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NORMED KOTHE SPACES AS INTERMEDIATE
SPACES OF L, AND L.,

STUuART E. MILLS

Let (4, 2, ) be a totally o-finite measure space and let
M(4) be the set of all complex-valued z-measurable functions
on 4. This paper is concerned with determining whether
certain classes of normed Kothe spaces (Banach function spaces)
are intermediate spaces of L;=1L,(¢) and L.=L.(#¢). It is proven
that L, N L., and L, + L., are associate Orlicz spaces and that
for every nontrivial Young’s function ¢ there is an equivalent
Young’s function @; such that the Orlicz space Ly, is an inter-
mediate space of L, and L.. The notion of a universal Kothe
space is presented and it is proven that if 4 is a universal
Kothe space then L, N L,c Ac L, + L.. Furthermore, if 4
is normed, in particular 4 = L,, then there is an equivalent
universally rearrangement invariant norm p, for which L,
is an intermediate space of L, and L..

1. Introduction. Let X, and X, be two Banach spaces contained
in a linear Hausdorff space Y such that the injection of X,(¢ =1,
2) into Y is continuous. Denote the norm of X; by ||-||;. The space
X, N X, is the set of all elements which are in both X, and X,, and
the space X, + X, is the set of all fe Y of the form f = f, + f,
with f,e X, and f,€ X,. The spaces X, N X, and X, + X, are Banach
spaces under the norms || f|lx,nx, = max {{[ £, [| £l and || f]lx+x, =
mE{l| fill, + [ fellet £ = f1 + fo f1€ X3} (see [1, p. 165, Prop. 3.2.1]).
A Banach space X Y satisfying X, N X,c Xc X, + X, and || f|lx,+x,
S Fllx =1 fllxynx, is called an intermediate space of X, and X,.

Much work has been done on intermediate spaces and the related
topic of interpolation theory. (See [1], [2], [12].) In particular, it has
been shown that the Lebesgue spaces L, and the Lorentz spaces L,
([6] and [7]) are intermediate spaces of L, and L_.. In this paper
we investigate what other classes of normed Kothe spaces are inter-
mediate spaces of L, and L,. In §7 we introduce the notion of a
universal Kothe space, which we prove to be equivalent to Luxem-
burg’s notion of a universally rearrangement invariant Kothe space
[9]. We have been able to show that if A is a universal Kothe space,
thenL,NL.cAdc L, + L.. Furthermore, if 4 is normed, in particular
4 = L,, then there is an equivalent norm p, which is universally
rearrangement invariant and L, isan intermediate space of L, and L...

Section 2 contains preliminaries and §3 deals with Orlicz spaces.
We show that L,n L_ and L, + L. are Orlicz spaces and prove that
they are associate Orlicz spaces. It is shown that for any nontrivial
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Young’s function I7, there is an equivalent Young’s function /7, such
that Ly is an intermediate space of L, and L,. This means that
L NL, and L, + L_ are the smallest and the largest Orlicz spaces,
respectively. Section 4 deals with the monotonic rearrangement of
a measurable function. Sections 5 and 6 deal with universal and
universally rearrangement invariant function norms.

2. Preliminaries. Let (4, 3, ) be a o-finite measure space where
4 is a point set, 2 is a o-algebra of measurable sets, and #« is a
totally o-finite measure. Let M* be the set of all nonnegative -
measurable functions on 4. We allow that a function can assume
the value + <« at some or all points z¢€ 4. '

A mapping 0 on M* to the extended reals is called a function
norm if o satisfies the following conditions for all f and ¢ in M*:

(1) o(f)=0 and po(f) =0 if and only if f =0 a.e. (almost
everywhere).

(ii) p(af) = ap(f) for a = 0.

(i) o(f + 9) = p(f) + o(9).

(iv) f(x) = 9(x) a.e. implies o(f) =< p(9).

In addition, we assume that p satisfies:

(v) (Fatou property) fo, f., -+ € M* and f,1 f, (pointwise a.e.)
implies o(f.) 1 o(f0).

(vi) (Saturated) there are no sets E€ X such that o()yz) = < for
every measurable B C E with ¢(B) > 0 (x5 is the characteristic function
for the set B).

The domain of definition of o is extended to M = M(4, ), the
set of all complex-valued, p-measurable functions on 4, by defining
o(f) = p(lf|) for fe M. We denote by L, = L,(4, 2, tt) the set of
all f e M satisfying o(f) < «~. If we assume p-almost equal functions
are identified in the usual way, the spaces L, are complete normed
linear spaces. Such spaces are commonly called normed Kothe spaces
or Banach function spaces. (For theory of normed Kothe spaces
see [10].) Examples of normed Kothe spaces are Orlicz spaces, the
spaces of Ellis and Halperin [3], and the Lorentz spaces [6, 7].

The associate norm o' of any function norm p is defined by

o) = sup{| | Faldre: plo) < 1} .

The associate space, denoted (L,) or L,, is defined to be L, = {f e
M: 0'(f) < «}. The associate norm o’ has the Fatou property (even
if p did not) and hence is a normed Kothe space. (For the details
see [10].)

Let (4, 2, ¢r) be as outlined earlier, and let 4, be a fixed incre-
asing sequence of sets of finite measure whose union is 4. Let 2 =
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{ f: Slf Xs,|dpe < o for all n} be the space of locally integrable func-
tion on 4. For any subset I"c Q we define the Kothe space A(I")
associated with I" to be 4 = A(I') = { fe o g |fglde < e for all ge

4

FE. The associate Kothe space A’ is defined to be A’ = A(A(I')) =

{ge 2 S lgfldp < o forall fe /1(1“)}. Notice that our normed Kothe
4

space L, is also a Kothe space (since o is assumed to saturated).

Endow the space M(4, ;) with the topology of convergence in
measure on sets of finite measure. Then M becomes a linear Hausdorff
space and the injection of L, into M is continuous. Thus we have
established the framework necessary to consider L, as an intermediate
space of L, and L.

Let p(4) < . Then L,=L nL.cL,cL,+ L,=1L, if and
only if o(),) < e and p'(X,) < o. Furthermore, there is an equiv-
alent norm which makes this embedding norm-reducing (Theorem
6.4). For this reason, we will proceed under the assumption that
pu(d) = oo,

Finally, we given a representation of the L, + L_ norm which
we will denote by || -||;-

THEOREM 2.1. Let fe L, + L, and let s = sup {t: ¢{| f] = t} = 1}.
Then

£l =5+ (f1-9du.
{{f1>s}
A proof can be derived from Butzer and Berens [1, pp. 185-186].

3. Orlicz spaces as intermediate spaces. For basic Orlicz space
theory, the reader is referred to [5], [8], or [15].

Let @:[0, <) — [0, ) and ¥:[0, «)— [0, <) be complementary
Young’s functions. Hence @ and ¥ are increasing, absolutely con-
tinuous on the sets where they are finite, and convex. Let

1 Lo = inf {6 > 0: [ 0 £ 102 < 1]

The Orlicz space Ly, is the set of all complex-valued, p-measurable
functions satisfying ||f|lxe < c=. Hence the Orlicz space Ly, is a
normed Kothe space and, as such, it satisfies the properties stated in
§2. In particular we can form the associate norm, denoted || - ||,

1£ 1l = sup {] | £al dezs llglue = 1},

and the associate space L, = {g: ||g]ls < oo}
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We will denote the L, N L. norm by ||-[|.

THEOREM 3.1. (a) If II is a (nontrivial) Young’s function, then
LiNnL.,cLyyg. (b) L N L, is an Orlicz space. In particular there
18 @ Young’s function ¥ such that || f|ln = || f |l for all fe M.

Proof. Consider the Orlicz space given by Z(u) =% for 0 =4 =1
and ¥(u) =  for 1 < u.

From Theorem 3.1 we see that L, N L., is the smallest Orlicz space.

Let ¥ be as defined in the proof of Theorem 3.1. Let @ be the
complementary Young’s function of ¥. One can check that &(uw) =0
for 0<u=<1and &u)=u —1 for 1 < u.

LEMMA 38.2. Ly, (LN L.), and L, + L. all consist of the same
functions.

It is not true that ||-||. = || ||lxe. For example let (4, 3, 1) be
[0, =) with Lebesgue measure and let f = 10y + 5Xuns- Then
1 £ llxe <5 but || f]]+ = 15/2. However, the following is true.

THEOREM 3.3. (a) For any fe L, + L., we have ||f|lo = || f ]+
(b) L, + L. is an Orlicz space; in particular (L, + L., ||-]l+) = (Lo,

11+ llo)-

Proof. Let feL, + L_,and g€ Ly, = L,N L,. Then by Theorem
2.1 we get || £1(@/llgll)dx <11, Hence

171l = sup {{I£@/lall) Idgz: g€ Lue} <1151 -

To show the reverse inequality let fe L, with f =0 and s =
sup {t: #{f =t} = 1}. Furthermore assume that f is a simple function
(i.e., f is a linear combination of characteristic functions of sets of
finite measure). Because f is simple, one can show that p{f > s} <1,
tf =sh =1, and p{f = s} 0. Now define a: 4 —[0, ) by a(z) =
1if xe{f >s},a®@) =0 — p{f>s})/p{f =s} if xe{f =s} and a(z) =
0 otherwise. Then ||a||, =1 and

[lraldp=s+{ (r—adp=17l..

Therefore, || f ||, = g[ faldp < ||fll» by Holders inequality [8, p. 7]
and we have shown the equality for any simple function. Since both
[|+1l+ and || - ||, have the Fatou property, it is an easy matter to extend
the result to an arbitrary fe L, + L.
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Combining Theorem 3.1 and Theorem 3.3, we can say Ly, < (L, N
L) =L, + L_ for any Young’s function II. Hence L, + L. is the
largest Orlicz space and we have

LNnL.,cLy,cL + L.

An element Be Y is called an atom if Ae X and Ac B implies
HA) =0 or u(A) = (B). If we restrict ourselves to the case that
(4, Z, 1) is nonatomic (i.e., has no atoms), then G. G. Gould [4] and
Luxemburg and Zaanen [11] have obtained some results similar to
ours. If g has no atoms, then define the function norm ||-|[|; as

1£1lo = sup {{ 171 dp: ) = 1} .

It was shown by Luxemburg and Zaanen and by Gould that for f e
L+ L, || flls =1lfll+- This is also mentioned by Butzer and Berens
[1, p. 183]. Luxemburg and Zaanen have shown that the associate
space of (L, + L., || - |ls) is the space (L, N L., || - ||n). One might hope
that for each fe L, + L_ there exists a set E, such that #(E;) =1

and ||f]ls = |flle =\ |f]ldp. This is true for simple function, but

it is not true for ggrfleral functions as is shown by the following
example.

Let (4, 2, p) be [0, ) with Lebesgue measure and let f(t) =
A — /8%, Using Theorem 2.1 |[flls = l|f]l- =1. For any EC

[0, =) such that p(E) = 1 it follows that g If1dt <1 =7
E

Let us return to the question of whether all Orlicz spaces are
intermediate spaces of L, and L_. It is easy to see that there are
many spaces whose embeddings are not norm-reducing (e.g. Ly,
where L,, = L, N L.). But we prove the following.

THEOREM 3.4. Ewery Orlicz space Ly; has an equivalent Orlicz
norm ||« ||xn, for which it becomes an imtermediate space of L, and
L..

Proof. Let ¥ and @ denote the Young’s functions for L,N L.,
and L, + L_, respectively. Let I be a nontrivial Young’s function.
It may happen that there exists u,(u < %, < ) such that I7(w) =0
for u < u, and II(u) = - for w > u,. In this case L, = L as sets,
80 ||+ |lxz is equivalent with the L_ norm. In all other cases, there
is a %, >0 such that 0 < I7(u,) < . Now define /7, and II, by
I (w) = II(w,w)/I(u,) for v =0 and I7,(u) = II,(u) for 0 <u <1 and
II(w) = 2I1(u) — 1 for 1 < u. Notice that 7, is continuous, convex,
II(w) = 0 for all u, I7,(0) =0, and I7,(1) = 1. This means that /7, is
continuous, convex, I7,(v) = 0 for all u, 17,(0) = 0 all and 77,(1) = 1.
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Thus I, is a Young’s function [8, p. 38, Remark (1)].

Because 171, is convex and I7,(1) = 1, we have II,(u) = u for u =
1;s0 II,(w) = 2u — 1 for v = 1. Therefore, 20(u) = 2u — 2 < II,(u) <
oo = ¥(u) for v = 1. Now for 0 < u <1, we have

20(u) = 0 < IT,(w) = IT(wug)/IT(us)

wll(uy) _ . _
g—ﬂ(To)_u~§1f(u).

Hence for all w = 0, 20(u) < IT,(u) < ¥(u). This means that
WAl =1 Mle = 201 f Mo = WS Nlaem, S 1l =11 Ml -

Next we will show that Ly; and Ly, consist of the same func-
tions which means that || - ||, and || - ||yz, are equivalent. First notice
that I7,(w) < IT,(w) < 2[1,(u) for all w = 0. From which it follows that
gnq Flk)dp < o if and only ifglL(l FI/k)dp < co. Therefore, f € Lyx
if and only if f e Lyy,.

What about the space L,? Let 2 be the complementary Young’s
function for II. Let 2, be given by Theorem 3.4. Then the associate
norm of || - ||,,, denoted by || ||z, will make L, an intermediate space
of L, and L.

4. Monotonic rearrangement. Let f e M(d, 1), then the mono-
tonic rearrangement of f is the function f*: [0, ) — [0, o] defined by

fH@) = inf{y = 0: | f(@)| > 9} = 1} .

Let f and g belong to M(4, ¢). Then f and g are called equimea-
surable whenever uf| f(x)| > r} = p{|lg(x)] > r} forall» = 0. If f and
g are equimeasurable we write f ~ g. Notice that f ~ g if and only
if f* =g*. Since gf| f(x)|> r} = m{f*() > r} for all r, we will say that
S and f* are equimeasurable even though they are defined on different
measure spaces. Hence f* is the unique, nonnegative, monotonic
nonincreasing, right-continuous funection on [0, ) which is equimea-
surable with f. For properties of the montonic rearrangement refer
to [9] and [14].

The following lemma, whose proof is straightforward, has several
important consequences.

LEMMA 4.1. Let II be any Young’s function and let f be p-
measurable. Then SH(I Fdg :g (f*)dt .
A 0

COROLLARY 4.2. Let IT be a Young’s function and let f and g
belong to M().
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(1) Nz = 11 * Nara
(ii) If f ~ g, then || fllun = |19|lxn-
(iii) If feL,nL, and g ~ f, then ge L,N L..

i) Iflls= ”f*”L1<[o,eo)mL°°<[o,oo))-

Now we are able to quickly prove a result which is stated by
Butzer and Berens [1, p. 184, Prop. 3.3.7].

THEOREM 4.3. Let fe M(), then || £, = glf*(t)dt.

Proof. From Corollary 4.2, we know that || f|l. = [|f*|ls. So we
will show that [|f*|, = g f*@t)dt. Since f* is a monotonic decreasing

function, we know that {f d > s c[0,1) c{f* = s.}. So by Theorem
2.1

£l = s, + Sf*dt — sz*dt - Sf*dt :
0 0 0
This representation of ||-||. allows us to make the following
statement about general Kothe spaces.

COROLLARY 4.4. Let A be a Kothe space and let A* be the set of
all monotonic rearrangements of functions in A and let A’ be the
Kothe dual of A. Then the following are equivalent:

(i) L) L) c4C L) + L(1).

(ii) ({1* U 4™ c L(m) + L_(m).

(iii) Sof*(t)dt < oo for all fe(dU A).

(iv) S:f*(t)dt < oo for all fe (AU A) for any r > 0.

5. Rearrangement invariant KGthe spaces.

DEFINITION 5.1. A Kothe space A is called rearrangement in-
variant if fe€ A and g equimeasurable with f implies ge 4.

(ii) A function norm p is called rearrangement invariant if f €
L, and g equimeasurable with f implies o(f) = po(9).

Notice that if p is a rearrangement invariant function norm, then
L, is a rearrangement invariant Kothe space. However, a normed
Kothe space may be rearrangement invariant but not norm rearrange-
ment invariant. Most of the well-known examples of normed Kothe
spaces are rearrangement invariant. Included are the L, spaces 1=<p=
o), Orlicz spaces and Lorentz spaces L,,. Furthermore, given any
Young’s function I7 and any fe€ M(%) we have that || f|lxr = ||/ |lun
(Corollary 4.2).
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DEFINITION 5.2. A function norm X\ defined on M([0, «), m) is
called universal if for each totally o-finite measure space (4, 3, £) the
functional o defined on M(4, ) by o(f) = Mf*) is a function norm.
In this case we say that o is induced by \.

Not every function norm on M([0, ), m) is universal. Consider
A defined on M(0, =), m) by Mf) = | fAwuwlk + 17wl Let (S,
v) be a totally o-finite measure space with sets A, B, and C such that
v(4) = 1/4, »(B) = 1/2, and v(C) = 8/4. Let f =5y + 3Y, and g =
4%,. Then o(f) + plg) = 25/4 < 17/2 = p(f + g) which means p is
not a function norm. Therefore, A is not universal.

Next we state a theorem that was proven by Silverman [14] and
that has proven very useful for us.

LEmMA 5.3. (Silverman). If (4, ) has no atoms and if f,ge
M(n), thenS Frg*dt = oo if and only ifSAl Frgldp = oo for some f'~ f.
0

The theory of rearrangement invariant function norms has re-
ceived some attention, most notably from Luxemburg [9]. However,
each time the setting has been somewhat more restrictive than ours.
Hence several cases of Lemma 5.4 and Theorem 5.5 are known. See
[9] and [13].

LemmA 5.4. If (4, 3, 1) is nonatomic, then for any f, g€ ML)
we have S fro*dt = supig |fo'ldy: g ~ g} .
0 4

Proof. Because of Lemma 5.3 we can assume that N f*g*dt < oo.

Further, without loss of generality we may assume tha% f, 9 M (p).
Let ¢ = > a;),, be a simple function in M*(¢) where a, > a, >
e > Ay > Apy =0 and A4, = A\(Ur, 4). Let ge M*(#) be arbi-
trary. Then g* e M*([0, <)), so for each pair of integers (m, k) such
that 0 < k& < 2™ let

E.p={tel0, «): k2" < g*(?) = (k + 1)/2")

and
Bysns =10, =)\ (U Bus)
Set

Vo = 3 (625, s -



NORMED KOTHE SPACES AS INTERMEDIATE SPACES OF L, AND L. 165

Then {y,}3-, is as a sequence of simple functions such that v} {g*. Notice
that for a fixed m, the sets {E,, .}iZ; are disjoint sets and each E, ,
is the disjoint union of a finite number of sets {E, .. };. Fag it Hence,
since (4, #) has no atoms, by induction we can define the sets .,
in 4 such that

(1) E,.nE,.,, is empty for k, # k..

(2) #(E’n,k) f m(En,k)'

(3) MA:NE,) =mA N E,.).

(4) )u(Enl,kl N En2,k2) = m(E'nl‘kl n Eﬂz,kg)’

Next we define the simple functions +,: 4 — [0, =) by

T = 3 (6215, ,

Because of the properties of the sets {£,,}, one can show that v,
and +, are equimeasurable for all » and that {J,(x)};-, is an increasing

sequence for each x € 4. Also S P At = g P*yr,dt since H(A; N En ,,) =
m(4} N E,,). Let §(x) = lim,.,4.(®). Then §* = lim, 4} = lim, +
g*, so § and ¢ are equimeasurable and g pgar = S P*g*dt.

Hence the equation is true for arbit;'ary g angl simple functions
®. The extension to arbitrary functions follows easily.

The next result was also stated by Luxemburg [9]. A proof
follows from Lemma 5.4.

THEOREM 5.5. Let (4, 1) be a monatomic measure space and let
o be a function norm defined on M(y).

(i) If o is rearrangement invariant, then o' is rearrangement
mvariant.

(ii) p is rearrangement invariant if and only if

o(f) = sup {g:f *grdt: p'(9) = 1} .

A partition P = {E;}7-, in 4 is defined to a finite disjoint collection
of sets of positive measure. Define the average function of f € M(t)
with respect to P to be

ro=3(\, rameE)) s,
=1 Ej

A function norm o defined on M(y) is said to satisfy Property (J) if
for each partition P and any f e L,, we have o(f;) < o(f). This is
similar to the levelling length property introduced by Ellis and Halperin
[3].

Let R be the set of all nonnegative, monotonic nonincreasing,
right-continuous functions defined on [0, ). Then the monotonic
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rearrangement of any measurable function belonging to M(£) is con-
tained in R. Also g* =g for any g€ R.

The next result is stated in terms of the levelling length property
by Luxemburg ([9, p. 132]).

THEOREM 5.6. Let (4, 1) be non-atomic and let o be a rearrange-
ment invariant function norm on M(t). Then p has property (J).

Proof. Let fe M () and let P = {E;}3., be a partition in 4.
Let b; = ( fap/(E; )) Renumber the E;, if necessary, so that b, =

E;

.>0b,. Set E,., = AUz, E; and b,., = 0; hence

n+1
fi= J; b E}
where

Ef = Wi 99 = | 3 1B, 5 1(E))

with the understanding that y, = 0 and y,,., = .
Define the function %: [0, ) — [0, ) by

M) = 3 (FLe) (¢ = w50 -

The collection P’ = {E}};., is a partition in [0, ), and

g BN C
PTET Tm@Ey T A uE)

For each z such that y;_, < x < y; we know that

(1) . noar=| nawae={ riow

Yj—1
since ~ is nondecreasing on Ej. Let @ = 3\ a0 > @2 >+ >
Om > Oy = 0, Apry = [0, )\U, 4;) be a simple function in R (the set
of monotonic rearrangements). Then by Hardy’s theorem (Luxem-
burg [9, p. 34]) we have

S hodt = S Frodt .
Ej Ej
Forl<j=<mn+1,set®; = Pxz. Since h and @ are nonincreasing

on Ef we know that (hyz)*(t) = h(t + y;-) and @) = P + yi-)-
Hence
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S:(f L) Pidt = S:(th;)*sv;‘dt = SE*_kSDdt :

Because (4, f) is nonatomic, for each 7 =1, 2, ---, n + 1 we can define
a function @;: E; — [0, ) which is equimeasurable with ;. Since @;
is simple, we have seen in the proof of Lemma 5.4 that there exist
functions f;: E; — [0, «)(1 < j < n + 1) such that f; is equimeasurable

with f7s, and | Fidide =\ (F1:)" @)t Let

~ 4’

1 - n+1
P =23Pixe; and fi =23 fils; -
1 =1

3

[
il

Then f, is equimeasurable with f and

|foar =3 Gy orat = 5| rieat = | rivat.

Hence

S:f*@dt = sup {Sdlfﬂ?'ld#: P~ @} > &fl@d” > g:ff,QDdt .

Now let ge R be arbitrary, then there exists a sequence of simple
functions @, such that ¥, 1 g a.e. on [0, ). Then ®, can be chosen
to lie in R for each k. Since p is rearrangement invariant

o(fr) = sup{lim S:fii%dt: ?,19 and p'(9) g1}
= sup {lim | f*p.dt: 2,19 and 0(0) S1} = ().

Therefore p has property (J).
We will give an example at the end of this section to show that
a universal function norm does not necessarily have property (J).
Let I" be any nontrivial subset of R. Define the functional F' =
F. on M(4, ) by F(f) = sup {S f*hdt:he I'}. Then F is a function

norm with the Fatou property.

THEOREM 5.7. (a) If N is a rearrangement function norm on
M([0, <)), then ) is universal.

(b) Let p be a function norm defined on M(4, tt) which s
induced by a universal function norm . Then for each f e M(4, 1)
we have o'(f) = sup {s F*hdt: he R and Mh) < 1} .

(¢) If N is rearramgement invariant on M([0, <)), then N is
universal; moreover, if o(f) = Mf*), then o'(f) = N(f*).

Proof. To prove (a) let I" = {g*: NM(g) < 1}. Then for fe M([O,
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=)) we have Fr(f) = Mf) which means )\ is universal.

In the proof of (b) we may assume that \ is rearrangement
invariant and by Theorem 5.6 )\ has property (J).
It is not hard to see that

0'(f) < sup {S:f*hdt: heR and Mh) < 1} .

Now we will show the reverse inequality for simple functions. Assume
® = 3% a4 is a simple function in M*(4, #) where a, > a,> -+- >
a, > 0 and the A4, are mutually disjoint. Then * = 3%, a,); Where
m(4}) = (4;,). Let ge R and define §: 4 — [0, ) by

n

7= 33({ oatrman i,

=1

Then §* = g, where P is the partition {4}}~,in [0, ). Soif Mg) =
1, by property (J), o(@) = M3*) = Mgr) = Mg) = 1. Also

= [
which means

sup {S:gv*gdt: ge B, M) =1} < sup {gdgvhd#: he M4, ), p(h) = 1}
= 0'(P) .

Therefore, (b) is true for every simple function in M(4, ¢) and the
extension to arbitrary functions follows from the Fatou property.

We conclude this section with the following example. Let .* =
{I}z, be the partition of [0, ) with I, =[¢ — 1,%). For any fe
M*([0, «)) define f_- to be the average function f_, = 3.2, (SI f dt)x,i.
Some of the properties of f_. are '

(i) f-=0if and only if f =0 a.e. on [0, ).

(ii) (afr) =alf).

(i) (f+9-=r-+g..

(iV) If fan! t'hen (fn)foJ-

Define the functional ), on M*([0, «)) by N(f) =||f-|l.. Then
A\, 18 a function norm with the Fatou property.

N 18 universal. Notice that )\, is universal if and only if (\).(f) =
No(f*) is a function norm. For any f e M([0, «)), f* e R which means

thatg srat = | s*dtforalli =1,2, ---. Hence (\)u(f) = SI Frdt =
1 Iy I; M

S F*dt = || fllz,+z.. Therefore, (\,). is a function norm which makes
0

A\, universal.
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X, 18 mot rearrangement invariant and in fact L, is not even
rearrangement invariant. Let f = 3%, 9Xu 4. Then

oo
i=

No(f) = sup {Slifdt} =1

Let {4,}:, be the subsets of [0, «) defined by A, = [z} 1/k, >i-. 1/k).
Define f, = 32,914, Then f and f, are equimeasurable but \(f,) =
. Hence L, is not rearrangement invariant.

N\, does mot have property (J). Let P = {[1/2, 2)} and let ¢ =
6Xuiey + 4An,n-  Then @, = (14/3))12,. and N(Pp) = 14/3. But Mo(P) =
4. Thus M(®P) < M(®p) Which means ), does not have property (J).

\; is mot universal. One can show that \i(g) = >, |l9xs,ll.. Let
S =30y and g = 2Ypp 5. Then (W)u(f) + (Adm(9) =5 <7 = (\)alS +
¢) which means A\, is not universal.

6. Universally rearrangement invariant function norms, If
(4, Z, 1) is a o-finite measure space, then 4 can be written as the
union of a sequence of disjoint sets 4,, e, e, --- belonging to X such
that 4, is atom free and each ¢, is an atom of finite measure. Let
{B;}z. be a collection of disjoint intervals on the positive real axis
such that B; = [a;, b;] and b, — a;, = te)(t = 1,2, --+). Set 4, = 4, U
(U, B) and let (4, 3, #) be the direct sum of the measure space
(4, 2 0 4,, ¢) and the spaces (B;, m)(i =1, 2---). Then (4, 2, ) is
a nonatomic o-finite measure space with p,(4,) = ¢(4) = . Fur-
thermore, M(4, 2, t*) can be identified with a subset of M(4,, 2\, ),
in particular the set of all functions which are constant on the inter-
vals B,. We will say that (4, 2, ) is embedded in (4,, 3., ).

The next definition is due to Luxemburg [9, p. 98].

DeriniTION 6.1. Let (4, 2, ) be embedded in (4,, X, 1t). Define
the transformation T,: M(4,, ) — M(4, 1) by

o) = foan + 3 (SB fatm(B) 1., -

A function norm p on M(4, X, 1) is said to be universally rearrange-
imvariant whenever o(T.f,) = o(f) for all fe M*(4, ¢) and all f,e
M4, 1) satisfying f, ~ f.

Notice that if (4, £) is non-atomic, then p is universally rearrange-
ment invariant if and only if p is rearrangement invariant.

Lemma 6.2 relates the subjects of the previous section to the
concept of universally rearrangement invariant (compare [9, p. 121,
Theorem 12.2]).

LEmMMA 6.2. (a) Let p be a function morm defined on M(4, ).
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Then the following are equivalent:
(i) p is induced by a universal function morm.
(ii) p is universally rearrangement invariant.

i) o(f) = sup{rf*g*dt: p'(g)gl} for all fe M*(4, ).
0
(b) If p is wuniversally rearrangement imvariant, then 0 s
universally rearrangement invariant.

We are now able to show that the function norms induced by a
universal function norm behave very much like the Orlicz norms with
respect to L, N L, and L, + L_,. We will need to use a result of
Silverman [14, p. 230].

THEOREM 6.3. (Silverman). Let (4, ) be nonatomic and let A be
a Kothe space in M(4, ). If A is rearrangement invariant then
LNL.,cAcL,+ L..

THEOREM 6.4. Let 0 be a universally rearrangement invariant
Sunction norm defined on M(4, tt). Then

a LnL,cL,cL, + L,.

(b) there is an equivalent universally rearrangement invariant
Sfunction norm p, such that L, is an intermediate space of L, and L.

Proof. To prove (a) notice that since p is universally rearrange-
ment invariant, there exists a rearrangement invariant function norm
A defined on M([0, «)) such that o(f) = Mf*). N is rearrangement
invariant so by Theorem 6.3 we have LN L_.cL, L,cL, + L..

1

Hence || f ||z = S F*dt < o for all fe(L,UL,). Soby Corollary

4.4 we know L, N Iolm cL,cL, + L.

To prove (b) let I" = {g: p’(9) < 1} be the unit ball for L, and
let B, ={g:]lglln =1} and B, = {g:||g|]+ <1} be the unit balls for
L,n L, and L, + L, respectively. o’ is universally rearrangement
invariant which means L,N L.,c L, c L, + L,. Hence there is a

constant ¢ such that (1/a)0’ <|| - ||, i.e., BaCal'. Nowset I, =al N
B, and define p, by o,(f) = sup {S frg*dt: ge [‘1}. Lemma 6.2 says
0

that o, is universally rearrangement invariant. Because B, cI', C B,
we have |- [l =0, =[]+ ]ln.

Now we will show that o, and p are equivalent. Notice that

ap(f) = sup {S f*g*dt: g e al“}. Hence p, < ap because I, Cal’. Since
0

L, c L, + L., there is a constant b, such that 1/b,||: ||+ =< 0’ (we may

choose b, such that b, > 1/a). So I" < b,B, and thus aI"Cab B,. Let

b =ab, then bI", = b(al’N B,) = bal’ N bB,. Notice that al'C bl

which means that (a/b)l" I, or (a/b)o < p,. Hence p and p, are
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equivalent.

7. Universal and universally rearrangement invariant KOthe
spaces. The concepts of the previous sections of this paper can be
generalized to the general Kothe spaces.

DEFINITION 7.1. A Kothe space A(I") is called universal if
4= {feM(A, 1): S‘”f*g*dt < o forall ge r} .

Hence the functions in a universal Kothe space are characterized
by the action of their monotonic rearrangements as was the case of
a normed Kothe space induced by a universal function norm.

The following concept is due to Luxemburg [9].

DEFINITION 7.2. A Kothe space 4 = A(I") defined on M(4, ) is
said to be wuniversally rearrangement invariant whenever f € 4
implies T.f,€ 4 for all f,e M(4,, t,) satisfying f, ~ f.

Observe that if (4, ¢) is nonatomic then 4 is universally rear-
rangement invariant if and only if 4 is rearrangement invariant.

LevMMmA 7.3. Let A(") be a Kothe space.

(a) 4 is universal if and only if A is universally rearrangement
mvariant.

(b) If A4 is universal, then A’ is also universal.

Proof. Assume A(I") is universal. Let fe 4, f,€(4), and f, ~
7. Then for any ge I" we have SAT# Figdp = Sdflgd# < S Frorde < oo

Therefore, A is universally rearrangement invariant.
Next assume that 4 is universally rearrangement invariant. Let

I = {f: S:f*g*dt < oo for allm= gel't. Easily IT cA. Suppose feA
but f ¢ II. This means that\ f*g¥dt = o for some g,€ I". By Lemma
5.3 we know that there exis%s an f,e€ M(4,) such thatsd1 F19,dp, = o
and f, ~ f. But LTF fi9.00 = Ll 19,4, = oo which contradicts the fact

that 4 is universally rearrangement invariant. Therefore, II = 4 and
A is universal.
The next result is an extension of Theorem 6.3.

THEOREM 7.4. If A(') is a wuniversal Kothe space in M(4, t),
then Lin L.cAc L, + L.

Proof. In [0, ) let I, = [0, n) and let 2([0, «)) be the locally
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integrable functions in M([0, o)) with respect to {[};-,. Let I'* =
{g*:9e '} and I', = {he 20, «)): h*e I'*}. Form the Kothe space
A, = A(") in M([0, «)). If fed, and ge ', then Swfg’dt < oo for all
9’ ~ g,. Hence S:f*g*dt < « and therefore '

4, = { fe 20, «)): S:f*h*dt < e for all hel‘l}

which means /4, is rearrangement invariant. So L,([0, «)) N L.([0,

o)) C 4, < Ly([0, =)) + L.([0, =)). This means that (4* U 4"*) < L,([0,

o)) + L_([0, «)). Hence by Corollary 4.4 LN L.cAcCL, + L..
Returning to normed Kothe spaces we are now able to prove

THEOREM 7.5. If L, is a universal Kothe space, then there is a
norm O, such that o and p, are equivalent and p, s universally
rearrangement invariant.

Proof. Define p, by 0.(f) = sup {Swf*g*dt: 09 = 1}. Easily o,
0
is universally rearrangement invariant. In order to show that p, and
© are equivalent, we will show that L, = L,. It is easy to show
that L, c L,. On the other hand, suppose f € L, and f ¢ L,. There
is a sequence of functions {g,} — L, such that g, =0, 0'(9,) =1, and
S f*o*dt > n®. Let h, =k _ g,/n*and h = X2, g./n’. Then p'(k) =
0
liminf >t_, 1/n%0'(9,) < #*/6. Since all the g, are nonnegative we know
that &, = g, for each k, which means S”f*h*dt > rf'*g,i‘olt>k3 forall k=
© 0 0
1,2, ---. Therefore S f*h*dt = . But as before this contradicts
0
the fact that L, is universal. Therefore, L, = L, and we have com-
pleted the proof.
Theorem 7.5 was also given by Luxemburg [9] for his restricted

case.
Combining Theorem 7.4, Theorem 7.5, and Theorem 6.4(b) we have

THEOREM 7.6. If A is a universal Kothe space, then

LnL,cAcL,+ L,.

Furthermore, if A is normed, i.e., A = L,, then there exists an equi-
valent universally rearrangement invariant norm o, such that || - ||, <

0. = - lln.

We conclude with an example that shows that L,n L. c L, L, +
L., does not necessarily imply that L, is universal. Let (4, £ be
(— o0, =) with Lebesgue measure and let
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o(f) = 1 fhcwnlle + 1| F X000 |1 -
Clearly LN L.c L,c L, + L. but L, is not universal.
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