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EIGENVALUES OF SEMINORMAL
OPERATORS, EXAMPLES

R. W. CAREY AND J. D. PINCUS

If T* is completely hyponormal and [T, T*] has one
dimensional range, a necessary and sufficient condition for a
point z to belong to the point spectrum of T is known. Using
this criterion two examples are constructed.

In the first example the point spectrum of T is empty,
in the second example the spectrum of T is nowhere dense
but almost every point of it is an eigenvalue.

The construction of both examples uses results about
trigonometric series and the so-called principal function map
T<r*g which associates with every bounded operator T with
7T* _ τ*τ = 2/πC trace class a Lebesgue summable function
g{v, μ) defined on σ(T), the spectrum of T.

The present paper will only consider the relatively simple case
where C has one dimensional range.

Let T — U + i V be the Cartesian decomposition of T. With
C = k (x) k it is known [4], [9] that

1 + JL((V - l)-\U - z)-% k)
π%

v — I μ - z

for some function g(v, μ) with

(1) 0 ^ g(v, μ) ^ 1 a.a. v, μ

( 2) \[g(v, μ)dvdμ = 2 trace C .

On the other hand, given any compactly supported measurable
function satisfying (1) there exists an operator ^ which is com-
pletely hyponormal and for which ^~\^~* — >ί?~*^ = 2/ττ^ is of
one dimensional range such that

K
TCI

v - I μ - z.

where ^~ — <%S + iΎ* is the cartesian decomposition of ^ and & —
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For the proof of this result see [5J. We remark that it is also
known that all such ^~'s are unitarily equivalent.

Let σp(T) denote the point spectrum of T. We will use the
following theorem, established in [6].

THEOREM 1. zeσp(T) if and only if with dA denoting area
measure,

».J \ζ-zf

for some ball Bε centered at z9 and g(ζ) = g(v, μ), ζ = μ + iv.

Let χF denote the characteristic function of a set F. We will
say throughout the following paragraphs that a set F which is a
subset of the real line has one dimensional density positive at p if

I %F(t)dt Φ 0 for every δ > 0. A set F which is a subset of the
JP-δ

plane is said to have positive two dimensional density at p provided

S r
I χF(y)dA Φ 0 for every positive δ.

\ΐ~Pl<δ}

EXAMPLE 1. An operator T with Γ* hyponormal, TT* - Tr*27

of one dimensional range, and σp(T) = 0 .
We will exhibit a principal function g(ζ) with

L ~ 9(0
d A = eo f0Γ a i i z .

The construction of Example 1. Let F be a perfect, compact,
nowhere dense set, lying in an interval (α, δ) with a > 0, of positive
Lebesgue measure and positive density at each of its points.

Let

Q = {geίί0: q e Ff 0 ̂  φ £ 2π} .

It follows easily from this definition that Ω is compact, perfect, and
nowhere dense.

LEMMA 1. Ω has positive two dimensional density at each of
its points.

Proof. If the proposition were false, we would have

\χΰ(ζ)dA = 0,
ζ-z\<εJ
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with χΩ the characteristic function of Ω, for some z in Ω and some
positive ε.

But

Jl^Ke
\

\ζ-z\<e)

Let Ύj = ρeiθ, t h e n

( \xrXv + z)dA = Γd0 [χo(peiβ + φd/o - 0 .
Jl>?l<εJ JO JO

Thus,

\ Xoipe™ + z)ρdρ = 0 a.a. θ ,
Jo

and thus

άpe™ + z)dρ = 0 a.a. θ .

Also setting φ = 0 — π, we have

Γ d^ Cz^'^"^ + φd/o - 0
J-7Γ JO

and hence

[XΩ(peiiθ~π) + z)dρ = 0 a.a. θ
o

Thus, for almost all θ, both of the sets: {p: p e [0, ε] and ρeiθ +
ze Ω}, {p: pe [0, ε] and ρei{θ~π) + zeΩ] have zero one dimensional
measure.

We will show that this contradicts the fact that F has positive
density at r = \z\.

The set of all p in (0, ε) with peiθ in Ω — z coincides with the
set of all p m (0, ε) for which p e eiθ(Ω — z).

Let Λa) = {q: q > 0 and e~iθ{qeiψ — z) is real for some φ).
A point q is in Λa) if and only if q sin (φ — θ) — r sin (α: — #) = 0

for some φ.
We may suppose that 0 < | sin {a — θ) \ < 1.
We consider two cases:

Case 1.

cos (a - 0) > 0 .

For |tf — r | sufficiently small, there exists an angle φ(q) such that
cos (<ρ(q) - 0) > 0 and sin (φ(q) — θ) = r/q sin (a — θ). Let
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F0(q) = Re {eiθ[qe-^{q) - reia]}

= (q2 - r2 sin2 (a - θ))ιμ + r cos (a - θ) .

Note that FQ(r) = 0 and F0(q) is a strictly monotone increasing
function of q for q larger than r.

Thus, for q in a right hand neighborhood of r the values of
FQ(q) range through some interval (0, δ).

This shows that ί7 has zero right hand density at r.
To discuss the left hand density of F at r, we consider the

angle θ — π.
Note that cos (a — θ + π) < 0, and

Fπ(g) = Re (e-^-^qe-w - reia]) = -F0(q) .

Thus, for q less than r and | q — r | sufficiently small the range of
^(g) lies in (0, δ).

Thus JP7 has zero left hand density at r, and hence F has zero
density at r. This is a contradiction.

Case 2.

cos (α - θ) < 0 .

For \q — r\ sufficiently small there exists an angle φ(q) such that
cos (φ(q) - θ) < 0 and sin (φ(q) - θ) = r/q sin (a - θ). With F0(q) as
before we have

F0(q) — — v V — r 2 sin2 (a — θ) — r cos (a — θ) .

Note that i ^ ) = 0 and F0(q) is strictly increasing. Thus, for q < r
and r — q sufficiently small the values of F0(q) belong to (0, δ).

This shows that F has zero left hand density at r. Again,

Fz(q) = v V - r2 sin2 (a - θ) + r cos (α - θ)

and i^r(r) = 0. Since Fπ(q) is now increasing in q there is an interval
(r, r + α) on which Fπ(q) ranges through (0, <5). Thus, F has zero
right hand density at r; hence, F has zero density at r which is a
contradiction. The proof of the proposition is now complete.

So far F has been any perfect compact nowhere dense set in
(α, δ) with positive Lebesgue measure and positive density at each
of its points.

Now we make use of a construction of N. N. Luzin [11] to
choose the F more carefully.

Luzin has provided us with an example of a measurable set E
contained in an interval {a, b) with a > 0 such that with δ any
positive number
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XEJP + t) - χε(p - t) dt =
t

for almost all p in (a, 6), where χE is the characteristic function of
E. Let the set of such p be called S.

Choose, for the remainder of this paper, FaSf)E. Note that

\XE(P + t)~ χE(p - t)I ^ (1 - χE(p + *)) + (1 - χ*(p - t)).

Hence,

t
i - χ*(P - t) d t

Since Fc E, 1 - χE(ί9 ± ί) ^ 1 - XF(P ± t). Thus,

Γ i - Uv + t) dt + [ i - Uv - t) dt
Jo t Jo έ

for all p e F, and hence for all real p.
We now define g(ζ) = χώ(ζ), the characteristic function of Ω.
This function will be our choice of principal function.
By the result in [5] referred to above, there exists a completely

nonnormal seminormal operator T with one dimensional self-com-
mutator and principal function g(ζ).

It is this operator T, for which we will later exhibit a concrete
representation, which we claim has no point spectrum.

To show this it suffices by Theorem 1 to prove that

9(0 d A =

for all zeΩ.
We proceed with this demonstration.
There exist numbers rx and r2 such that 0 < r1 < r < r2, and a

positive number b such that

if-.κ.

=ί: - ZAP)} (p r (1 - P/r)dθ ]dp

\ J » 1 + (p/rf 2ρ/r cos (0 α)
(p

r\l - pz/r*) \ J«-» 1 + (p/rf - 2ρ/r cos (0 - α)

- r2lp2) V J«-» 1 + (r/p)2 - 2r/^ cos {θ - a)
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Since

p[a+b α - ^ 2 ) dθ
r )a-h 1 + (p/rY - 2p/r cos (θ - a)+ (p/r)2 - 2ρ/r cos (θ - a)

and

- r2/p2)dθS a+b

r/pf ~ 2r/ρ cos (θ - a)

are continuous functions of p on (rl9 r) and (r, r2) respectively; and
since, on these intervals, these functions do not vanish we can con-
clude that the integrals are bounded below by positive constants cγ

and c2.
Thus,

if-.κ.J j C — «I2 ~ in (r - p)(r + p)

+

dpf
J

(ρ-r)(p + r)
/* Cr 1 v (n\ /» f r 2 1 Ύ (ri\

^_£i_l J. XΛPLdp + _^__\ _± lήELdp .
2r J* i r — p 2r2 jr p — r

However, we have already seen that

— — — — — — — — — — — Qίt/ ~|~ 1 Cl'ί' — ^<^

0 ί JO t

for all real p.
Hence,

ί

for all ίJGfl.
For the purpose of gaining additional insight into the structure

of T we will exhibit a concrete representation for T which is different
from the singular integral representation furnished in [5].

To this end we will construct a new operator &~ defined on a
doubly infinite direct sum space, having the form of a bilateral
shift with operator weights, and which has #(ζ) as its principal
function.

It will then follow that T and ^" are unitarily equivalent.
Consider the polar decomposition of T, T= WQ. Now 0$σ(T)

because, by a theorem of [10], the essential support of the principal
function is σ(T). Thus, W is unitary.

Let D Ξ= Ϊ T * - T*T, and let D = 1/πd® d. Then WQ2W* -
Q2 = D, and WQ2 = (Q2 + D)W.
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For \Z\Φ 1, ImI Φ 0, we can form the so-called polar determin-
ing function of T:

φ(l, z) = l+—(W(W- z)-\Q2 - l)'% d) .

By known results [4], there exists a function ^(λ, τ) such that

A fundamental identity [6] asserts that

gp(X\ τ) = flf(λr)

for

ζ = λτ, λ > 0 and | r | = 1 .

Furthermore,

φ(l,0)=

where

ζ(λ) = J L . \2π

gp(χ, eiθ)dθ = J
2π Jo 2TΓ Jo

A well-known theorem asserts that there exists a positive meas-
ure dv(X) such that

λ - i i 7Γ J λ - ί

Furthermore, since ζ(λ) is a characteristic function, dv( ) is a purely
singular measure [1], [3].

Let ^ T = L\dv), and set

Let 2^" be the bilateral shift of multiplicity equal to dimension
(i.e., infinity).
Define F on £{f by setting

= ί/(ί) , f(t)eL\dv).

Let χ(£) = 1 a.a. t in support of dv, and define

C = —% (x) χ as an operator on L\dv)
71
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and set 9f = . • 0 0 0 0 φ C φ 0 φ 0 0 on X With T on
defined a s Γ = © F + C φ V + C φ F φ F φ F φ we have

But, let us define

Then

Φ(l, z) = exp j - 1 - ( ί - — ^ τ )

 N dx dτ\

for some summable function ^(λ, τ) with 0 ^ ^(λ, τ) ̂  1.
Furthermore,

λ - I

Now

thus, since ζ(λ) is the characteristic function of F2 — {λ2, λe F}, we
can conclude that <p(τ/~λΓ, eiθ) — ζ(λ) a.a. 6>.

But the same reasoning applied to the equation

tells us that ζ(λ) = gp(\ eiθ) a.a. θ.
Hence ^(λ, eiθ) = ^(λ, eίί?), and thus ^ " Ξ WTγμ is unitarily

equivalent to T.
We remark that representations of this type play an important

role in the study of intertwining contractions. See the forthcoming
study in [8]. As our only use of this representation here we men-
tion that it is now quite easy to exhibit proper invariant subspaces
for T (hence T*). For instance, if ^~ = {Δn}z=-ι is an increasing
family of Borel sets in (— oof co) for which E(An) Φ 1 for some n

(here F + D = \ XdEλ is the spectral resolution for V + D on the

space L\dv)) and Sίfn — E{Δn)£έf, then the closed subspace

is different from {0} and 3ίΓ and invariant for
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EXAMPLE II. In contrast to the previous example we next ex-
hibit a seminormal operator T with σ(T) nowhere dense such that
Area (σ( T)/σp( T)) = 0. In order to accomplish this it suffices to con-
struct a set K having positive planar density at each of its points
such that the integral

is finite for almost all z in K. To construct such a if we rely on
a subtle result of G. P. Tolstov in a version due to N. Bary (see
page 466 of [2]), which we now state:

LEMMA 2. Let f be any measurable function definable in some
interval 0 ^ h ^ h0, f positive, monotonic, limA_>0 f(h) = 0. Let [a, b]
be any interval. If 0 < μ < 6 — a, then there exists a perfect, no-
where dense set F, with m(F) = μ, such that for m-almost all x e F,
there exists a positive number δx such that

m[R\Ff](x, x + h)]

for 0 < \h

For our purposes let f(h) = h1+a where a is chosen to be positive.
Let F be a set with the properties stated in the above lemma cor-
responding to h1+a. By removing the set G of points x in F where
F has zero density we obtain a closed set F/G, having positive density
at each of its points and satisfying the conditions of lemma two.
Since for the present purpose we need only the fact that such a set
exists, we shall assume from this point on that G is empty. Set
K = {x + iy: x e F and 2 ^ y ^ 3}. Since F has positive linear density
at each of its points it follows easily that K is compact, nowhere
dense and has positive planar density for all zeK. Now, with g( )
equal to the characteristic function of K, let T denote the corre-
sponding seminormal operator [5]. It remains to show that the
integral in (3) is finite for almost all z in K. Let Ω denote the
subset of F for which the relation (4) is valid. Since m(F\Ω) = 0,
clearly Area (K\{x + iy: x e Ω}) — 0. We shall now show that the
integral in (3) is finite whenever z = x + iy, x e Ω and 2 ^ y ^ 3.
To do this, it suffices to show that there exists a positive number
δ for which the integral

-dadb
x-*)v-ι (a - xf + (y - b)2
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is finite. Let δ = 3X be chosen as in the lemma for f(h) = h1+a.
With h = a — x, k = b — y, the integral becomes

x + ί(k + y))

-* 1 +

* 2π

Now, this last integral is finite if and only if the series

w l - xA* + h) dh + p l - rr(« + *) dh\
|fe| J \h\

is convergent. But

[n+ί 1 _ y (r _l_ lj\

Sin \ h I

m(R\FΓ\ (x ~ Sin, x - δ/n + 1))

(x — δ/n, x))

Similarly, we can show that

d h ^ 2

+i \h\ ~ V n

Σ«=i lM1+βf < °° since α > 0; therefore, the integral is finite
and x + iy is an eigenvalue for T.

REMARK. The operators considered above have the property
that their spectrum is nowhere dense, and therefore coincides with
the essential spectrum. In particular, these operators are quasitri-
angular in contrast to such operators as the unilateral shift. On
the other hand, it is possible simply by choosing the principal func-
tion #(•) bounded away from 1, to obtain operators T with the
unit disc for its spectrum yet T has no eigenvalues.
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