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LIPSCHITZ SPACES

JERRY A. JOHNSON

If (S, d) is a metric space and 0 < a <1, Lip(S, d*) is the
Banach space of real or complex-valued functions f on S such
that || f|| = max (|| f|le || f |laa) <oo, Where || f ||« = sup {| f(s)—
f@)|d~*(s, t):s # t}. The closed subspace of functions f such
that limgg, -0 | F(8) — F(t) | d7%(s, t) = 0 is denoted by lip (S, ).
The main result is that, when inf ., d(s, t) = 0 lip (S, d*) con-
tains a complemented subspace isomorphic with ¢, and Lip (S, d)
contains a subspace isomorphic with l.. From the construc-
tion, it follows that lip (S, d%) is not isomorphic to a dual space
nor is it complemented in Lip (S, d%).

If F is a normed space, E* denotes its dual. ¢, [,, and [, denote
the usual sequence spaces; “isomorphism” means “linear homeomor-
phism”; “projection” means ‘“continuous projection”; and F is a com-
plemented subspace of E if there is a projection of E on F.

In recent years, much work has been done on the Banach space
properties (isomorphic and isometric) of Lipschitz functions. Some
of the main references are [1], [2], [3], [4], [10], [11], and [12]. There
are still many outstanding conjectures concerning these spaces,
some of which seem to be fairly difficult; especially certain questions
about extreme points. The known results along these lines can be
found in [2], [3], [4], [10], and [11].

It is established in [1] that if (S, d) is an infinite compact subset
of Euclidean space, then lip (S, d)(0 < @ < 1) is isomorphkic with ¢,
and Lip (S, d*) is isomorphic with I.. The proof given in [1] is not
evidently adaptable to arbitrary compact metric spaces. Thus, many
of the natural conjectures one might make concerning properties
that Lipschitz spaces may share with these sequence spaces are still
unresolved. Of course the main one is whether lip (S, d*) with 0 <
a <1 and S compact and infinite is isomorphic with ¢,.

It is shown in [1, Remark, p. 319] that for (S, d) compact and
0 <a<l, lip(S,d*) and Lip (S, d*) are isomorphic to subspaces of
¢, and [., respectively. (Although the sketch of the proof given there
is not precisely right, Professor Frampton, in a private communica-
tion, has exhibited & correct one for which we thank him.) It is
well known that an infinite dimensional subspace A of ¢, contains
a subspace B isomorphic to ¢, and that, since A is separable, B is
complemented. In §1 of this paper, we show that lip (S, d%), 0 <
a <1, contains a complemented subspace isomorphic to ¢, when
inf {d(s, t):s # t} = 0 (Theorem 1). It is also shown that lip (S, d)
is separable if and only if (S, d) is precompact (Theorem 2). (Let us
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remark here that if (S, d) is the completion of (S, d) then the restric-
tion map is an isometric isomorphism of Lip (S, d*) onto Lip (S, d*)
which sends lip (S, d%) onto lip (S, d*) (0 < a = 1).)

In addition, we show in Theorem 1 that for any infinite metric
space (S, d) and 0 < a < 1, Lip (S, d*) contains a subspace isomorphic
to [..

In §2, we discuss some open problems concerning the isomorphic
types of the Lipschitz spaces.

In §3, we consider some questions about the extreme points of
the unit ball and dual unit ball of these spaces.

1. In this section we prove our main theorems. We begin by
stating

THEOREM 1. Let (S, d) be a metric space with inf {d(s, t): s=t} =0.
Then Lip (S, d) contains a subspace isomorphic to 1., and lip (S, d%),
0 < a <1, contains a complemented subspace isomorphic to c,.

REMARK 1. Theorem 1 has been announced in [5] along with
Corollaries 1 and 2 below. It is pointed out in [4, Lemma 2.5] that
if inf {d(s, t): s = t} > 0, then both lip (S, d*) and Lip (S, d*) are iso-
morphic with the bounded functions on S.

The next two corollaries are immediate. We assume (S, d) and
a are as in Theorem 1.

CoRrROLLARY 1. lip (S, d%) is not isomorphic with a dual space.

Proof. It has been observed in [7, p. 16] by Lindenstrauss (and
is not hard to see) that if a Banach space is complemented in some
dual space, it is complemented in its second dual. Hence, if lip (S, d%)
is isomorphic with a dual space, ¢, is complemented in [, --- a con-
tradiction.

COROLLARY 2. lip (S, d*) is mot complemented in Lip (S, d%).

Proof. Let E and E, denote the subspaces isomorphic with I
and ¢, respectively. In the proof of Theorem 1, E and E, are con-
structed so that E, C E. Let P be a projection of lip (S, d*) on E,
and suppose @ is a projection of Lip (S, d%) on lip (S, d*). It is then
easy to see that PQ restricted to E is a projection of E onto K.
This is a contradiction.

REMARK 2. The theorem also implies the author’s result [4,
Theorem 2.6].
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REMARK 8. [. is complemented in any Banach space containing
it. The following notation is used throughout:

(S, d) is a metric space,

B(s, ) = {te S|d(s, t) < 7}
and
B, v) = {te S|d(s, t) < 7 .

If AcS and BcCS, d(4, B) =inf {d(s, t) |sc 4, te B}. d(4, {t}) is
denoted by d(4, t).

In [5], we sketched the proof of Theorem 1 in the case where
S has no nonconstant Cauchy sequences. We present here the proof
where S is assumed to have a limit point. (Recall that completeness
may be assumed without loss of generality.) Since the case a =1
for Lip (S, d*) is similar to the discrete case appearing in [5], we
will omit it.

Proof of the Theorem. We begin by constructing a sequence of
closed balls that will serve as supports for certain functions.

Let s, be a fixed limit point of S. Choose s, € S with 0 < d(s,, ;)
and define r, = (1/2)d(s, s,), B, = B(s,, 7) and p, = d(s,, B). Now,
assume that s; (j = 1) has been chosen such that d(s;, s;) > 0. Set
r; = (1/2)d(s;, s,), B; = B(s;, r;) and p; = d(s,, B;). We first note that

(1) TS P

Proof. Otherwise, there is a point ¢ ¢ B; with d(s,, t) < r;. Hence,
d(sq, 8;) < d(s,, t) + d(t, ;) < 27;, a contradiction.

Now, p; > 0 implies that there is a point s;., with 0 < d(s;4,, s,) <
(1/6)p;. Set 1., = (1/2)d(8541, S0)y Biss = B(Sjs1, 7511), and Djyy = d(Bjyy, o).

We record the following facts concerning our construction which
are needed later.

(2) 0; < —é—pj_l for each j.

Proof. p; < d(s,, s;) < (1/6)p;-;.

) 1 N
(3) B,~cB<so, Epj~1> for each 7.

Proof. Let te B;. Then d(t, s)) < d(t, s;) + d(s;, 80) < 15 + 2r; <
3p; < (1/2)p;— by (1) and (2).

(4) If §>1, d(Bi,Bj)z%pi.
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Proof. If se B, d(s, s) = p;.. If te B, d(t, s)) < (1/2)p;—, < (1/2)p;
by (8) and (2). Hence, d(s, t) = d(s, 8)) — d(s,, t) = (1/2)p..

d(s, B;) < 3p, for each j and each se S,
where B; denotes the complement of B;.

(5)

Proof. Assume se B; since the assertion is otherwise trivial.
Given ¢ > 0, there is tc B; such that d(¢, s,) < ¢ + d(Bj, 8,) = € + ;.
Thus, d(s, B;) < d(s, so) < d(s, 8;) + d(s;, ) + d(t, s) S v;+7r; + e+ p; <
3p; + ¢, and the assertion follows.

If se B, and te B; with j > 4, then

(6) d(s, B) + d(t, B

) o1
iB, By

Proof. By (5) and (4),

d(s, B.) + d(t, B)) < 3p. + 3p; _ 6[1 + Z’_J_:l .
d(B, B)) - (1/2)p, D

Since 7 > 1, p; < (1/6)p;—; =< (1/6)p;. Hence, the assertion follows.

We next proceed to construct the isomorphism. We will assume
in the proof that for each j, d(s, B;)) <1 for all seS and d(s, t) < 1
for all s, te B;. This clearly can be done by taking j large enough
(see (5) and (1)).

First choose a sequence {@;} converging to a such that a < 8; < 1,
rfi~* > 1/2, and df*(s;, B;)) = 1/2 for each j. Now, define f(s) =
d¢i(s, B;) for each j and seS. Then, given a = {a;} € l., define

fo= 3 ai;.

It is easy to see that, since the nonzero functions f; have disjoint
supports B;, the function f, is well-defined and the mapping a —f,
is one-to-one and linear.

Next, let us note that

[FAS—

21+a

for each aecl.. To see this, observe that for each j,

£ e = 18D = Fals) | [y 1d%4(ss, B)

- da(siy 80) da(s:iy 80)
_ la;|dPi(s;, By) o aslrii o |ay]
@r;)* 2wy T 2t

by our choice of B;. Since j was arbitrary, the desired inequality
follows.
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Now, we will show that a — f, is bounded and that f, e lip (S, d%)
when aee¢,. The boundedness of a —f, will show that f, is in fact
in Lip (S, d%).

In what follows, assume that acl, is fixed with |a;| <1 for
each j and set f = f,. First note that

1flle = sup, || . fullo = sup, |a.| = 1.

We next proceed to show that ||f]|,. < 72" < 7.
Let se S, teS, s=t. If se B, and

then

[f(S) — f@)| — la. | d?is, E@) <la,|d# (s E) <1
d*(s, t) ds, ) T T

while if te B, then

|f(s) —f@) ] 5
-*g,,,(s—,t)*‘élaild (s,0) <1.

Thus, suppose se B, te B; and 5 > 1. Then
() = f@)| - [JG) [+ O] ~ d¥is, B)) + d#i(t, B))
da(s’ t) o da(s’ t) o da(Bi, B.?)

< da(s, E7) + da(ty EJ)
- d*“(B;, B;)

b

since B, 8; > a and d(s, E’,,) <1 for all k. Now, the last quotient
does not exceed

ot

since

p”+q”£<p+q>“
2 - 2
for p =0, ¢ = 0. Hence, from (6) above,

Hfllage S LV T2 K T2 < T,

Thus, {f.|ael.} is isomorphic with ..
Next, let ace, ||a|| <1, and let ¢ >0 be given. We must
find d > 0 so that 0 < d(s, t) < 0 implies that

6 — SO .
d (s, t)
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Since aec, there is a number N such that » = N implies |a,| <
(1/14)e. There exists a &, > 0 such that if ¢ == j and d(B, B;) < &,
then ¢+ = N and 7 = N. This follows from (4) above. Having chosen
N, take 0<d <min{e?=|1<j< N} and 0<d. Then 0 <
d(B;, B;) < 6 still implies 7, 7 = N.

Now, let 0 < d(s, t) < 6. Suppose se B, and t¢ U;.; B;, If i <N,
then

]f(S) - f(t) I < | dFi—e < o~ <
da(s, t) = [a%i (S, t) = —_ €.
If ¢= N, |a;|df(s, t) = |a;| 0% < |a;| < ¢&/l4 <e. Next, suppose
se B, and te B; (j > 1). Then
1fGs) = f@) | ~ lailfils) + [a;] fi?)

d*(s, t) d*(s, t)
]\ dﬁi(s’ Ez) + dﬁj(t’ EJ)
’ (s, 1)

= (al+1la;

—(14+14 ¢

this is because 0 < d(s, t) <0, se B; and te B; imply d(B,, B;) <0
and hence ¢, 5 = N.

The only part now remaining is to show that “c,” is complemented
in lip (S, d*). Our proof will entail the construction of a projection
of Lip (S, d*) onto the image of [, which sends lip (S, d*) onto the
image of ¢,, As mentioned before, since l. is injective, it is already
known that it must be complemented in Lip (S, d%).

Given fe Lip (S, d*), define

Pf= ; @y fu

where

o, — £ = fle)
JXS)

It is easy to see that P is linear and that P?= P. Let [|f]| < 1.
We must first find a constant M such than [a,| < M for each n.
d(s,, s,) = 2r,, for each n, by definition; thus,

d*(s,, 8)) = 22 < 2°d%(s,, B,) < 2" dén(s,, B,
for each u, since B, — a was chosen small enough so that

- 2 1
din=e(s,, B,) = = .
(s B 2 3

Hence,



LIPSCHITZ SPACES 183

|£(s) — f(s0) | < d(s,,, 80) < 2%°dP(s,, B,) = 2, (s,)

for each n. Therefore, |a,| < 2" when ||f]| = 1.
Now, let felip (S, d*). We must show that

A — A _
ey

As above, we have d(s,, s,) < 2'7*f,(s,), so

i 1760 = F6) | gree i 1F6) = FG] _

oo f’n(sn) noee da(sm 80)

This completes the proof of the theorem.
We close this section with Theorem 2 which answers a question
raised in [5].

THEOREM 2. The following are equivalent for 0 < a < 1.
(a) (S, d) 1s precompact.

(b) lip (S, d*)* 1s separable.

(¢) lip(S, d*) is separable.

Proof. In [3] Jenkins showed that if (S, d) is compact, the span
of the point evaluations is dense in lip (S, d*)*. It is clear that
[le, — e |l < d*s, t), where &,(f) = f(s). Thus, {&,|se S}, and hence
lip (S, d)*, is separable. (See [4] for further discussion.) Thus
(a) = ().

(b) = (c) is true for any Banach space, so assume (a) fails. Then
there exists a sequence {s,} €S and a number p > 0 such that
d(s,, s») = p for each n == m. Let {s,} be any subsequence of {s,} and
let A ={s,, }. Now, the function f defined by f(s) = min {d(s, A), 1}
is an element of lip (S, d*), where d(s, A) = inf {d(s, t) | t ¢ A}. However,
J(84,,) = min (p, 1) > 0 for each k, while f(s,,,,,) = 0 for each k. Thus,
lim, f(s,,) = lim, &, (f) does not exist; i.e., {e,} has no weak™-con-
vergent subsequence. This implies that the dual unit ball of lip (S, d%)
is not w*-metrizable, which completes the proof of the proposition
by contradicting (c).

2. An investigation of the Banach space properties of the
Lipschitz spaces is far from complete, and questions concerning those
properties of (S, d*) that give rise to corresponding properties of the
Lipschitz spaces are abundant. The ultimate problem of classifying
these spaces as to isomorphic type does not appear easy. Even the
following two problems are still open:

If (S, d) is compact and infinite, and 0 < a < 1,

(1) is lip (S, d*) isomorphic with ¢, and
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(2) is Lip (S, d®) isomorphic with [.?

By [4, Theorem 4.7] it is known that Lip (S,d*) is isometrically
isomorphic with the bidual of lip (S, d*). Hence, a positive answer
to (1) yields a positive answer to (2). As we mentioned in the
introduction, the best result in this direction appears in [1].

One possible avenue of attack on question (2) may be furnished
by the following proposition, since it seems that the problem of
showing (b) or (¢) may be more tractable than showing (e) directly.
(For the definitions of &4 and &2, spaces see [9]. A Banach space
is injective if it is complemented in every Banach space containing
it.)

PROPOSITION 1. Let (S, d) be compact and infinite. If 0 < a < 1,
the following assertions are equivalent.

(a) Lip (S, d*) is injective.

(b) Lip(S, d) is an <<, space.

(e) lip(S, d%) s an 27, space.

(d) lip(S, d9)* is an & space.

(e) Lip (S, d*) is isomorphic with I..
(a) and (b) are equivalent even if a =1 and (S, d) is arbitrary.

Proof. [9, Remark 2, p. 337] yields (a)«~ (b) immediately since
Lip (S, d) is a dual space for any metric space [4]. (a) = (c) is [9,
Corollary, p. 335]. (d) = (b) is [9, Theorem I (iii), p. 327]. (d) = (e)
is from the observation in [9, Problem 2a, p. 344] and the fact that
lip (S, d*)* is separable (see [3]).

Although questions (1) and (2) are the most important, the fol-
lowing questions are also open in general.

(3) Does Lip (S, d) have the approximation property?

(4) If (S,d)is compact and 0 < a < 1, do lip (S, d*)* and lip (S, d%)
have Schauder bases?

Let us remark that in [3] it was shown that lip(S, d*)* is separable.

Added in proof: By Enflo’s example, there is a (non-compact)
metric space for which Lip(S, d) fails the approximation property.
Using an idea due to Lindenstrauss it can be shown that Lip(S, d)
is not injective if (S, d) is the Hilbert cube.

3. In addition to the questions in § 2 concerning the isomorphism
types of the Lipschitz spaces, there are some interesting problems
dealing with the extreme points of their unit balls and dual unit
balls.

We begin by stating a theorem due to Lindenstrauss and Phelps
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[8, Theorem 3.1]:

(I) If E is a normed space whose dual unit ball has countably
many extreme points, then E™* is separable and E contains no infinite
dimensional reflexive subspaces.

Quite recently William Johnson and Haskell Rosenthal [6] proved:

(II) If E is an infinite dimensional Banach space with E** sepa-
rable, then E and E* have infinite dimensional reflexive subspaces.

(The author would like to thank Professors Johnson and Rosenthal
for access to a preprint of [6].)

In view of (I), (II) now has as an immediate corollary the following:

(III) The unit ball of E**, for any infinite dimensional Banach
space, has uncountably many extreme points.

The aforementioned results have some immediate applications to
Lipschitz spaces. We proceed to mention a few.

Since it is known that Lip (S, d%) is a second dual space for
0 <a<1l (see [3] and [4]), it follows from (III) that its unit ball
has uncountably many extreme points. In view of (I), Theorem 1
and the fact [4, Theorem 4.1] that Lip (S, d) is a dual space for any
metric space, we can state the following:

ProPOSITION 2. If (S, d) ©s amy metric space with S infinite,
then the unit ball of Lip (S, d) has uncountable many extreme points.

Of course, since Lip (S, d) is a dual space, its unit ball is the
w*-closed convex hull of its extreme points. As shown in [4, Corol-
lary 4.4], convergence of bounded nets in the w*-topology coincides
with pointwise convergence in general, and with uniform convergence
when (S, d) is compact. Thus, in both senses, the unit ball of
Lip (S, d) has many extreme points. The problem of characterizing
the extreme points of the unit ball of Lip (S, d) appears to be quite
difficult. The only results we know of this kind are in [10] and [11],
and these are for S = [0, 1]. In both papers a proof is given that
the unit ball of Lip [0, 1] is the norm-closed convex hull of its extreme
points. This problem is also open for more general metric spaces.

Assuming S is compact and countable, (II) yields another previously
unknown result. Again in [3] the extreme points of the unit ball
of Lip (S, d)* are shown to be of two types: one corresponding to
a subset of SU[(S x S) ~ 4] and the other a set @ ‘“arising from”
the Stone-Cech compactification of (S x S) ~ 4 (see [3] or [4]). It
was shown in [4] that, in general, @ must be nonempty. It now
follows from (III) that if S is compact and countably infinite, @ must
be uncountable. The work of Sherbert [12] shows that the functionals
in @ must be point derivations. However, a complete description of
@ still appears difficult. We sum up this result in
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PrOPOSITION 3. If S is compact and countadly infinite, the set
Q of extreme points of the unit ball of Lip (S, d)* that are point
© derivations is umcountable.
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