PACIFIC JOURNAL OF MATHEMATICS
Vol. 51, No 1, 1974

THE NON ABSOLUTE NORLUND SUMMABILITY
OF FOURIER SERIES

G. Das AND R. N. MOHAPATRA

The paper is devoted partly to the study of non-absolute
Norlund summability of Fourier series of ¢(t) under the con-
dition ¢(t)x(t) e AC[0, z] for suitable X(t). The other aspect is
to determine the order of variation of the Harmonic mean of
the Fourier series whenever ¢(t) log k/te BV [0, z].

1. Let L denote the class of all real functions f with period 27
and integrable in the sense of Lebesgue over (—m, 7) and let the
Fourier series of fe L be given by

S\ (@, cosnt + b, sinnt) = 3 A(t) ,

assuming, as we may, the constant term to be zero.

We write
46 = = (fw + ) + flz — 1)
t cos nu
= d

o, ) = | S5t d

Wn, t) = Feosmu g

(1) = | - du
Let {p,} be a sequence of constants such that P, = 3" ,p, %= 0

(n=0) and P, = p_, = 0. For the definition of absolute Norlund or
(N, p) method, see, for example, Pati [9]. When 37, a, is absolutely
(N, p) summable, we shall write, for brevity, > .a,€|N, p|.

We define the sequence of constants {¢,} formally by (G, p,2™)™" =
S sCux™ e, = 0.

2. One of the objects of this paper is to study the non-absolute
(N, p) summability factors of Fourier series and generalize the follow-
ing outstanding result of Pati in Theorems 1-2. Besides, the proof
of Theorems 1-2 are short and simple and avoids the direct technique
of Pati which is somewhat long and complicated.

If we write

G = {f:7e L, o) log ki ACI0, ] and 3, 4,(@)¢ ‘N, L ]‘
n=1 n+ 1)

then Pati’s theorem is in the following form:
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THEOREM P [9]. G is nonempty.

Mohanty and Ray [8] subsequently constructed an example of
feg@G.
We now establish

THEOREM 1. Let X be a real differentiable fumction and {e,} be
a sequence satisfying the following conditions:

(1) #(t)X(¢) e AC[O, 7] ,
<A -
(2) S g letn D) <o
[X(@) |
(3) ) S as tN\,0,
S el [Xmm)| _
(4) 2 n:| P,| X¥x/n) <
w ,
(6) E,,L’ZO(’VLP,,L);
(7) 3 a set E:mE >0 and 3 a constant 7 > 0 such that X(E)™ > 7
Vie E .
Then
(8) S5 A0I=<  vieB),
if and only if
S el o
(®) 2Ry A

Now, if we denote, G* = {f: fe L, conditions (1) through (7) and
(9) hold and >y, ¢,4,.(®)¢ | N, p|} then we establish

THEOREM 2. Let
(10) S1pl=0(PD, Xleal <o
Then G* is monempty.

In §3, we discuss some special cases of interest of Theorem 2.
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Since Theorem 2 implies that the total variation of the (N, p) mean
of the series >\, ¢,4,(x) is unbounded, the natural question now is to
determine the order of the variation. And this is achieved in Theorem
3 in §4.

3. We need the following lemmas for the proof of Theorem 1.

LEMMA 1. (2) Suppose that {f,(x)} ts measurable in (a, b) where
b—a< oo, forn=12 ---. Then a necessary and sufficient condi-
tion that, for every function +(x) integrabdle in the sense of Lebesgue
over (a, b), the functions f,(x)y(x) should be integrable L over (a, b) and

S [ v@rma] = &
18 that
S 1@ =K,

where K ts an absolute constant for almost every x in (a, b).

LEMMA 2. Let condition (3) hold. Then

__ sin nt 1\ | X (z/n)]|
i) = S+ Aar) g

Proof. We have, by integration by parts, and second mean value
theorem,

h(n, t) = <S _ St >cosnu du

zln zln/  X(w)
- j&(?)t + %G/ - S,) ;75283 sin nudy
- ji;(?)t + O(%) %EZ_Z)), (F/ - g:) sin nudu
- o) e

where 7/n S (<7, w/n £ <t
This completes the proof.

Proof of Theorem 1. We have, by integration by parts,
A(w) = % S”qs(t) cos ntdt = F(0)g(n, 7) + S”F'(t)h(n, fdt
0 0

where F(t) = ¢(t)X(t). Hence by condition (2) the statement (8) is
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equivalent to proving that:

(1) b

3 ‘|S:F'(t)h(n,t)dt!=oo (vic E).

Since, by hypothesis (1)
S:[F’(t) dt < oo,

by Lemma 1, the statement (11) is equivalent to proving that I a
set E:mE >0 and

12) 5 II li hm, )| = - (Ve E) .

Whenever conditions (3) and (4) hold, by virtue of Lemma 2, the
statement (12) is easily seen to be equivalent to proving that

_ 1 < ’ Ea l 1 — oo
13) M(t) = 0] Z‘L W P |sin nt| = (Vte E) .
Now, since

|sin nt| = sin’* nt = —é-(l — cos 2nt) ,

we have

1 S eal <NEA
M) = s @ aBT S cosznt).

Using conditions (5) and (6) and using Dedekind’s theorem we observe
that the series

2 l&n

cos 2nt

n| P, |

is convergent for 0 < ¢ < m. Hence’(13) is equivalent to showing that

14 co vVte E).
(14) Y(t) Zz, ! | (vie E)

Now the result follows from (14) by using the conditions (7) and (8).

Proof of Theorem 2. Das [4], in particular, proved that whenever
condition (10) holds, then

| Au@) | < oo

Sed@e| N, p|— 31

P, |
1.

Now the result follows from Theorem
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4. In this section we apply Theorem 2 to some special cases.
If we take X(t) = logk/t, E = {t: kle <t < 7} we get

COROLLARY 1. Let {¢,} satisfy the conditions:
(i) e, = O(log n),
(i) 3 lenl/nlogi(n + 1) < o,
(i) .| 4Ze,|/nlog(n + 1) < o,
(iv) Xile.l/nlog(n + 1) = co.
Then

P(t) log kjt € AC[0, 7] — 3, &,4,(2) ¢ ’N, 1 ] .

n+ 1

Proof. Since the Fourier series of the even periodic function
(log k/|t|)™* is absolutely convergent (see Mohanty [7]) we get that

(15) i

S" cos nu

d oo .
o log k/u u] <

It may be observed that if we takee¢, = 1, p, = 1/(# + 1) in Corollary
1, then we get Theorem P.

COROLLARY 2. Let ®(t)e BV[0, 7] and let conditions (5), (6), and
(9) hold. Then X, ¢,A,(x)¢|N, pl.

Take X(t) =1, E = [0, 7] in Theorem 2. In this case g(n, 7) = 0.

REMARK. Corollary 2 in the case ¢, = 1 gives that

P(t) ¢ BY[0, 7] =»§A,,(x)¢ fN, 1 1 :

n+1
This interalia establishes the result that @(t) e BV|0, ] is not sufficient

to guarantee the absolute convergence of the series >, 4.(x). See
Bosanquet (1) who showed this by taking an example.

5. Throughout this section we consider the case p, = 1/(n + 1)
only. We write ¢, and 7, respectively for the (N, 1/(» + 1)) means
of the sequences {3, ¢,4,(®)} and {ne,A4,(x)}. It follows from a result
of Das [4] Theorem 6 on general infinite series that

. 3 'j;' = 0() if and only if 3|t — t.,] = O(1)..

Proceeding as in the proof of above result we in fact get that for
any positive nondecreasing sequence {\,}
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an 3 |’;"‘ = O(\,) if and only if 3 |t, — tus| = O(\) -

Since Theorem P implies that the variation of {t,} is of unbounded
order, we are immediately confronted with the problem of determin-
ing the order of variation of {¢,}. Because of relation (17) this problem
simplifies to determining the order of >,™, |z, |/n and this is achieved in

THEOREM 3. If ¢(t) = ®(t)log k/fte BV[0, @]. Then

3 |j:' — O(log log m) .

Proof. We have

T

n v "ot vtdt .
ﬂ,'P v=1 SO¢()COS

Since

we get

A%l <2 503
n=1 N T n—1

1

Y lo:tk/t <i Dp_,V COS ut) I

S" logic/t <§, PDn_rV COS vt)]

2 1
+;Mwm;np

= 2 {19(0)(G. + H,) .
T

Since the series Zﬁzlrcos nu/log k/u du is absolutely convergent (see
0

(15)) and therefore it is absolutely (IV, 1/(n + 1)) summable, we get
that G,, = O(1) by using relation (16).

Since Snldg(t)[ < oo, using Lemma 2 with log &/t in place of X(t)
we get thaig

1 u sin vt
. = O(1
()%2_]1 nlog(n +1) i=mn —v+1
oS 1 S 1 = HY 1 HY.

=t plog(n + 1) w=(n —v+ 1)log*(v + 1)
By a result of McFadden ([6], Lemma 5.10) we get

r sinve  _ _
Zi m = O(log 7), (z = [k/t])

and consequently
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QT
ot

g logz & 1
HY = 01 — Ollog 1 .
()logk/tnzz“lnlog(n+1) (log log m)

On change of order of summation in H? and by use of the fact that

m 1 1
=0 ,
; (n — v+ nlog(n + 1) <v+1>

we get

2 __ o 1 _ N .
HY = 0(1)§1m =01) (m— ) ;

and this completes the proof.

REMARKS. In view of Corollary 1, one is naturally led to deter-
mine suitable sequences {¢,} such that g(t)e BVI|0, 7] = 3¢, A,(x) e
IN, 1/(n + 1)|. Butin view of Theorem 3 it is enough to determine
the sequence of factors {e,} such that >.7..¢,4,.@)e|N, 1/(n + 1)|
whenever >, |7, |/n = O(log log m). Such a result is contained in
the more general result of Das [5].

REFERENCES

1. L. S. Bosanquet, The absolute Cesaro summability of a Fourier series, Proc. London
Math. Soc., (2), 41 (1936), 517-528.

2. L. S. Bosanquet and H. Kestleman, The absolute convergence of a series of integrals,
Proc. London Math. Soc., (2), 45 (1939), 88-97.

3. G. Das, On the absolute Norlund summability factors of infinite series, J. London
Math. Soc., 41 (1966), 685-692.

4, , Tauberian theorems for absolute Norlund summability, Proc. London
Math. Soc., (3), 19 (1969), 357-384.

5. , On a theorem of Sunouchi, J. Indian Math. Soc., (to appear).

6. L. McFadden, Absolute Norlund summability, Duke Math. J., 9 (1942), 168-207.

7. R. Mohanty, 4 criterion for the absolute convergence of a Fourier series (2), Proc.
London Math. Soc., 51 (1949), 186-196.

8. R. Mohanty and B. K. Ray, On the non-absolute summability of a Fourier series
by a Norlund method, Proc. Cambridge Phil. Soc., 63 (1967), 407-11.

9. T. Pati, The non-absolute summability of Fourier series by a Norlund method, J.
Indian Math. Soc., 25 (1961), 197-214.

Received October 27, 1972.

SAMBALPUR UNIVERSITY, JYOTI VIHAR, BURLA, ORISSA, INDIA
AND
AMERICAN UNIVERSITY OF BEIRUT, LEBANON








