enx[(an + bne
2x) cos T̂T/ + (̂ ^ + dne

Zx) sin ?̂ ?/] .

We multiply both sides by cos ny + sin %τ/, integrate with respect to
y, and conclude by the boundedness of u that bn = dn = 0 for all
n ^ 0. Hence u = Σ«=oe%a;(G^ cos w# + cn sin π^/). This is the restric-
tion to Sλ of a harmonic function on S\ and we have % = α0, hence
the theorem.

That there exist hyperbolic manifolds which carry nonconstant
WB-ΐunctions is obvious in view of the Euclidean disk.

4* We turn to the class D of functions with finite Dirichlet

integrals D(u) = \ du Λ *du.

THEOREM 4. There exist parabolic manifolds which carry non-
constant WD-functions.

Proof. We shall show that the function u = log log (ex + a) is in



COUNTEREXAMPLES IN THE BIHARMONIC CLASSIFICATION 161

WD on our parabolic strip Sλ with a suitable metric X(z)\dz\. Here
the constant a > 1 is so chosen that a log (1 + a) — 1. The Euclidean
Laplacian

Δ u _ e*[e* -αlog(β* + α)]
(e* + α)2[log (β* + α)]2

is of the same sign as x and has a positive derivative at x = 0. Thus
ΛM/O? is well defined and positive. Let λ2 — z/%/#. On the manifold
Sz = (S, (Ju/x)ll2\ cfe I), we have Aλu = x e H(S), and therefore u e W.
Moreover, D(u) is independent of the metric, and can be taken over S:

D{u) = ( ΆXdxdy = 2π Γ ( £ -)2dx
)s\dχ/ " J—\ (e + α) log (eβ + a) I

J-co (e + α)2[log (e + α)]2 log (e + α) U ^

5* The following trivial necessary condition is a modification of

a test in [3]: If ue WD, then \(u, Δφ)\ ^ KVD{φ) for some con-

stant K independent of φ and for all φeC™. In fact, for φ e Co°° with

supp φ in some regular subregion Ω, 0 = I M Λ *ώ^ = \ du A *dφ —
JdΩ JΩ

S r

uAφdV and | (w, Δφ)\= \ du A *dφ = | J9(^, ^) | ^ τ/D(w) τ/Z)(^) =
Ω JΩ

KVD{φ).
THEOREM 5. There exist hyperbolic manifolds which do not carry

nonconstant WD-functions.

Proof. We shall show that E3 is such a manifold. Since E* g OQ9

we only have to prove that E3 e OWD. Let u e WD(E3). Expand Δu —
h as in No. 2. Suppose anm Φ 0 for some (n, m). Let / be a fixed
Co function on [0, oo) with supp / c ( 0 , 1), and set pt(r) = / ( r — ί),
φt(r, θ, ψ) = pt(r)Snm(θ, ψ). As t -> oo,

f ί + l

I (w, Aφt) \ = \{h, φt) I = const pt(r)rn+2dr = O(Γ+2) ,
J t

r ( γ + ^ ( ^
E*\_\ or / r sm 2 f \ oθ

and τ/5(φj = O(0 We conclude that α%m = 0 for all n :> 0. A for-
tiori z/iύ = 0, and WG HD(E3). Since 2?3e O^D, we have u = const.

6* THEOREM 6. There exist parabolic manifolds which do not
carry nonconstant WD-f unctions.

Proof. Let u be a WD-function on the "capped" strip Sx of No.
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3. The restriction Δu \ Sλ has the expansion Δu = Σ~=o e**(an cos ny +
bn sin ny). Suppose a% + K Φ 0 for some n. Choose the testing func-
tion <pt(x, y) — pt(x)((tosny + sinny), with pt(x) as before. As t —• ©o,
I (μ, Aφt) I = | (Δu, φt) | = O(e{n+m) and VD(φt) = 0(1). Therefore, an =
δ% = 0 for all tt, and w e HD(Sλ). The theorem follows from Sλe0Gc:
0HD.

That there exist hyperbolic manifolds which carry nonconstant
WD-ίunctions is obvious in view of the Euclidean disk.
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