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A GENERALIZATION OF (—1,1) RINGS

ErwIiN KLEINFELD

A ring is defined to be a division ring in case the equa-
tions ax = b, and ya = b, have unique solutions for  and ¥
whenever a = 0. It is shown that division rings of charac-
teristic = 2, 3 which satisfy the identities (i) (wz, y, 2) +
(w, 2, (¥, 2)) = w(®, ¥, 2) + (w, ¥, 2)%, (i) (2, ¥, 2) + (¥, 2 2 +
(z,%,y) =0, and (iii) ((z, ), ¥, ¥) = 0, are associative.

Main section. We consider rings R of characteristic different
from 2 and 3 which satisfy the identities

(1) (w2, y, 2) + (w, », (y, 2)) = w(z, ¥, 2) + (w, y, D)z,
(2) @y, 2)+ W22+ @2y =0,
(3) ((x9y),y,y):0’

where (a, b, ¢) = (ab)c — a(be), and (a, b) = ab — ba. The first of these
identities holds in right alternative rings and has been investigated
in combination with others [5, 6]. In an arbitrary ring it can be
verified that ((x, v), 2) + ((y, 2), ) + (7, 2), ¥) = (&, ¥, 2) + (¥, 2, ®) +
(29 — (2 9) — 2, 9,2) — (y, 2, 2). If the ring is third-power
associative, then (z,y, 2) + (¥, 2, 2) + (3, 2, ) + (, 2, ¥) + (2, ¥, ®) +
(y,»,2) =0, so that ((x,¥),2)+ (¥, 2), 2) + (2, @), ¥) = 2(v, 9, 2) +
20y, z, x) + 2(z, ¢, y). We have shown that in a third-power associa-
tive ring of characteristic = 2, identity (2) is equivalent to Lie-
admissibility. Next we will show that a ring which satisfies (1) and
(2) is Jordan-admissible if and only if it satisfies (3). Suppose A is
a ring of characteristic = 2 which satisfies (1) and (2) and which is
Jordan-admissible. That means that A under a new product 2y + y=
must satisfy the Jordan identity, so that (zy + yx)2* + 2*(zy + yzx) —
2(x*y + yo*) — (P*'y + ya®)x = 0, which implies that —(2% v, 2) +
(v, 2% — (y, &% x) + (y, x, 2% + (z, 2%, y) — (2% 2, y) = 0. Since we
have (yz, z, ) — (y, 2%, ©) + (v, x, 2*) = (v, #, 2)z, in every ring, while (1)

implies (yz, x, x) = (y, z, )z, we see that (y, 2% z) = (v, %, ¢*). Also (1)
implies the two identities (2%, v, x) + (z, %, (v, x)) = a(=, ¥, 2) + (2, ¥, ¥)z,
and (2% @, ¥) + (=, 2, (%, ¥)) = 2(, z, ¥) + (@, x, y)r. Adding these and
use of (2) shows that (2% y, @) + (2 @, ¥) = a(z, ¥, ) + a(, ¢, y) +
(x, 9, ) + (x, &, y)r = —2(y, ©, ) — (¥, ¢, ®)z. In an arbitrary ring
one may verify the identity (xy, z, x) — (z, yz, x) + (%, ¥, 2*)=a(y, 2, x)+
(«, ¥, @)z, while (1) implies that (zy, z, 2) = «(y, , ), so that (z, ¥, 2% =
(x, y», ) + (%, y, v)z. Also in an arbitrary ring (2 2, ) — (z, 2%, y) +
(z, z, zy)=2a(x, x, y), while (1) implies (#*, z, ¥)+ (2, , (z, ¥))=2(x, ©, y)+
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(xz, x, y)x. Subtracting the next to the last from the last equation
it follows that (, 2% v) = (v, x, y») + (x, ¢, y)x. Putting all of these
substitutions in the Jordan-admissible relation, we find that
(y, x, v)x = o(y, ©, #), as all other terms cancel. But in that case,
since we have already verified that (zy, 2, v)=2(y, @, ), and (yz, z, ¥) =
(y, ®, ®)x, we must have ((z, ¥), , ) = 0. This is equivalent to iden-
tity (3). Similarly one can work through this argument backwards
to show that (1), (2), and (3) imply Jordan-admissibility. Of course
(8) also holds in every right alternative ring. All three identities
are valid in (—1, 1) rings, which have been investigated in detail by
Maneri [7] and Hentzel [1, 2].

Nonassociative division rings are of interest in the study of the
foundation of projective geometry, as they coordinate non-Desarguesian
planes. It is therefore of interest to classify those rings R which
are division rings. Our main result is the following.

THEOREM. All division rings of characteristic different from 2
and 3 which satisfy the identities (1)-(3) are associative.

In order to prove this result we derive a number of other iden-
tities, many of which are valid in all R, not necessarily division
rings. We begin with the Teichmiiller identity

(4) (wx, vy, 2) — (w, 2y, 2) + (w, 2, y2) = wm, ¥, 2) + (W, &, Y)z ,

which is valid in every ring and which can be established by use of
the definition of the associator (a, b, ¢). Four applications of the
identity (4) lead to the equations

(we, y, 2) — (w, vy, 2) + (w, z, y2) = w(x, y, 2) + (W, T, Y)z ,
—(xy, 2, w) + (v, yz, w) — (2, y, 2w) = —a(y, 2, w) — (3, ¥, 2w,
(yz, w, ®) — (y, 2w, 2) + (y, 2, we) = y(z, w, ¥) + ¥, z, W)z,
— (2w, &, ¥) + (2, wz, y) — (2, w, 2Y) = —2(w, , y) — (2, W, V)Y ,
so that adding all the left sides we obtain, after repeated applica-

tions of (2), the sum of zero. Adding the right hand sides we obtain
(w’ (ZU, Y, z)) - (9}7 (y’ z, w)) + (yy (Z, w, CU)) - (Z, (’Z/U, Z, ?/))- Thus

(5) (107 (ﬂ?, Y, z)) - (3), (yy z, ’1,0)) + (y» (zy w, .’L’)) - (z) (wy @, y)) =0.

Using (1) twice, we discover that (ab, ¥, ¥) + (a, b, (¥, ¥)) = a(b, v, ¥) +
(a, y, )b, while (ba, y, ) + (b, @, (, v)) = b(a, ¥, ¥) + (b, ¥, Y)a. Sub-
tracting the second equation from the first it follows that

(6) ((a, 0), v, ) = (a, (b, ¥, ) — (&, (@, ¥, V) -

If we let @ =@, and b =y, in (6) and use (3), then
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(7) (, (2, 9,4)=0.

A linearization of (7), obtained by replacing v by v + z and y — %z,
leads to

(8) (v, (x,9,2) + (y, (x,2,9) + (2, (%, 9,%) =0.

Substituting w = z =y in (5) it follows that (v, (z, ¥, ¥))— (v, (¥, =, ¥))+
(¥, (v, ¥, 2)) = 0, since (y, ¥, y) = 0, follows from (2). But (z,y, y) +

W, 2,y) + Wy 2)=0, as a result of (2). Thus 2(y, (y,z,¥) =0,
so that

(9) (v, (y,2,9) =0.
Linearizing (9), it follows that

(10) (= @ 29+ @ 3y)+ @ Herz2)=0.
Substituting # = 2 =y, and w = 2, in (1) it follows that
(11) (xy, v, ) = (%, ¥, V)Y -

Expanding ((a, b, ¢), y, y) = ((ab)e, ¥, ¥, ) — (albe), y, ¥) and applying
(1) repeatedly to break up products, we establish that

(12) (@, b,¢),v9,9) = ((a,9,¥),b,¢) + (a, (b vy, v),c) + (a,b,(c, ¥, V) -

Substituting z = #, and w = y, in (5) it follows that 2(y, (z, ¥, x)) —
2(z, (v, «, y)) = 0. Because the characteristic is different from 2 this
implies

13) v, (x, y, ¥)) = (z, (y, %, ¥)) -

Substituting z = y, and w = 2, in (5), it follows that (z, (z, v, ¥)) —
(=, (y, 9, %) + (v, (¥, %, ®) — (¥, (v, %, y)) = 0. However, (y, v, x) may
be replaced by —(z, y, ®) — (%, @, ), because of (2) and —(y, y, x) by
(v, ®, y) + (%, ¥, ¥), so that (v, (v, ¥, v)) + (z, (¥, %, ¥)) + (&, (%, ¥, ¥)) —
W, (x, v, 2)— (¥, (2 9) — (@2 v) =0 But the second and
fourth terms cancel as a consequence of (13), so that the remaining
terms become 2(z, (z, ¥, ¥)) — 2(y, (z, z, ¥)) = 0. Since the characteristic
of R is different form 2 this implies (z, (z, ¥, ¥)) = (¥, (z, =, ¥)). Sub-
stituting z = = in (8), it follows that (z, (x, ¥, ¥)) = — (v, (%, ¥, x)) —
W, (z, =, ¥)) = (¥, (y, @, ), since (y, z, x) + (2, y, x)(x, ¢, y) =0, as a
consequence of (2). We can now combine the previous equations to
obtain (y, (z, z, ¥)) = (¥, (¥, #, x)). Since (v, z, ) + (2, ¥, ) + (2, z, y)=
0, this implies

(14) (yr (xr Y, x)) = _2(y’ (y) Z, x)) = —2(y’ (.’L', x, y)) .

Substituting y =a + b, 2 =y, and y = @ — b, x = v, in (14) it follows
that
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(15) (a’y (y’ b: y)) + (by (y7 a, y)) = —'2(0'; (by Y, y)) - 2(b9 (a’ Y, y)) .

Substituting « = 2y in (8), we derive ((xy, ¥), ¥, ¥) = 0. Substituting
z = (x,y) in (11) it follows that ((x, ¥)y, v, %) = (%, ¥), ¥, ¥)y =0,
using (3). But (xy, y) — (=, vy = @y)y — y(xy) — (Y)Y + (Yr)y =
(y, @, y). Consequently ((y, =, ), ¥, ¥) = (xy, ¥), ¥, ¥) — (%, ¥)¥, ¥, ¥) =
0. We have shown

(16) (v, %, 9),9,9)=0.

Substituting x = (2, =, ¥) + (¥, z, 2) in (3), we see that (((z, z, y) +
(Y, %,2),¥),9,y)=0. But then use of (10) leads to 0= —((z, (¥, %, %)), ¥, ¥)=
(((y, x, ¥), 2), ¥, y). Substituting a = (y, 2, y), b = 2, in (6), it follows
that (v, », 9), 2), ¥, ¥) = (¥, 2, ¥), (2, ¥, V) — (2 (¥, %, ¥), ¥, V) =
((y, =, ¥), (, ¥, ¥)), because of (16). Thus ((y, z, ¥), (¢, ¥, ¥)) = 0. Per-
muting z and z in this last inentity we obtain

mn (v, 2, 9), (@, ¥, 9) = 0.

From (8) it follows that (z, (z, ¥, ¥)) = —(, (z, ¥, 2)) — (¥, (%, 2, ¥)) =
((x, ¥, 2) + (2, 2, ¥), y). Substituting =z = (x, ¥, 2) + (x, 2, %) in (3), it
follows that (((x, v, 2)+(=, 2, ¥), ¥), ¥, ¥)=0. Thus ((3, (=, ¥, ¥), ¥, ¥))=
0. Substituting a =2, b = (v,y,y) in (6), it follows that

(@ (@ v ) v, y) = @& (29 9), 4 9) — (2,99, (9, v). Hence
0= (2 (=vv),v9)— (2,9 9), (29, y), so that

(18) = (=, 9,9, v, ¥) = (=, ¥, ¥), (2,9, ¥)) .

Substitute a =c=vy, and b=, in (12). Then (v, ¥), ¥, ¥) =
(v, (=, ¥, ¥), ¥). As a consequence of (16) it follows that

(19) W, (*,9,9),y)=0.

In (15) substitute a =2, b= (z,¥,y). Then (z (v, (%, ¥, ¥), v)) +

((w} Y, y)r (y, 2, y)) = ’—2(5, ((xy Y, y)y Y, y)) - 2((5!7, Y, y)y (Z, Y, y))' Be-
cause of (17) and (19) the left side of the last identity is zero. Thus

-2z, ((x, ¥, ¥), ¥, ¥)) —2((z, ¥, ¥), (2, ¥, ¥)) = 0. Using characteristic
different from 2, this implies

(20) @@y %Y+ (xy )y 9)=0.

Comparing identities (18) and (20), and using characteristic different
from 2 once more, we obtain

(21) = (=, 9,9, 9% v)=0.

Substituting « = 2y in (21), we see that (z, ((xv, ¥, ¥), ¥, ¥)) = 0. But
(11) implies that (zy, ¥, ¥) = (=, ¥, ¥)y, so that (2, ((z, ¥, ¥)y, ¥, ¥)) = 0.
Substituting « = (¢, ¥, ¥) in (11), it follows that ((z, v, ¥)y, ¥, ¥) =
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(=, ¥, ¥), ¥, )y, so that
(22) =, (@, ¥, ), ¥, ¥)y) =0 .

By expansion (a, bc) + (b, ca) + (¢, ab) = —(a, b, ¢) — (b, ¢, a) — (¢, @, b)=
0, as a consequence of (2). Thus we have established

(23) (a, be) + (b, ca) + (¢, ab) = 0.

Substituting ¢ = (%, ¥, ¥), ¥, ¥), b =y, ¢ = z, in (23), it follows that
(((x, Y, y)r Y, y)’ yz) + (?J, z((x, Y, y)7 Y, y)) + (Z, ((.’I?, Y, y)’ Y, y)y) = 0.
Substituting z = yz in (21) implies that the first term of the last
identity must vanish. The third term vanishes because of (22).
That leaves

(24) (v, 2((x, ¥, v), ¥, ¥)) = 0.

We are now ready to prove the following.

LEMMA 1. If R is a division ring then for every element y in
R either (y, R)=0, or (R,y,y) =0.

Proof. It follows directly from (24) that either (R, v, %), ¥, ¥) =0,
or (y, R) = 0. Suppose that (B, y, ¥), ¥, ¥) = 0. Then ((+*, v, ¥), ¥, ¥) =
0. Substituting w =2, 2=y, in (1), it follows that (% vy, y) =
o, 9, y) + (=, 9, y)&. Thus 0= (2(x, ¥, v) + (=, ¥, ¥)%, ¥, y). Substi-
tuting w = (x, ¥, ¥), and z = y in (1), it follows that ((z, ¥, ¥)2, ¥, ¥) =
@, v, )+ (=, ¥, ¥), ¥, ¥)x = (2, ¥, ), as a consequence of ((R, v, v),
y,y) =0. Also substituting w=x, 2=(x,9,¥), 2=y, in (1), it
follows that (x(z, ¥, ¥), ¥, ¥) = (%, ¥, ¥), ¥, ¥) + (%, ¥, ¥)’ = (2, ¥, Y)".
Thus 0 = (2(x, ¥, ¥) + (=, ¥, ¥)x, ¥, ¥) = 2(x, ¥, ¥)*. Then characteristic
different from 2 implies that (x, ¥, ¥)* = 0, and since R is a division
ring, (x, ¥, ¥) = 0. This completes the proof of the lemma.

LeEMMA 2. If R is a division ring then for all elements x, y, 2
m R we have the identity (z, (z, v, y)) = 0.

Proof. From (8) it follows that (z, (z, v, ¥)) = —(v, (=, ¥, #)) —
(y, (z, 2, ¥)). Then Lemma 1 suffices to show that either the left
hand side or the right hand side vanishes for every fixed y and
arbitrary « and z in R. This completes the proof of the lemma.

LemMA 3. If R is a division ring then the identity (x, (x, Y, ¥)2)=
0, holds for all elements x, y, z in R.

Proof. Substituting 2? for 2 in Lemma 2, it follows that
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(2, (@ 9, ¥)) = 0. But substituting w =2, z =19, in (1), it follows
that (2% v, ¥) = 2(x, ¥, ¥) + (x, ¥, ¥)xr = 22(x, ¥, ¥), as a result of sub-
stituting 2z =2 in Lemma 2. Thus 0 = (z, 2z(z, ¥, ¥)), so that
(z, z(x, v, ¥)) = 0. Substituting ¢ =2, b=2, ¢ =(z,¥,y) in (23), it
follows that (z, z(z, v, ¥)) + (, (=, ¥, ¥)z) + ((z, ¥, ¥), 22) = 0. We have
just shown that the first term of the last equation is zero. Sub-
stituting zx for z in Lemma 2 implies that the third term is zero
as well. Hence (2, (%, ¥, ¥)z) = 0. This completes the proof of the
lemma.

LEmMMA 4. If R is a division ring then the identity ((z, 2), ¥, ¥) =
0, holds for all elements x, y, z in R.

Proof. Substituting @ =z, b = z in (6), it follows that ((x, 2),
y,y) = (, (2,94, 9) — (2, (x, ¥, ¥) =0, as a consequence of Lemma 2.
This completes the proof of the lemma.

THEOREM 1. If R is a division ring then R 1is either right
alternative or the identity ((a, d), ¢) = 0, holds for all elements a, b,
¢ in R.

Proof. Linearizing the identity of Lemma 3, we obtain (w,
(xz, y, ¥)z) = —(x, (w, ¥, ¥)z). Substituting w = (a, b) in this, it is
clear that ((a, d), (z, v, ¥)2) = — (=, ((a, b), ¥, y)z) = 0, using Lemma 4
with = a, 2 =056. If R is not right alternative, then for every ¢
in B we can find a 2z such that (z, %, y)2 = c¢. This completes the
proof of the theorem.

We are now ready to prove the main result.
THEOREM 2. If R is a division ring then R must be associative.

Proof. If R is right alternative then it is known [3, 8] that R
must be alternative and then (2) suffices to make R associative.
Then as a result of Theorem 1 we are down to the case where the
identity ((a@, b), ¢) = 0, holds for all elements a, b, ¢ in R. In (4)
substitute w = 2, and « = y. Then (xy, v, 2) — (x, V%, 2) + (x, ¥y, Yz) =
2(y, ¥, 2) + (x, v, y)z. Substituting w = 2, and 2 =y, in (1) leads to
(xy, ¥, 2) + (x, ¥, (v, 2)) = 2(y, ¥, 2) + (x, ¥, 2)y. Subtract the left hand
sides of the lest two identities to obtain

(25) (@, v 2) — (@, 9,20) = —(2, ¥, ¥z + (2,9, 2)Y .

Substituting w =z, * = 2, z = y in (4), we find that
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(26)  (zz, 9, 9) — (%, 29, 9) + (%, 2,9°) = 2(2, 4, ¥) + (%, 2, Y)Y .

Define K to be the set of all elements k& in R such that (k, R) = 0.
Clearly K is closed under subtraction. Also Lemma 2 implies that
(x, y, y) belongs to K, for all elements z, ¥ in R. Hence (z, ¥, 2) +
(x, z, y) is also an element of K, for all «, y, z in R. Adding the
left hand sides of (25) and (26), it is clear that we get an element
of K. Thus

@27 (x, 9, 2)y + (v, 2, )y + 22, ¥, ¥) — (%, ¥, y)z belongs to K.

Substituting w =, ¢ =2, 2=y in (1), it follows that (vz, y, ¥) =
(2, y, ¥) + (=, ¥, ¥)z, so that

(28) (2, ¥, ¥) + (z, ¥, ¥)z belongs to K.

Subtracting (28) from (27), it is clear that
(29) (x, ¥, 2)y + (2, 2, )y — 2(x, y, y)z belongs to K.

Because of (11) we have (z, ¥, ¥)y = (xy, ¥, ¥), so that Lemma 2, with
xy substituted for z, implies

(30) (z, v, y)y belongs to K.

Linearizing (30), we obtain
(31) (@, ¥, 2y + (x, 2, )y + (2, ¥, y)z belongs to K .

Comparing (29) and (31), it is clear that 3(x, y, )z belongs to K, so
that (z, v, ¥)z must also. Thus (w, (z, ¥, ¥)2) = 0, for all w, z, ¥y, 2
in R. If R is not right alternative, then clearly R must be com-
mutative. But in that case it is certainly flexible and that was
enough to imply that R is alternative and hence associative [6].
This is a contradiction, so R must have been right alternative and
hence associative to begin with. This completes the proof of the
theorem.

We conclude with a generalization of Theorem 2. Let S be a
division ring of characteristic = 2, 3, which satisfies (1), (3) and a
weaker form of identity (2), namely that (2) holds whenever z, y, 2
lie in a subring which can be generated by two elements. Now we
are dealing with a set of identities which are valid in every alter-
native ring. From the conclusion of Theorem 2 it follows that every
subring of S generated by two elements is associative, so that S
must in fact be alternative. This yields a worthwhile generalization
of the main result, with little additional effort.



202 ERWIN KLEINFFLD

REFERENCES

1. I. R. Hentzel, (—1,1) rings, Proc. Amer. Math. Soc., 22 (1969), 367-374.

2. ——, Nil semi-simple (—1,1) rings, J. Algebra, 22 (1972), 442-450.

3. Erwin Kleinfeld, Right alternative rings, Proc. Amer. Math. Soc., 4 (1953), 939-944.
4, ————, On a class of right alternative rings, Math, Zeitschr., 87 (1965), 12-16.
5. ————, Generalization of alternative rings, I, J. Algebra, 18 (1971), 304-325.

6. —, Generalization of alternative rings, II, J. Algebra, 18 (1971), 326-339.

7. Carl Maneri, Simple (—1,1) rings with an idempotent, Proc, Amer. Math. Soc.,
14 (1963), 110-117.

8. L. A. Skorniakov, Right alternative fields, Izvestia Akad. Nauk. SSSR Ser. Mat.,
15 (1951), 177-184.

Received June 6, 1973. This research was supported in part by the National Sci-
ence Foundation under GP-32898 XI.

UNIVERSITY OF lowa





