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A GENERALIZATION OF (-1,1) RINGS

ERWIN KLEINFELD

A ring is defined to be a division ring in case the equa-
tions ax = b, and ya = b, have unique solutions for x and y
whenever a Φ 0. It is shown that division rings of charac-
teristic Φ 2, 3 which satisfy the identities (i) (wx, y, z) +
(w, x, (y, z)) = w(x, y, z) + (w, y, z)x, (ii) (x, y, z) + (y, z, x) +
{z, x, y) = 0, and (iii) ({x, y), y, y) = 0, are associative.

Main section* We consider rings R of characteristic different
from 2 and 3 which satisfy the identities

(1) (wx, y, z) + (w, x, (y, z)) = w(x, y, z) + (w, y, z)x ,

(2) (x, y, z) + (y, z, x) + (z, x, y) = 0 ,

(3) ((x, y\ y,y) = 0 ,

where (a, b, c) — (ab)c — a(bc), and (a, b) — ab — ba. The first of these
identities holds in right alternative rings and has been investigated
in combination with others [5, 6]. In an arbitrary ring it can be
verified that ((a?, y), z) + ((y9 z), x) + ((z, x), y) = (x, y, z) + (y, z, x) +
(z, x, y) - (x, z, y) — (z, y, x) — (y, x, z). If the ring is third-power
associative, then (x, y, z) + (y, z, x) + (z, x, y) + (x, z, y) + (z, y, x) +
(y,%,z) = 0, so that ((x,y)9z) + ((y,z),x) + ((z,x),y) = 2(x,yfz) +
2(2/, z, x) + 2(z, x, y). We have shown that in a third-power associa-
tive ring of characteristic Φ 2, identity (2) is equivalent to Lie-
admissibility. Next we will show that a ring which satisfies (1) and
(2) is Jordan-admissible if and only if it satisfies (3). Suppose A is
a ring of characteristic Φ 2 which satisfies (1) and (2) and which is
Jordan-admissible. That means that A under a new product xy + yx
must satisfy the Jordan identity, so that (xy + yx)x2 + x\xy + yx) —
x(x2y + yx2) — (x2y + yx2)x = 0, which implies that — (x2, y, x) +

(Xf Vy #2) — (Vf χ2> χ) + (Vt x, %2) + (xf %
2> y) — (%\ %, y) = 0. Since we

have (yx, x, x) — (y, x2, x) + (y, x, x2) = (y, x, x)x, in every ring, while (1)
implies (yx, x, x) = (y, x, x)x, we see that (y, x2, x) — (y, x, x2). Also (1)

implies the two identities (x2, y, x) + (x, x, (y, x)) — x(x, y, x) + (x, y9 x)x,
and (x2, xf y) + (x, x, (x, y)) = x(x, x, y) + (x, x, y)x. Adding these and
use of (2) shows that (x2, y, x) + (x2, x, y) — x(x, y, x) + x(x, x, y) +
(x, y, x)x + (x, x, y)x = —x(y, x, x) — (y, x, x)x. In an arbitrary ring
one may verify the identity (xy, x, x) — (x, yx, x) + (x, y, x2) = x(y, x, x) +
(x, y, x)x, while (1) implies that (xy, x, x) = x(y, x, x), so that (x, y, x2) =
(x, yx, x) + (x, y, x)x. Also in an arbitrary ring (x2, x, y) — (x, x2, y) +
(x, x, xy)=x(x, x, y), while (1) implies (α;2, x, y) + (x, x, (x, y)) = x(x, x,y) +
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(x, x, y)x. Subtracting the next to the last from the last equation
it follows that (x, x2, y) = (x, x, yx) + (x, x, y)x. Putting all of these
substitutions in the Jordan-admissible relation, we find that
(y, xy x)x — x(y, x, x), as all other terms cancel. But in that case,
since we have already verified that (xy, x, x) = x(y, x, x), and (yx, x, x) =
(y, x, x)x, we must have ((x, y), x, x) = 0. This is equivalent to iden-
tity (3). Similarly one can work through this argument backwards
to show that (1), (2), and (3) imply Jordan-admissibility. Of course
(3) also holds in every right alternative ring. All three identities
are valid in ( — 1, 1) rings, which have been investigated in detail by
Maneri [7] and Hentzel [1, 2].

Nonassociative division rings are of interest in the study of the
foundation of protective geometry, as they coordinate non-Desarguesian
planes. It is therefore of interest to classify those rings R which
are division rings. Our main result is the following.

THEOREM. All division rings of characteristic different from 2
and 3 which satisfy the identities (l)-(3) are associative.

In order to prove this result we derive a number of other iden-
tities, many of which are valid in all R, not necessarily division
rings. We begin with the Teichmiiller identity

(4) (wx, y, z) — (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z ,

which is valid in every ring and which can be established by use of
the definition of the associator (a, b, c). Four applications of the
identity (4) lead to the equations

(wx, y, z) — (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z ,

-{xy, z, w) + (x, yz, w) - (x, y, zw) = —x(y, z, w) - (x, y, z)w ,

(yz, w, x) - (y, zw, x) + (y, z, wx) = y(z, w, x) + (yf z, w)x ,

-(zw, x, y) + (z, wx, y) — (z, w, xy) = -z(w, x, y) - (z, w, x)y ,

so that adding all the left sides we obtain, after repeated applica-
tions of (2), the sum of zero. Adding the right hand sides we obtain
(w, (x, y, z)) - (x, (y, z, w)) + (y, (z, w, x)) - (z, (w, x, y)). Thus

(5) (w, (x, y, z)) - (x, (y, z, w)) + (y, (z, w, x)) - (z9 (w, x, y)) = 0 .

Using (1) twice, we discover that (ab, y, y) + (a, b, (y, y)) — a(b, y, y) +
(a, y, y)b, while (ba, y, y) + (b, a, (y, y)) - b(a, y, y) + ψ, y, y)a. Sub-
tracting the second equation from the first it follows that

( 6) ((a, b), y, y) = (a, (b, y, y)) - (b, (a, y, y)) .

If we let a = x, and b = y, in (6) and use (3), then
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( 7 ) (y, (x, y, y)) = 0 .

A linearization of (7), obtained by replacing y by y + z and y — z,
leads to

( 8 ) (y, (x, y, z)) + (y, (x, z, y)) + (z, (x, y, y)) = 0 .

Substituting w — z = y in (5) it follows that (y, (x, y, y))~-(y, (y9 xf y)) +
(V, (V, y, »)) = 0, since (y, y, y) = 0, follows from (2). But (x, y, y) +
(y, x, y) + (y9 y, x) = 0> as a result of (2). Thus 2(y, (y, x, y)) = 0,
so that

( 9 ) (y, \y9 x, y)) = 0 .

Linearizing (9), it follows that

(10) (z, {y, x, y)) + (y, (z, x, y)) + (y, (y, x, z)) = 0 .

Substituting x = z = y, and w = x, in (1) it follows that

(11) (xy, y, y) = (x, y, y)y .

Expanding ((α, 6, c), y, i/) = ((ab)c, y9y9) - (a(bc), y, y) and applying
(1) repeatedly to break up products, we establish that

(12) ((α, δ, c), 2/, y) = ((α, y, y), δ, c) + (α, (6, y, 2/), c) + (α, δ, (o, 3/, y)) .

Substituting z = x, and w — y, in (5) it follows that 2(y, (x, y, x)) —
2{x, (y, x, y)) — 0. Because the characteristic is different from 2 this
implies

(13) (y, (χf y, x)) = (x, (y, x, y)) .

Substituting z — y, and w = x, in (5), it follows that (x, (x, y, y)) —
(x, (y, y, x)) + (y, (y, x, x)) - (y, (x, x, y)) = 0. However, (y, x, x) may
be replaced by —{x, y, x) — (x, x, y), because of (2) and —(y, y, x) by
{y, x, y) + (x, y, y), so that (x, (x, y, y)) + {x, (y, x, y)) + (a?, (α?, y, y)) -
(y, (x, y, x)) - (y, (x, x, y)) - (y, (x, x, y)) = 0. But the second and
fourth terms cancel as a consequence of (13), so that the remaining
terms become 2(x, (x, y, y)) — 2(y, (x, x, y)) — 0. Since the characteristic
of R is different form 2 this implies (x, (x, y, y)) = (y, (x, x, y)). Sub-
stituting z = x in (8), it follows that (x, (x, y, y)) = —(y, (x, y, x)) —
(y, (x, x9 y)) = (y, (y, x, x)), since (y, x, x) + (x, y, x)(x, x, y) = 0, as a
consequence of (2). We can now combine the previous equations to
obtain (y, (x, x, y)) = (y, (y, x, x)). Since (y, x, x) + (x, y, x) + (x, x, y) =
0, this implies

(14) (y, (χ9 y, x)) = -2(y, (y, x, x)) = -2(y, (x, x, y)) .

Substituting y = a + 6, x = y, and y = a — b, x — y, in (14) it follows
that
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(15) (a, (y, b, y)) + (b, (y, a, y)) = -2(α, (δ, y, y)) - 2(6, (a, y, »)) .

Substituting a? = aψ in (3), we derive ((xy, y\ y, y) = 0. Substituting
x = (a?, #) in (11) it follows that ((a?, 2/)#, #, y) = ((a?, #), y, y)y = 0,
using (3). But (<&]/, 7/) — (x, y)y = (CM/)I/ — 2/(a?2/) - (#τ/)τ/ + (7/̂ )7/ =
(y, x, y). Consequently ((y, a?, 2/), 2/, 1/) = ((xy, y\ y, y) - ((x, y)y, y, y) =
0. We have shown

(16) ((y, x, y), y, y) = 0 .

Substituting x = (z, x, y) + (y, x, z) in (3), we see that (((2, x, y) +
(y, x, z), y), y,y) = 0. But then use of (10) leads to 0 = - ((z, (y, x, y)), y, y) =
(((y, %, v), 2), V, I/)- Substituting a = (y, x, y), b = z, in (6), it follows
that (((yt x, y), z), y, y) = ((y, x, y), (z, y, y)) - (z, ((y, x9 y), y, y)) =
((y, x, y\ («, y, y)), because of (16). Thus ((y, x, y\ (z, y, y)) = 0. Per-
muting x and z in this last inentity we obtain

(17) ((y9 z, y), (a?, y, y)) = 0 .

From (8) it follows that (z, (x, y, y)) = -(y, (x, y, z)) - (y, (x, z, y)) =
((x, y, z) + (a;, z, y), y). Substituting x = (x, y, z) + (x, z, y) in (3), it
follows that (((x, y, z) + (x, z, y\ y\ y, y) = 0. Thus ((z, (xf y, y), y, y)) =
0. Substituting a = z, b = (x, y, y) in (6), it follows that
((z, (x, y, y)), y, y) = (z, ((x, y, y), y, y)) - ((x, y, y), (z, y, y)). Hence
0 = (z, ((x, y, y), y, y)) - ((x, y, y), (z, y, y)), so that

(18) (z, ((x, y, y), y, y)) = ((x, y, y), (z, y, y)) .

Substitute a = c = y, and b = x, in (12). Then ((y, x, y), y9 y) —
(y, (x, y, y), y). As a consequence of (16) it follows that

(19) (yf (x, y, y), y) = 0 .

In (15) substitute a = z, b = (x, y, y). Then (z, (y, (x, y, y), y)) +

((», y, y), (y, *, y)) = ~2(z, ((», y9 y\ y, y)) - 2 ( ( ^ y, y\ (*> y> y))- Be-
cause of (17) and (19) the left side of the last identity is zero. Thus
-2(2, ((a?, y, y), y, y)) -2((x, y, y), (z, y, y)) = 0. Using characteristic
different from 2, this implies

(20) (z, ((x, y, y\ y, y)) + ((xy y, y), (z, y, y)) = 0 .

Comparing identities (18) and (20), and using characteristic different
from 2 once more, we obtain

(21) (z, ((a?, y9 y\ y, y)) - 0 .

Substituting x = xy in (21), we see that (z, ((xy, y, y), y, y)) — 0. But
(11) implies that (xy, y, y) = (x, y, y)y, so that (z, ((x, y, y)y, y, y)) = 0.
Substituting x — (x, y, y) in (11), it follows that ((x, y, y)y, y, y) —
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((%, y, y), y, y)y> so that

(22) (z,((x,VfV),

By expansion (α, be) + (b, ca) + (c, ab) — — (a, b, c) — (6, c, a) — (c, a, b) =
0, as a consequence of (2). Thus we have established

(23) (α, 6c) + (b, ca) + (c, ab) = 0 .

Substituting α = ((#, ?/, ?/), ?/, y), b = y, c = z, in (23), it follows that
(((#, 2/, »)f 2/, y), yz) + (y, z((x, y, y\ y, y)) + (z, ((a?, y, 2/), 2/, y)v) = 0.
Substituting z = yz in (21) implies that the :first term of the last
identity must vanish. The third term vanishes because of (22).
That leaves

(24) (y, z((x, y, y\ y, y)) = 0 .

We are now ready to prove the following.

LEMMA 1. If R is a division ring then for every element y in
R either (y, R) = 0, or (R, y, y) = 0.

Proof. It follows directly from (24) that either ((R, y, y), y, y) = 0,
or (y, R) = 0. Suppose that {{R, yy y), y, y) = 0. Then {{x\ y, y\ y, y) =
0. Substituting w — x, z — y, in (1), it follows that (x2, y, y) =
Φ, yf y) + (x> y, y)%- Thus 0 = (x(x, y, y) + (x, y, y)x, y, y). Substi-
tuting w = (x, y, y), and z = y in (1), it follows that ((#, 2/, 2/)», y, y) =
(», 2/, 2/)2 + ((», 2/, 2/), y, y)x = («, 2/, 2/)2, as a consequence of {{R, y, y),
y, y) = 0. Also substituting w = x, x — (x, y, y), z = y, in (1), it
follows that (x(x, y, y), y, y) = x((x, y, y), y, y) + (x, y, yf = (a?, y, y)\
Thus 0 = (x(x, y, y) + (a;, y, y)x, y, y) = 2(sc, 2/, ]/)2. Then characteristic
different from 2 implies that (a?, y, yf = 0, and since jβ is a division
ring, (a?, y, 2/) = 0. This completes the proof of the lemma.

LEMMA 2. If R is a division ring then for all elements x, y, z
in R we have the identity (z, (a?, yf y)) = 0.

Proof. From (8) it follows that (z, (x, y, y)) = —(y, (x, y, z)) —
(y, (%, z, y)). Then Lemma 1 suffices to show that either the left
hand side or the right hand side vanishes for every fixed y and
arbitrary x and z in R. This completes the proof of the lemma.

LEMMA 3. If R is a division ring then the identity (x, (x, y, y)z)~
0, holds for all elements x, y, z in R.

Proof. Substituting x2 for x in Lemma 2, it follows that
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(z, (x2, y, y)) = 0. But substituting w — x, z = y, in (1), it follows
that (x\ y, y) = x(x, y, y) + (x, y, y)x = 2x(x, y, y), as a result of sub-
stituting z = x in Lemma 2. Thus 0 = (z, 2x(x, y, y)), so that
(z, x(x, y, y)) = 0. Substituting a = z, b = x, c = (x,y, y) in (23), it
follows that (z, x(x, y, y)) + (x, (x, y, y)z) + ((x, y, y\ zx) = 0. We have
just shown that the first term of the last equation is zero. Sub-
stituting zx for z in Lemma 2 implies that the third term is zero
as well. Hence (x, (x, y, y)z) — 0. This completes the proof of the
lemma.

LEMMA 4. // R is a division ring then the identity ((x, z), y, y) =
0, holds for all elements x, y, z in R.

Proof. Substituting a = x, b = z in (6), it follows that ((x, z),
V> v) = (x, (s, V, y)) — (z, (x, yy y)) = 0, as a consequence of Lemma 2.
This completes the proof of the lemma.

THEOREM 1. If R is a division ring then R is either right
alternative or the identity ((α, δ), c) — 0, holds for all elements a, b,
c in R.

Proof. Linearizing the identity of Lemma 3, we obtain (w,
(x, y, y)z) — — (α;, (w, y, y)z). Substituting w = (α, b) in this, it is
clear that {{a, 6), (x, y, y)z) = — (x, ((α, 6), y, y)z) = 0, using Lemma 4
with x — a, z — b. If R is not right alternative, then for every c
in R we can find a 2 such that {x, y, y)z — c. This completes the
proof of the theorem.

We are now ready to prove the main result.

THEOREM 2. If R is a division ring then R must be associative.

Proof. If R is right alternative then it is known [3, 8] that R
must be alternative and then (2) suffices to make R associative.
Then as a result of Theorem 1 we are down to the case where the
identity ((α, 6), c) = 0, holds for all elements α, 6, c in R. In (4)
substitute w = x, and x — y. Then (xy, y, z) — (x, y2, z) + (x, y, yz) =
%{y, y, z) + {%, y9 y)%- Substituting w = x, and x = y, in (1) leads to
(xy, y, z) + (x, y, (y, z)) = x(y, y, z) + (x, y, z)y. Subtract the left hand
sides of the lest two identities to obtain

(25) (x, y2, z) - (x, y, zy) = -(α, y, y)z + (x, y, z)y .

Substituting w = x, x = z, z = y in (4), we find that
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(26) (xz, y, y) - (x, zy, y) + (x, z, y2) = x(z, y, y) + (x, z, y)y .

Define K to be the set of all elements k in R such that (k, R) = 0.
Clearly K is closed under subtraction. Also Lemma 2 implies that
(x, y, y) belongs to K, for all elements x, y in R. Hence (x, y, z) +
(%, z, y) is also an element of K, for all x, y, z in R. Adding the
left hand sides of (25) and (26), it is clear that we get an element
of K. Thus

(27) (x, y, z)y + (x, z, y)y + x(z, y, y) - (x, y, y)z belongs to K.

Substituting w — x, x — z, z — y in (1), it follows that (xz, y, y) =

fffo y, v) + fa y> y)z> s ° that

(28) x(z9 y, y) + (x, y, y)z belongs to K.

Subtracting (28) from (27), it is clear that

(29) (x, y, z)y + (x, zy y)y - 2(x, y, y)z belongs to K .

Because of (11) we have (x, y, y)y = (xy, y, y), so that Lemma 2, with
xy substituted for x, implies

(30) (x, y, y)y belongs to K .

Linearizing (30), we obtain

(31) (x, y, z)y + (x, z, y)y + (x, y, y)z belongs to K .

Comparing (29) and (31), it is clear that 3(x, y, y)z belongs to K, so
that (x, yy y)z must also. Thus (w, (x, y, y)z) — 0, for all w, x, y, z
in R. If R is not right alternative, then clearly R must be com-
mutative. But in that case it is certainly flexible and that was
enough to imply that R is alternative and hence associative [6].
This is a contradiction, so R must have been right alternative and
hence associative to begin with. This completes the proof of the
theorem.

We conclude with a generalization of Theorem 2. Let S be a
division ring of characteristic Φ 2, 3, which satisfies (1), (3) and a
weaker form of identity (2), namely that (2) holds whenever x, y, z
lie in a subring which can be generated by two elements. Now we
are dealing with a set of identities which are valid in every alter-
native ring. From the conclusion of Theorem 2 it follows that every
subring of S generated by two elements is associative, so that S
must in fact be alternative. This yields a worthwhile generalization
of the main result, with little additional effort.
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