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LIFTING BRAUER CHARACTERS
OF p-SOLVABLE GROUPS

I. M. IsaAcs

Let ¢ be an irreducible Brauer character for the prime
p of the finite p-solvable group, G. By the Fong-Swan
theorem, there exists an ordinary character, y, which agrees
with ¢ on p-regular elements. This character is not, in
general unique. It is proved here that y can be chosen to
be p-rational, i.e. its values lie in a field of the form Q@[]
with e»=1 and p } n. If p = 2, the character so chosen is
unique and every irreducible constituent of its restriction to
a normal subgroup is alse p-rational and is modularly
irreducible.

1. Introdution. Let G be a finite group. We use the notation
Irr (G) to denote the set of ordinary (complex) irreducible characters
of G. For a fixed prime p, we write IBr (G) for the set of irreduci-
ble Brauer characters of G, chosen with respect to some fixed pull-
back of modular p’-roots of unity to the complex numbers. If y is
an ordinary character, let y* denote the restriction of y to the set
of p-regular elements of G so that y* is a nonnegative integer
linear combination of @€ IBr (G).

Now suppose that G is p-solvable. A theorem of Fong and
Swan (see [2], Theorem 72.1) asserts that if @< IBr (G), then there
exists yelrr (G) with y* = @. The character, ¥, is not uniquely
determined by the equation y* = @. Furthermore, if N <]G and #
is an irreducible constituent of @,, then y, does not necessarily have
a constituent, v, with +* = . (An example is given in §9.) The
main result of this paper is that if p = 2 and @ € IBr (@), then there
exists a unique p-rational character (as defined below) yeIrr (G),
such that X* = @. Also, ¥ behaves well with respect to normal
subgroups.

DEFINITION 1.1. Let y be an ordinary character of G. Then ¥
is p-rational provided that the values of y lie in a field of the form
Q [¢] where ¢* =1, p f n.

THEOREM 1.2. Let G be p-solvable with p = 2 and let @ € IBr (G).
Then there exists a unique, p-rational yelrr(G) with 1* = @.
Furthermore, if N<|G and + 1s an irreducible constituent of %y,
then + 1is p-rational and ™ € IBr (N).

In the situation of Theorem 1.2, if xis any irreducible constitu-
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ent of ®,, then there clearly exists a constituent, 4, of ¥, such
that ¢ is a constituent of +*. Thus ¢ = +4* and + is the unique
p-rational lift of .

If ¥ and + are as in the theorem and M <] N, then by appli-
cation of the theorem to N, we conclude that any irreducible con-
stituent, 6, of 4, is p-rational and satisfies 6* € IBr (M). Repeated
application of this argument shows that y is “subnormally p-rational”.

DEFINITION 1.3. Let _#Z be a set of subgroups of G and let
y€Irr (G). Then yx is _#-p-rational if for every Me_# and irre-
ducible constituent, 6, of ¥, we have @ is p-rational. If _#Z is the
set of subnormal subgroups of G, we say that x is subnormally
p-rational. The set of subnormally p-rational characters of G is
denoted .&“(G).

THEOREM 1.4. Let G be p-solvable with p + 2, and let y € Irr (G).
The following are equivalent

(a) yx is p-rational and X* € IBr (G),

(b) xeF(G),

(¢) yx is #-p-rational where _# 1is a subnormal series in G
whose factor groups are p-groups and p'-groups.
Also, * defines a onme-to-one correspondence from & (G) onto IBr (G).

Note that in the situation of this theorem, it suffices to check
that y is _#-p-rational where _# is the set of characteristic sub-
groups of G in order to prove that y is subnormally p-rational. In
§ 7, we discuss some other conditions sufficient to guarantee y e .&7(G).
We also raise some questions there. In § 8, the theory of characters
of solvable groups is invoked to obtain some partial answers.

This paper also contains a digression in which some of our
methods are applied to give a new proof of the Fong-Swan theorem
which does work when p = 2. This proof constructs p-rational
characters but it is not clear that they are uniquely defined.

2. Frobenius reciprocity. One of the most useful tools for
working with ordinary characters is Frobenius reciprocity. We dis-
cuss a situation where it works for Brauer characters. If HS G
and @ is a Brauer character of H, we define ¢° by the familiar
formula

?9) = U1 H]) 2, 9°(xge™)

for p-regular ge G, where 9°(y) = 0 if y¢ H. Clearly, if 4 is an
ordinary character of H, then (y%)* = (¥*)°.
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If @ is afforded by an F[H]-module, W, for a suitable field, F, of
characteristic p, then % is the Brauer character afforded by the
F[G]-module, W¢ (This fact is somewhat less trivial than the
corresponding relationship between induction of ordinary characters
and C[G]-modules. See § 25 of [1].)

If F is any field and U and V are F[G]-modules, define

I(U, V) = dim, (hom, (U, V)) .

The following result occurs in [3]. Its proof is routine.

LEMMA 2.1. Let HZ G and let F be any field. Suppose U s
an F[H]-module and V is an F[G]-module. Then

(%, V)= KU, Vy) .
If ¢ and v are Brauer characters of G, we may write

m= D, AP

¢ eTBr(G)

and

y= 3, bop.

¢ eIBr (@)

We shall use the notation

I(p, v) = > ab,

so that I(¢, #) =1 iff ¢ e IBr (G) and in that case I(x, v) = 0 iff ¢ is
a constituent of v. Note that if y, v are afforded by F[G]-modules
U and V respectively, then I(U, V) need not equal I(x, v). However,
if F is a splitting field and U and V are completely reducible, then
equality does occur.

In general, if H= G, precIBr(H) and @€ IBr(G), we cannot
conclude that I(¢° @) = I(¢, py). If H<|G, then it is not hard to
see (using Clifford’s theorem and Lemma 2.1) that I(x¢ @)=+ 0 iff
I(¢, ) # 0. More is true if p } |G: H].

THEOREM 2.2. Let H <|G, prelBr (H) and ®¢cIBr (G). Suppose
either p ¥ |G H| or ufeIBr(G). Then I(¢°, @) = (1, @5).

Proof. Let F be a splitting field for G and H with char (F) = p.
Let W be an F[H]-module which affords ¢ and V an F[G]-module
which affords ®. Now V is irreducible and hence by Clifford’s
theorem, V, is completely reducible and I(g, ®,) = I(W, V,). By
Lemma 2.1, it suffices to show that I(¢% @) = I(W?% V) to complete
the proof. We do this by proving that W¢ is completely reducible.
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Since W€ affords p°, we are done if ¢%cIBr(G) and so we
assume p t |G:H|. Let U be a submodule of W¢ In order to
show that U is a direct summand of W¥¢ it suffices (by Theorem
2(a) of [4]) to show that Uy is a direct summand of (W¢),. Since
HLG, (W, is a direct sum of G-conjugates of W and thus is
completely reducible. The result now follows.

3. p'-factors. It is well known that if p t |G|, then IBr (G) =
Irr (G). In this section we prove the following generalization.

THEOREM 3.1. Let N<|G with pt|G:N|. Let +elrr(N)
and assume

(a) ¥*elIBr(N) and

(b) 7 = for those ge G with (*)* = *.

Then = defines a one-to-one correspondence from 27 = {)¢€
Irr (G) | [)tw,¥] = 0 onto 27 = {p € IBr (G) | I(Py,*) # 0}.

Proof. Write

vi= 3 axX

zxelrr(@)
and

(“l’*)a: > bso@-

¢ elIBr(@)

Let « = 4, 4y, =+ +, v, be the distinct G-conjugates of 4 and let
tt; = v} eIBr(N). By Frobenius reciprocity, ye .2 iff a; # 0 and

By hypothesis (b), the #, are the distinct G-conjugates of *.
From Theorem 2.2, we may conclude that ¢ z iff b, + 0 and

oy =b, > ¢, for pez .
Let d;, be the decomposition numbers so that
Xr= > AP
¢ eIBr(@)

for yelIrr (@). We have
Sbe = (57 = 49 = (S )
- zg)"(g azdw)fp .

By the linear independence of IBr (G), we conclude that
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(1) b, = S a,d;,, for @elBr(G).
X

Also, for ye 2 we have

(2) Qx 2 M = (ax Z’*/fi)* = (XN)* = (X*)N = Zsa dw@N .

If d,, # 0 with ye 25 then it follows from (1) that b, = 0 and p€ 2.
Thus (2) yields

G = 3 duoy = (3 b)) S 1t
Yey ey
and thus
(3) ay = 3, by, for yez .
pe

Observe that (3) remains valid if the sum is taken over all @ € IBr (G).
Substitute (1) into (3) to obtain

ay = >, < > aedw)dm-
¢elIBr(&) )

felrr(@

Since >, dy.d., = I(x*, £*), we conclude that
(4) ay = ;I(x*, e, for yeZ .

Now a.=0 and I(3*, £*)=0 for all y, &. Furthermore, I(x* x*)=1
and a,>0 for ye€ 22 We may now conclude from (4) that I(x*, x*)=1
for ye 2 and I(y* &*) =0 if y e 2 with yx+& It follows
that = defines a one-to-one map from .2 into Z.

Now let e 2. Then b, 0 and by (1) we conclude that
ay # 0 # dy, for some ). Thus ye 2° and ® is a constituent of %*.
Since x* is now known to be irreducible, we have y* = @ and the
proof is complete.

4. p-factors. Since we are interested in p-solvable groups,
every chief factor will be a p-group or a p’-group. We obtain
results for p-factors which are analogous to Theorem 3.1.

LEMMA 4.1. Let H<|G with G/H a p-group. Let +¢€lrr (H)
and T={geG |y =+}. Suppose + 1is extendible to nelrr(T).
Assume

(a) +*elIBr(H) and

(b) of (¥*) = +*, then ge T.

Then (1°)* is the unique @ € IBr (G) with I(®y, +*) +# 0.

Proof. Choose @¢lIBr(G) with I(®g +*)# 0. (Clearly, some
irreducible constituent of (7%)* will work.) Now (7% is the sum
of the distinct G-conjugates of v and so by (b) we conclude that
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((9%)*)y is the sum of the distinct conjugates of +*. By Clifford’s
theorem, @, = e((n%)*), for some integer e.

Since all of the p-regular elements of G lie in H, it follows that
® = e(1°)*. We conclude that e¢ =1 since @ is irreducible. The
result follows.

If H<]G, G/H is a p-group and z ¢ IBr (H), then even without
assuming the existence of + in 4.1, it is true that there is a unique
@ e IBr (G) with I(p,, ) # 0. Also @, is the sum of the distinct
conjugates of ¢. We will not need these facts, however.

In order to apply Lemma 4.1, we need conditions sufficient to
guarantee that  is extendible to its inertia group, 7. There are at
least two such sets of extendibility conditions:

(E1) p Q) and p ¥ o(y)

(E2) p = 2 and + is p-rational.

Here, o(y) is the determinantal order of +, defined as the order (in
the group of linear characters) of det(v), the determinant of a
representation which affords .

In order to obtain a proof of the Fong-Swan theorem which
works for all p, we shall use (E1). The condition p f (1) causes
complications which can be avoided when p = 2 by using (E2). This
will lead to our stronger results in that case.

THEOREM 4.2 (Gallagher). Let H<|G with G/H a p-group.
Suppose ¥ is invariant in G, p k(1) and p ¥ o(y). Then + has
o unique extemnsion, y, to G with p ¥ o(y).

Proof. First suppose |G: H| = p. We may thus extend « to
yelrr (G). Let » = det(n) so that A, = det(y) has order m with
» f m. Let ¢t =X\ so that H < ker ¢+ and p'7 is an extension of +
for any integer, b. Choose b so that +(1)mb= —1modp. Let
y = 1. Then

det (y) = pr®in = \vomest

Since ¢” =1, we have (\*)" = 1,. Since p|(v(1)mb + 1), we con-
clude o(y) | m and thus p } o(y).

If 3+ y is an extension of +, then ¥, = ay for some linear
character, «, of G/H. Then det (y,) = a?" det(y). Since p = o(a)
and p f (1), we have p | o(}).

If |G:H|> p, choose K, H< K<|G with |K: H| = p. Let ¢ be
the unique extension of + to K with p } o(§). Since ¢ is unique, it
is invariant in G. By induction, & has a unique extension, ¥ to G
with » J o(x). The uniqueness of 7 as an extension of + follows
since if y, extends + with » J o(y,), then » ) o((%)x) and thus
(Xo)x = & Therefore y, = 7.
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We need some facts about p-rational characters to prove that
(E2) works.

Let Q, denote the field Q[¢**¥"]. Then a character, ), of G is
p-rational if for some n with » }/ n we have y(g)e@Q, for all geG.
Let |G| =m = p*r with » y r. Then %(9)€ @, for all geG and it
is not hard to see that y is p-rational iff its values lie in @,.

Therefore, the p-rational characters of G are exactly those fixed
by the Galois group &(Q,./Q,) which we shall denote &(G). If ¢ is
a character of H & G, then 6 has values in Q,, and ¢’ is defined for
oe®(G). It follows that # is p-rational iff 6° = ¢ for all such o.

By Galois theory, we know that the restriction map defines an
isomorphism of G&(G) onto &(Q,./Q). It follows for p =+ 2, that &(G)
is cyclic and also, if p||G|, then &(G) does not fix a primitive pth
root of 1.

THEOREM 4.8. Let H<|G with G/H a p-group, p # 2. Let
W € Irr (H) be p-rational and tnvariant in G. Then + has a p-rational
extension, Y €lrr(G). Furthermore, ¥ is the unique p-rational
irreducible constituent of .

Proof. First suppose |G: H| = p and let 7 be any extension of
v to G. Let o generate &(G). Then +° = + and so 7° extends +
and we have 7° = A7 for some e lIrr (G/H). If 7 is not p-rational,
then )\ == 1; and thus A\° # A (since p # 2). We have A =\" for
some integer, m %= 1 mod p. Now A7 is an extension of  for integer
b and we may choose b so that (m — 1)b = —1mod ». Then mb +
1 = bmodp and

(V)7 = Ay =\
and \'p is p-fixed.

Let 3 be a p-rational extension of + and let ¥, be another
extension. Then Y, = a)y for some unique aclrr(G/H). If yx, is
p-rational, it follows that ¥, = ¥ = a°y° = a°) and thus a° = « and
we conclude a = 1; and ¥, = %.

If |G:H|> p, choose K, H< K<|G with | K: H| = p. Let ¢ be
the p-rational extension of + to K. By uniqueness, ¢ is invariant in
G and working by induction, we conclude that & has a p-rational
extension, yx e Irr (G).

Since K/H = Z(G/H), every extension of + to K is invariant in
G (since each is of the form a&). If yx, is any irreducible constituent
of %, then (x,)x = en for some extension, », of . If y, is p-rational,
it follows that » is p-rational and thus 7 = & and ), is a constituent
of ¢, By the inductive hypothesis, 3, = %.

We shall need the following well known fact. It appears, for
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instance, as Lemma 10.4 of [7].

LEMMA 4.4. Let NG, 6elrr(N)and T={9ecG|6°=86}. Then
v — 3% defines a ome-to-one correspondence {€Irr (T)| [y, 6] # 0}
onto {yelrr (@) | [xx, 0] # O}.

In the situation of Lemma 4.4, if + is p-rational, then clearly
¢ is p-rational. Conversely, if ¥ and 6 are both p-rational, then
+ is p-rational since ¢ = (y°)¢ and [vy, 0] = [(+°)x, 0] for o e &(G).

THEOREM 4.5. Let H <] G with G/H a p-group, p # 2. Suppose
0 € Irr (H) is p-rational. Then 6° has a unique p-rational irreducible
constituent, . Furthermore, suppose 0* = pe 1Br (H) and that 6° =6
for those ge G with p° = p. Then x*e€lBr(G). Also x* is the
unique @ € IBr (G) with I(®y, ) + 0.

Proof. Let T={geG|6° =6). By Theorem 4.3, let 7 be the
p-rational extension of 6 to T so that 7 is the unique p-rational
element of {y-eIrr (T)|[vg, 6] # 0}. By Lemma 4.4 and the remarks
following it, we conclude that y = 7° is the unique p-rational irreduci-
ble constituent of §°. The final statements follow from Lemma 4.1.

Connections between Theorems 4.2 and 4.3 are given by the
following.

COROLLARY 4.6. Let y € lIrr (G) be p-rational with p 2. Then
» £ o().

Proof. We have (det x)° = det (x°) = det 3 for 6 € B(@). If p|o()),
then det () takes on the value ¢**¥?, a contradiction.

COROLLARY 4.7. In the situation of Theorem 4.2, if 4 s
p-rational, then so is Y.

Proof. Clearly o(x°) = o(y) for o0 € &(G). Since ¥’ is an extension
of +, uniqueness forces y° = ¥.

5. The Fong-Swan theorem. In this section we prove a slight
strengthening of the Fong-Swan theorem using Theorem 3.1, Lemma
4.1 and Theorem 4.2. The notion of p-rational characters is only
incidental here. Our result also includes a theorem of Huppert (Satz
7 of [5]). We begin with a lemma which is the analog of part of
Lemma 4.4 for Brauer characters. In its module version, at least,
it is well known and we omit the proof.

LEMMA 5.1. Let NG, pclBr(N)and T={geG|p* = p}. Let
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@ ¢ IBr (G) with I(®y, tt) # 0. Then there exists a unique 7€ IBr (T)
such that ¢ = @ and I(ty, p) # 0.

We need the following corollary of Theorem 3.1.

COROLLARY 5.2. Let N<]G with p t |G: N| and let + €Irr (N)
be p-rational and satisfy

(a) +*€lBr(N) and

(b) ¥ = for those ge G with (v*)* = ¥*.
Then every irreducible constituent of ¢ is p-rational.

Proof. Let y be an irreducible constituent of ¢ and let o € &(G).
Then (3°)* = x* and [x°, v9 = [x°, (v°)¥] # 0. By Theorem 3.1, = is
one-to-one on irreducible constituents of ¢. Thus y = )° and the
result follows.

DEFINITION 5.3. Suppose y e Irr (G) satisfies

(a) x*elIBr(G) and

(b) x* =y for those a e Aut(G) with (3*)* = x*.
Then y is automorphic.

Note that if a subset .27 = Irr(G) can be found such that
Z* = 7 for all @ e Aut (G) and * defines a one-to-one correspondence
from 2 onto IBr (G), then every y < 2° is automorphic. In §6 we
shall prove that .27 = .9°(G) has these properties if G is p-solvable

with p =+ 2.

THEOREM 5.4. Let G be p-solvable and let ®e€IBr(G). Then
there exists p-rational automorphic y € Irr (G) with ¥* = . Further-
more, if p|PQ), then there exists N char G such that the number
of distinct irreducible constituents of @y ts divisible by p.

Proof. Use induction on |G |.

Case 1. There exists N char G such that the number of irreduci-
ble constituents of @, is divisible by p.

Let ¢+ be one of these constituents so that p||G: T'| where
T={9geG | =p}. By Lemma 5.1, find v e IBr (7T) with ¢ = ¢ and
I(ty, £)#0. Since T < G, choose a p-rational, automorphic + € Irr (T)
with * =7. Let y =% Then x* = (y* = 7% =¢ and hence
xelrr (G). Certainly, y is p-rational. If ac Aut(G) with ¢* = @,
then N* = N and p* is a constituent of ¢, so that p#* = p¢ for some
geG. Define Se Aut(G) by «f = (x%) . Then ¢* = @, #tf = ¢ and
T* = T. From the uniqueness of ¢ we conclude that zf =7 and
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thus «* = 4 and %* = . Since ¥’ = y*, we have shown that y is
automorphic.

Case 2. No N as in Case 1 exists.

Suppose M < G is characteristic and let ¢ be an irreducible
constituent of @,. If N char M, then N char G. The number of
distinct irreducible constituents of g, divides the number for @,
and hence is prime to p. By the inductive hypothesis, p t p(1).
Also, we may choose p-rational, automorphic 6 € Irr (M) with 6* = p.
Thus 6° = 6 whenever ¢ = p. Also, p t 6(1) and the number of
distinct conjugates of ¢ in G is prime to p.

If 0°(G) < G, take M = 0°(G). By the last sentence of the
preceding paragraph, 6 is invariant in G. Since 0°(M) = M and
0(6) = | M: ker (det (9))|, we have p } o(¢). By Theorem 4.2, ¢ has
a unique extension, y € Irr (G) with p } x(1). By Lemma 4.1, y* =@
and by Corollary 4.7, y is p-fixed. Also @(1) = (1) = 6(1) and so
p k »(1).

If ae Aut (@) and 9 = @ then p#* = p since ¢t = ¢,. Therefore,
6 = 0 and by the uniqueness of x and the fact that o()) = o(x?),
we conclude that y = x°.

We may now suppose 0°(G) = G so that 07(G) < G and we take
M = 0”(G). By Theorem 3.1, there exists a unique irreducible con-
stituent, ¥, of 6° with y* =@. If aec Aut(G) with »* = @, then
M* = M and p* = p¢ for some g e G. Define 8¢ Aut (G) by of = (x9)*
so that p#* = ¢ and 6% = 6. Now ¥’ is a constituent of 6% and (y*)* =
@* = @. By the uniqueness of %, % = %. Since ¥’ = x*, we have
proved that y is automorphic. As is well known, (x(1)/0(1)) | | G: M|.
It follows that y(1) = ®(1) is prime to p. Also, y is p-rational by
Corollary 5.2.

6. The main theorems.

LeMMA 6.1. Let N<{]G and p2€IBr (N). Suppose U is invariant
wm G and that pfeIBr(G). Then N = G.

Proof. Let @ = p¢. By Theorem 2.2,
1=Ip, p) = I ) = ¢, Px) -

Since ¢ is invariant in @, Clifford’s theorem yields ¢y = |G: N| ¢
and thus

1=1I(g, y) = |G: N|.

Proof of Theorem 1.2. Use induction on | G|. Let yelrr (G) be
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p-rational and suppose y*e€IBr(G). Let N <]/ G and §elIrr (N) with
[%y, 61 = 0. We show by induction on | N| that 6 is p-rational and
6* ¢ IBr (N).

Let T={geG|6° =0} and v c Irr (T) with ¥ = x and [y, 8] % 0.
Let S={geG|6° = ¢° for some g € &(G)}. Note that S is a subgroup
since for xe @G, 0 € (@) we have (6°)° = (6°)°. Also, S22 T so that
P =Selrr(S). Now (7*)¢ = (%)* = x*eIBr (G), and we conclude
that »* € IBr (S).

We claim that 7 is p-rational. Let 0 e ®&(G). Then x° = ) and
hence 6° = 6¢ for some ge G. Necessarily, g S and so 4 and 6° are
conjugate in S and hence [(7°)y, 0] # 0 and we can find € Irr (T)
with (y.)° =7’ and [(y.)y, 6] #0. Now (y)*=(@) =y =% It
follows (Lemma 4.4) that ¢, = + and hence n = ° = (y,) = 7° and 7
is p-rational as claimed. If S < G, then by the inductive hypothesis
on |G|, we conclude that # is p-rational and 6* € IBr (N).

Suppose then, S = G. If ge G, then T7 is the inertia group of
6° = 0° for some oec®(G). If 6° =0, then (6°)° = (6°)° = 6° and we
conclude that 7% = T and hence T'<]|G. Also, ()¢ =y = (v°)¢ and
[(¥)y, 6°] # 0. It follows that +¢ = ° and thus (¥*)? = (¥°)* = *.
Since (y*)¢ = x* ¢ IBr (G), Lemma 6.1 applies and we conclude that
T=aG.

We now have ¥, = ¢f and thus @ is p-rational. We may assume
N > 1. Suppose M < N, M<]{G. Let & be an irreducible constituent
of 6,. By the inductive hypothesis on | N|, we conclude that ¢ is
p-rational and &* € IBr (M). If ge G with (§*)? = &*, then since &’ is
p-rational, the (uniqueness) inductive hypothesis on |G| yields & = &°.

If O°(N) < N, take M = O*(N). Then Theorem 4.5 applies to N.
Since ¢ is the (unique) p-rational irreducible constituent of &, we
conclude that 6* € IBr (N). Otherwise, 0”(N) < N and we may take
M = 0”(N). In this case, Theorem 3.1 yields 6* € IBr (N).

Now suppose %, € Irr (@) is p-rational and that y* = . Let M
be a maximal normal subgroup of G and let g be an irreducible
constituent of ()%*),. Choose irreducible constituents, + and +, of
2x and (Xo)x respectively, so that I(v*, 1) 5= 0 == I((vv)*, #). By the
first part of the proof we conclude that +* = ¢ = (y)* and that
and +, are p-rational. By the inductive hypothesis, ¥ = .

If ge G and p# = p, then 4 = 4, again by the inductive hypothe-
sis. Now conclude that ¥ = y, using Theorem 3.1 if p }t |G: M| and
Theorem 4.5 if p = |G: M]|.

Given @€ IBr(G), the existence of p-rational yelIrr(G) with
¥ = @ follows from Theorem 5.4. Alternatively, in the present
situation, it follows immediately by induction applied to a maximal
normal subgroup of G, using Theorem 4.5 or Theorem 3.1 together
with Corollary 5.2.
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COROLLARY 6.2. Let G be p-solvabdle with p + 2 and let y € Irr (G)
be p-rational with y*€IBr (G). Then ) is automorphic.

Proof. Immediate from the uniqueness in Theorem 1.2.

Proof of Theorem 1.4. Repeated application of Theorem 1.2
shows that if y* € IBr (G) and y is p-rational, then ) € ./(G). Trivially,
if ye ”(G), then y is _#-p-rational for any collection, _#Z, of sub-
groups of G. Now suppose ) is _#Z-p-rational where _#Z is some
subnormal series for G with factors being p-groups and p’-groups.
Let Me # with MG and either p t |G: M| or G/M a p-group.
Let 6 be an irreducible constituent of %, so that 6 is _#-p-rational
where _#Z ={He _# |HZ< M} is an appropriate subnormal series
of M.

Working by induction on |G|, we assume 6*€IBr(M). By
Corollary 6.2, 6 is automorphic. Thus by Theorem 3.1 or Theorem
4.5, we conclude that y* € IBr (G).

Since (b) implies (a), = defines a map of .&°(G) into IBr (G). This
map is one-to-one by Theorem 1.2 and is onto by Theorem 1.2 together
with the fact that (a) implies (b). This completes the proof.

7. Corollaries, further results and questions. The most obvi-
ous deficiency in our work is the situation when »p = 2. We ask

QUESTION 7.1. Let G be solvable and p = 2. Let @¢IBr(G).
Does there exist yelIrr (G) such that for every N <G and every
irreducible constituent, +, of 3y, we have * e IBr (N)?

For p + 2, we have much more.

COROLLARY 7.2. Let G be p-solvable with p+2 and let ® € IBr(G).
Then there exists x € lrr (G) such that for every M << G, = defines
a one-to-one map from {y €Irr (M) | [Xx, ¥] # 0} onto

{eIBr (M) | I(Pu, 1) + 0} .
Proof. Take ye &7(G) with x* = o.

COROLLARY 7.3. Let G be p-solvable with p # 2. Let N<]G
and € S (N).

(a) If p f|G: N|, then every irreducible constituent of ¢ lies
n F(G).

(b) If G/N is a p-group, then exactly one irreducible con-
stituent of ¢ is p-rational. It lies in F(G).

(¢) In general, some irreducible constituent of ¢ lies in 7 (G).
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Proof- (a) We have + is automorphic and Theorem 3.1 yields
y* e IBr (G) for every irreducible constituent, y, of 4. By Corollary
5.2, x is p-rational and hence y e .&“(G) by Theorem 1.4.

(b) Since + is automorphic, Theorem 4.5 and Theorem 1.4 yield
the result.

(¢) This is immediate by alternate application of (a) and (b).

If + is p-rational but ¢ .5°(N), then for p t |G: N|, it is pos-
sible that no irreducible constituent of ¢ is p-rational. An example
is in § 9.

If H= G and + ¢ S7(H), it does not necessarily follow that some
irreducible constituent of ¢ lies in .°(G). An example for p =3
is G=S8L(238), H=G, cyclic of order 6 and «+€lrr(H) with
W %=1y = 4% We ask

QUESTION 7.4. Let G be p-solvable with p =2 and HZG.
Suppose € SP(H) and e Irr (G). Is v°e SP(G)? Suppose y e .F(G)
and yyelrr (H). Is yzpe P(H)?

We shall prove some special cases.

THEOREM 7.5. Let G be p-solvable with p #* 2. Let N <G,
0clrr (N) and T={geG|0° =0}. Let velrr(T) with [y, 0] = 0.
Let y = 4% Then e A(T) iff xe .A(G).

Proof. We may assume N < G and choose maximal M <G,
M 2 N. Choose an irreducible constituent &, of ¥, with [&y, 6] = 0.
Let S=MnT and by Lemma 4.4, choose nelrr(S) with ¥ = &.
Working by induction on |G|, we have 1€ .57(S) iff £ e .&#(M). Since
[7% %1 # 0, it follows from Lemma 4.4 that [77, ] = 0. Note that
ST

If p/t|G: M|, then p y|T:S| and it follows from Corollary
7.3(a) that ée /(M) iff ye SP(G) and ne SA(S) iff e A(T). We
are done in this case.

Suppose then, [G:M|=p. If e.S”(T) then ne.~”(S) and
e A(M). Also y = +“ is p-rational and thus y e .S7(G) by Corollary
7.3(b). Conversely, if xe .S7(G), then £ (M) and 7 e .#(S). Also
e ¥(N) and hence by the remark following Lemma 4.4, + is p-
rational Now v € S2(T) by 7.3(b).

THEOREM 7.6. Let L<|K<G and H=S G with HK = G, HN
K= L. Let 0clIrr (K) be invariant in G and suppose 0,¢c Irr (L).
Let yelrr (G) with [, 0] +# 0. Then Yy = v elrr(H). Also, if G
18 p-solvable with p + 2 and Y e .A(G), then ¢ F(H).
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Proof. That ¢ Irr(H) is part of Lemma 10.5 of [7]. Suppose
G is p-solvable, p = 2 and ye€ “(G). If K =G then H = L < G and
Ve S(H). Assume then, that K < G and choose maximal M <] G
with M2 K. Let U=HNM so that KU=M and KN U= L.
Let & be an irreducible constituent of y, with [é4, 6] = 0. Then
fe (M) and working by induction on |G|, we may assume &, =
ne L (U).

Now U <| H and 4 is a p-rational irreducible constituent of 7~.
Since either p f |H: U| or p=|H: U|, Corollary 7.3 yields ¢ e S~ (H).

Sometimes, every p-rational character lies in &“(G). The fol-
lowing gives a sufficient condition for this.

THEOREM 7.7. Let G be p-solvable with » + 2, and suppose that
the Frobenius group of order p(p — 1) is mot involved in G. Then
every p-rational y € Irr (G) lies in F(G).

Proof. Let |G| =m and ¢ = ¢"¥™. Let &(G) = (o) so that
¢’ = ¢* for some integer k, with (m, k) = 1. It follows from a standard
argument, using a counting lemma of Brauer, that the number of
p-rational yelIrr (G) is equal to the number of conjugacy classes,
2", such that 2* € .97 whenever xe.22. We claim that these can
only be the p-regular classes.

Suppose 2 is p-singular and y € G with 2¥ = 2*. Let we {x) with
o(w) = p so that u? = u*. Since (o) permutes the primitive pth
roots of unity transitively, we conclude that &k is a multiplicative
generator of the group of nonzero integers mod p. It follows that
all elements of (u) are conjugate in {u, y> = H and thus H/C(u)
is a Frobenius group of order p(p — 1). This contradiction shows
that the number of p-rational y e Irr (@) is not more than the number
of p-regular classes. Now | $“(G)| = |IBr (G)] is equal to the number
of p-regular classes. The result follows.

Combining the information in Theorem 5.4 with our main results,
we obtain the following.

COROLLARY 7.8. Let G be p-solvable with p + 2 and let y e A(G).
Then there exists U = G and ne SP(U) such that x = 7° and p f 7(1).

Proof. We may suppose p | x(1). Then y*eIBr(G) and p|x*(1)
and by Theorem 5.4, there exists N <]G such that (}¥*)y is not
homogeneous. Let # be an irreducible constituent of yy. Since
0* e IBr (N), it follows that 6 is not invariant in G. Let T =
{ge€G|6° = 6} < G and choose + € Irr (T) with ¢ = y and [y, 6] = 0.
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By Theorem 7.5, yre &#(T). Since T < G, induction on |G| yields
the result.

We close this section with the observation that if G is p-solvable
with p # 2, then the subnormally p-rational characters can be located
in the character table of G. Certainly, the p-rational characters can
be found. Also, the p-regular classes can be identified (see Theorem
2.5 in [8]) and thus the funections ¥* can be constructed for y € Irr (G).
We have

COROLLARY 7.9. Let G be p-solvable with p # 2. Let y€lIrr (G)
be p-rational. Then ye SP(G) iff x* is not of the form >, ayy™ for
p-rational € Irr (G) with (1) < (1) and ay = 0, integers.

8. Solvable groups. In this section we use some of the deeper
properties of solvable groups to obtain a partial answer to Question
7.4.

THEOREM 8.1. Let G be solvable and suppose p = 2. Let H< G,
x € Irr (G) and elrr (H). Suppose 2 f y(1).

(a) If yve P(H) and x = ¥, then e .F(G).

(b) If y€ (@) and v = Yy, then e F(H).

To prove this theorem we will use the main result (Theorem
9.1 and Corollary 9.2) of [7]. We state part of it here.

THEOREM 8.2. Let L < K < G with L <|G and K/L abelian of
odd order. Let 6¢clrr (K) be invariant in G and suppose 0, = ep
with pelrr (L) and & =|K:L|. Then there exists US G and
o character, B, of G such that

(a) UK=G, UnK=1L;

(b) 1B} = 1Cxru(9)]| for all geG;

(c) the equation Yy = ByE defines a one-to-one correspondence
between {yelrr (G)|[xx, 6] # 0} and {£elrr (U)| [, @] # 0} and

(d) if % = ByE as in (c), then £° = By.

THEOREM 8.3. Let G be solvable and let H be a maximal sub-
group. Suppose 2y |G: H|. Let L = corey(H) and let K/L be a
chief factor of G. Suppose xelrr(G) and € lrr (H) and let ¢ be
an trreducible constituent of ;.

(a) If x = v° then @ is not invariant G.

(b) If yx =+ and @ is invariant in G, then @ is extendible
to K.

Proof. Since G is solvable, K/L is an abelian g¢-group. We
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have G = KH and L = KN H. Since 2} |G: H|, we have ¢q # 2.
Now CL(K/L) <] G and so Cyx(K/L) = L. We may assume H ¢ G and
thus H> L. Let R/L be a chief factor of H. Let C = [K, R]L.
Since R <| H, it follows that C <] G. Since RZ L = Cyx(K/L), we
have C > L and thus C = K. It follows that if aelrr(K/L) is
fixed by R, then A = 1,. Also R/L is an r-group with » = gq.

Suppose U = G with UK=G and UN K=L. Then (UN RK)/L¢
Syl, (RK/L). If we replace H by a conjugate, we may assume that
UN RK = R and thus H = Ny(R) = U.

Now assume @ is invariant in G. By the “going up theorem”
(Proposition 3 (2) of [6]) there are two possibilities: (i) »* = ef with
¢ =|K:L| and 6¢clIrr(K) or (ii) ¢ is extendible to K.

Suppose (i) ocecurs. Then 6, = ep and Theorem 8.2 applies. We
may assume that the subgroup, U, in the conclusion of that theorem
is H. We have ¥, = B¢ for some & e Irr (H) with [£,, ] = 0. Also,
w6 =By for some nelrr(G) with [9g 6] 0. If + = xu then
v = Byt and Byelrr (H). If y =% then x =By and Belrr (G).
In either case gelrr (G) and [BB, 1,] = 1.

Conclusion (b) of Theorem 8.2 asserts that 55 is the permutation
character of G acting on all of the elements of K/L. This action
cannot be transitive since the identity of K/L is a fixed point. This
contradicts [88, 14] = 1.

We conclude that (ii) occurs and @ is extendible to K. This
completes the proof of (b). We assume that y = 4° and obtain a
contradiction to prove (a).

We have ¥z = (v%)x = (4,)* which is a multiple of ®*. It fol-
lows that the | K: L| distinct extensions of @ to K are transitively
permuted by G and hence by H/L. Since R<]H and r +# q, it
follows that R fixes all of the extensions of ¢ to K.

Let 6, # 6, be two extensions of @. Then 6, =\, for some
unique A€ Irr (K/L) with N % 1. It follows that R fixes A and this
is the desired contradiction.

Before proceeding with the proof of (8.1), we observe a con-
sequence of Theorem 8.3(a).

COROLLARY 8.4. Let G be solvable and suppose Y €lrr (@) is
quastprimitive with 2 f x(1). Then ¥ is primitive.

This result was recently proved by T. R. Berger without as-
suming 2 } x(1).

Proof of Theorem 8.1. We may assume that H is a maximal
subgroup. Let L = core,; (H) and let @ be an irreducible constituent
of 4;. In either situation (a) or (b) we have [, #] #0. Let T =
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{geGlp* =9} and S=HNT. Let éelrr(T) with & =y and
[6, #] # 0 and 7 elIrr (S) with »7 =+ and [%;, ] # 0.

Now assume % =y and e S7(H). Since 2} x(1), we have
2 ) |G: H| and hence T'< G by Theorem 8.3(a). Also 7° =y and it
follows from Lemma 4.4, that 7" = &. Further, 2 t §(1). By Theorem
7.5, ne &”(S). Working by induction on |G| and using T < G, we
have & =7"e.o”(T). Another application of Theorem 7.5 yields
y€.“(G), as desired.

Now suppose ¥, = v and ye $°(G). By Mackey’s theorem, ({5)%
is a constituent of (5%, = +». It follows that (¢5)” = + and thus by
Lemma 4.4, & =7%. Now &e.9”(T) and if T <G, the inductive
hypothesis yields ne &7(S) since 2 y £(1). Therefore e S (H) as
desired.

We now consider the remaining case, where @ is invariant in G.
Let K/L be a chief factor of G so that K/L is an abelian g¢-group,
KH=Gand KN H = L. Let 6 be an irreducible constituent of ¥,
so that [0, #] = 0. We claim that 6, = ¢. If ¢ = 2, this follows
from Theorem 8.3 (b). If ¢ =2, then 6(1)/»(1) is a power of 2.
Since 6(1) | x(1), it follows that 2 ) (1) and hence (1) = ¢(1). If 4
is invariant in G, the result follows from Theorem 7.6.

Assume then, that W = {ge G | §° = 6} < G and choose a € Irr (W)
with af = y and [ag, 0] = 0 so that e« € .~ (W). Let V= WnNH and
B = ay so that % = (a%), = ¥. Thus Belrr(V) and by the inductive
hypothesis, £€.(V). Now +¢.“(H) by part (a) and the proof is
complete.

9. Example.

THEOREM 9.1. Let p = 2. The following situation cam occur:
(a) G s p-solvable, N<]G, p t|G: N|,

(b) yelrr (@), y*<lBr(G),

(¢) Ay =0¢elrr(N), 6*¢ IBr (N),

(d) @ is p-rational and

(e) mo irreducible constituent of 6% is p-rational.

Proof. Let A be abelian of order p(p — 1)* with A = {z, u, v),
o =yt ="' =1. Let acAut({(x)) of order p — 1 and define
o€ Aut (4) by 2° = 2%, u° = wv and v° = v so that o(c) = p — 1. Let
G = A x|{o), the semi-direct product.

Define rnelrr(4) by Ma) =¢ =7, Mu) =1 and Mv) =06 =
e~ Tet y = A% Note that » has p — 1 distinet G-conjugates
and these take on distinct values at x and at w. It follows that
Yz €lrr (H) where H =< u,v,0) and also yy = 6eclrr(N) where
N = {»,v,0). Since H is a p’-group, we have x*eIBr(G). Since
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G =<z, v) < N, we have N <QG.

Now N’ = <x) = 0,(N) & ker ¢ for any peIBr(N). It follows
that ¢(1) =1 and thus 6* ¢ IBr (N). Parts (a), (b) and (c) have now
been proved.

Note that 6 = (\,..,)¥ and thus @ vanishes on N — <v, 2). We
compute H(va’) = 6 >iotet = —6°eQ[d]. It follows that 6 is p-
rational.

Let 4 be an irreducible constituent of 6. Then + = vy for
some 7velrr(G/N) and thus ¥, = YyXy is irreducible and hence
J*eIBr (G). Since 6* ¢ IBr (N), it follows from Theorem 1.2 that
v is not p-rational. (Or compute +(xw) and observe that it does
not lie in Q[d].) This completes the proof.

In the notation of Theorom 9.1, if y were p-rational, then (b)
and (c) could not both hold. If §e .&”(G) then (e) could not hold.
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