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ABIAN’S ORDER RELATION AND ORTHOGONAL
COMPLETIONS FOR REDUCED RINGS

W. D. BURGESS AND R. RAPHAEL

Chacron has shown that, in a ring R, the relation “a =
b iff ab = a*’, first studied by Abian, is an order relation iff
R is reduced (has no nilpotent elements). Let R be a reduced
ring with 1, a set X in R is orthogonal if ab =0 for all a #
bin X and R is orthogonally complete if every orthogonal
set in R has a supremum with respect to “<”. A strongly
regular ring is shown to be right (and left) self-injective iff
it is orthogonally complete. If R C S are reduced rings, S is
an orthogonal extension of R if every element of S is the
supremum of an orthogonal set in E; an orthogonal extension
which is complete is an orthogonal completion. Completions
are unigue if they exist. An example shows that not all
reduced rings have completions but if R is strongly reguiar,
its complete ring of quotients, Q(R), is its completion.
Further, if R is reduced, Baer and such that Q(R) is strongly
regular then K has a completion which is a partial ring of
quotients.

1. Orthogonal completeness and injectivity. The usual order
relation in a Boolean ring extends to reduced rings R when expressed
as: a = b iff ab = ¢* ([1] and [5]). In what follows all rings referred
to will be reduced (i.e., 0 is the only nilpotent element) and with 1.
The basic facts about reduced rings required below can be found in
[13] and some of these are quoted here for convenience. If XC R
then the left and right annihilators of X coincide and will be denoted
Ann, X or Ann X. Also the left and right singular ideals are always
trivial and, so, the left and right complete rings of quotients, Q,(R)
and Q,.(R), are always regular. Further, Q,(R) = Q.(R)( = Q(R)) iff
aRNbR =0 implies ab =0 for all a,be R. In this case Q(R) is
strongly regular (i.e., Q(R) is also reduced). We note also that all
idempotents of a ring R are central and that if R is strongly regu-
lar it is duo (i.e., all one-sided ideals are two-sided).

The order relation on a ring B makes R into a partially-ordered
multiplicative semigroup since ¢ < b and ¢ < d imply ac < bd ([5]).
Also, if ¢ < b in R then ab = ba for o < b implies that (ab — ba)® =
0. Hence all order properties are right-left symmetric.

In the sequel, if X is a subset of a ring R, sup, X or sup X
will always refer to the supremum with respect to “<”. It is shown
in [2] that there is an infinite distributive law in reduced rings.
That is, if X C R and sup X = a exists then for any be R, sup bX =

55



56 W. D. BURGESS AND R. RAPHAEL
ba and sup Xb = ab. This is a very useful tool.

LEMMA 1. If R is a ring and X a subset such that for each
reX, " =1z (some fixed integer n) and if sup X =y exists then
y" =y. In particular the supremum of a set of idempotents, if it
exists, 1s an tdempotent.

Proof. By the infinite distributivity y"=y"""(sup X)=sup (y" ' X).
But since y =sup X and z" =2 for all ze X, y" 'z =2" =2 and
supy" X =sup X = v.

The following theorem is not only of independent interest, giving
the result of Brainerd and Lambek [4] on Boolean rings as a special
case, but is also a tool in the remainder of this article. Recall that
a subset X of a ring R is orthogonal if ab = 0 for all a,be X, a +
b. R is orthogonally complete iff every orthogonal set in B has a
supremum. The idea of orthogonal completeness is more useful than
completeness for rings which are not Boolean since rings which are
not Boolean are rarely complete; the only field which is complete is
Z,. However, there are interesting orthogonally complete rings such
as products of domains. Orthogonal completeness was one of two
conditions Chacron, generalizing Abian’s theorem, used to characterize
direct products of division rings. What follows arose from an at-
tempt to characterize orthogonally complete rings and to generalize
the theorem of Brainerd and Lambek ([4]) on the complete ring of
quotients of a Boolean ring.

THEOREM 2. A strongly regular ring R is right self-injective
if it 1s orthogonally complete.

Proof. The proof which follows is a direct one but a proof, of
about the same length, using the sheaf representation of Pierce ([11])

is also possible.
For one direction we need the following lemmas.

LEMMA 3. Let R be a Baer ring (every anninilator is generated
by an tdempotent). If X is a subset of R with an upper bound
a € R then sup X = a — ae where e is the idempotent so that Ann X =
eR.

Proof. For ze X, x(a — ae) =a* so a — ae is also an upper
bound for X. If b is any upper bound, z(b — a) =0 for all xe X
and so b—a =er for some r€R. Then, (¢ — ae)b =(1 — e)ab =
L —e)ad —a) +a*) = (1 — e)a* = (@ — ae)* (using throughout that
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idempotents are central). Hence a — ae < b.

LeMMA 4. Let R be a Baer ring such that aR N bR = 0 implies
ab = 0. Then every idempotent of Q(R) is in R and the Boolean
algebra of idempotents of R is isomorphic to the complete Boolean
algebra of annthilator ideals of R.

Proof. In [12, Lemma 1.6] it is shown that for a commutative
Baer ring R, R contains all the idempotents of Q(R). Since, here,
Q(R) is duo, a trivial modification of the proof gives the result in
the present situation. For the rest, the arguments of [10, §2.4],
for the commutative case carry over without change.

We can also note that, in general, if sup X = o exists then
Ann {¢} = Ann X. Indeed if ra = 0 then suprX = ra =0 and rX =
{0} and if »X = {0}, suprX = ra = 0. Conversely, if a is an upper
bound for X and Ann{a} = Ann X then a is the supremum. For if
b is another upper bound, X(¢ — 8) =0 so a(a — b) =0 and e < b.

Returning now to the proof of the theorem, let R be right self-
injective. If X is an orthogonal subset of R, I = X,y R is a direct
sum and ¢: I — R defined by ¢(x) = 2* for all x e X, is an R-homomor-
phism. Hence there is a € R so that ¢(x) = ax = 2* for all ze X. It
follows that a is an upper bound for X and by (8) and (4) X has a
supremum.

Conversely, if R is orthogonally complete and ¢:I— R an R-
homomorphism where I is a large right ideal then we with to lift ¢
to an endomorphism. (It suffices to consider large right ideals by,
for example, [10, Exercise 4, p. 93].) Let X be a maximal orthogonal
set in 7; it is easily seen ([14]) that @,.x xR is also large. Indeed,
if 0= re R there is se R with 0 rsel. But, by maximality of
X, for some x€ X, rsx = 0 and since a strongly regular ring is duo,
rsx € 2R.

Now for each x€ X let ¢, be its corresponding idempotent, e, =
xx’ = 2’z where 2%’ =, 22 =2'. If ¢(e,) = a,, the set {a,},ex is
orthogonal since for z # y, a,a, = ¢(e,)é(e,) = d(e)e.d(e)e, = a,ae.e, =
a.ax'zyy’ = 0. Put @ = sup{a,}. For all e X it will be shown that
ae, = a,e,. For y # 2z in X,

a,e. = g(ee. = g(e,)e,e, = 0 ;
hence,
ae, = sup {a,e,} = sup {0, a.e.} = a.e. .
The result now follows since ¢(x) = ¢g(e,)xr = a,x = a,e,x = ae,x =

ax and multiplication by a and the homomorphism ¢ coincide on the
large right ideal @,.x zR.
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COROLLARY 5. A Boolean ring B 1is orthogonally complete iff
it 18 self-injective iff it is complete.

The equivalence “self-injective iff complete” was first proved by
Brainerd and Lambek in [4].

Proof. Only the implication “orthogonally complete implies com-
plete” needs to be proved. If X is a subset of B, let Y be a maximal
orthogonal subset of XB with supremum a. If for some zc X,
xa # x then for all ye Y, y(xa — x) = 0. This contradicts the maxi-
mality of Y so a is an upper bound for X. However, any upper
bound of X is easily seen to be an upper bound of Y so a is the
supremum of X.

COROLLARY 6. (Renault [13]). A strongly regular ring is left
self-injective tff it is right self-injective.

Proof. “Orthogonally complete” is right-left symmetric.

In [6] Connell shows that if a commutative ring R has certain
roots of unity, the set R, = {re R|+»" = r}, where ¢ is a prime power,
forms a ring with the multiplication of R and « suitable addition.
If R is orthogonally complete, (1) shows that each R, will be or-
thogonally complete. But when R, is a ring it is regular so, when
this occurs, if R is orthogonally complete then R, is self-injective.
In particular, if R is self-injective so is each of the rings R,.

There is another class of rings which is easily seen to consist of
orthogonally complete rings. This extends the fact that a finite
Boolean ring is complete.

LEMMA 7. The supremum of every finite orthogonal set in a
ring R exists and 1s the sum of its elements.

ProposiTiON 8. If R ts a reduced ring with ascending chain
condition on annihilator ideals then R is orthogonally complete.

Proof. Let {a,},c. be orthogonal with 4 well-ordered. For each
jedput I; ={reR|ra, =0 for all £ > j}. Since R is reduced this
is a properly ascending chain of annihilators forcing 4 to be finite.
Then, (7) gives the result.

From this one can see that there are orthogonally complete rings
which are not Baer, any Noetherian ring which is not Baer will do.
For example B = Z[x, y]/(xy).
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2. Orthogonal extensions and completions. The aim of this
section is to investigate when a ring R (always reduced) may be
embedded into an orthogonally complete ring S so that each element
of S is the supremum of an orthogonal set in R.

DEFINITION 9. If R & S are rings then S is called an orthogonal
extension of R if every element of S is the supremum of an orthogo-
nal set of R. If Rc .S is an orthogonal extension so that S is or-
thogonally complete then S is called an orthogonal completion of R.

LEMMA 10. If Rc S is an orthogonal extension thew S 1is iso-
morphic over R to a subring of Q.(R)N Q,(R) = L(R) (L(R) s the
maximal two-sided ring of quotients ([9])).

Proof. Since the singular ideals are zero it suffices to show that
S is a right and left essential extension of R. But for 0% seS,
a < s for some 0% aecS, a any nonzero element of an orthogonal
set in R of which s is the supremum, and then 0 % as = sa = a’.

Although L(R) can be seen to be reduced, it is not known to us
if it is orthogonally complete so, in what follows, we will now assume
that our rings R are such that Q.(R) = Q(R) = Q(R) is strongly
regular; i.e., aRNbR = 0 implies ab = 0 for all a, be R ([13]). Of
course any commutative or duo ring has this property.

LEMMA 11. Let X C R be such that sups X = a exists, then
SUDPep X = Q.

Proof. If supp, X = @ and supey X = ¢ then ¢ <a. Let D be
a large right ideal so that ¢D & R. For each de D, X(a — q). =0
80, since Anng {a} = Ann; X, a(a — q)d = 0. Then a* = aq and ¢ =< q.
From this it follows that when dealing with rings between R
and Q(R) it is not necessary to consider in which ring a supremum
is found. That is, if X is a subset of B with supremum ¢ in Q(R),

then for a ring S, R & S & Q(R), sups X exists if, and only if, ¢e S.

THEOREM 12. Let R be reduced and such that aR N bR = 0 im-
plies ab = 0. Then R has maximal orthogonal extensions in Q(R)
which have no proper orthogonal extensions, and R has a unique
smallest extension Cp in Q(R) which is orthogonally complete.

Proof. The existence of maximal orthogonal extensions follows
by Zorn’s lemma and the rest is a consequence of the fact that
“orthogonal extension” is transitive. Indeed suppose R < S and S &
T are orthogonal extensions and te 7. Now ¢ =sup X for some
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orthogonal Y, in R. Then U,.x Y. is orthogonal. For, suppose
yeY, zeY,, v+ a, then yrza’ = y*%?. But, using the fact that
Q(R) is duo we get yxaxr’ = 0. Hence y*2* = 0 and using again that
Q(R) is duo we get (yz)) = 0 and yz = 0.

Next, t =suplJ, Y,. We have t =« =y for eachzec X, yeY,.
Hence ¢ is an upper bound. If ¢’ is another, ¢’ = y for each yecY,
(for each x€ X) so t' = x. Then ¢’ = &.

To find a minimal extension which is orthogonally complete, put
C.=MNS for all S, RS S< Q(R), so that S is orthogonally com-
plete. By (11), C; is also orthogonally complete.

Clearly any orthogonal extension is in C, and any orthogonal
completion must be Cp. This shows the uniqueness of orthogonal
completions if they exist.

ExAMPLE 13. Let R be the ring of all continuous real-valued
functions on [0, 1]. It will be shown that R does not have an or-
thogonal completion. By [8, p. 14], Q(R) is the ring of equivalence
classes of continuous functions on dense open subsets of [0, 1].

An orthogonal set in R is simply a set of functions whose sup-
ports are pairwise disjoint. It is clear that if ¢ = sup{f.}, where
{f.} is an orthogonal set in R of more than one nonzero element,
then ¢ coincides with f, on the intersection of the domain of g with
the support of f, and so ¢ must have values arbitrarily close to 0.
Hence an element of Q(R) bounded away from 0 cannot be the su-
premum of a nontrivial orthogonal set in R. Now let {f,} be, for
example, the sequence of functions whose graphs are:

Yn+1) 1n
Fig. 1

Let ¢ = supe, {f»}. Since ¢¢ R neither is ¢ + 1 where 1 is the con-
stant function. But ¢ + 1 is bounded away from 0 and must be in
any ring between R and Q(R) which contains q.

The next results concern rings having orthogonal completions.

THEOREM 14. Let R be a strongly regular ring with complete
ring of quotients Q(R). Then Q(R) is the orthogonal completion of R.
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Proof. Let D be a large (right) ideal of R and S a maximal
orthogonal set of idempotents in D, then Ann S = 0. Indeed if S =
0 then z = 2% for some v and put ¢ = ¢ = a2y = yx. Now if eD =
0, ed = 0 for some idempotent d e D and edS = 0 would mean that
S U {ed} would contradict the choice of S. Hence e¢D = 0 which im-
plies ¢ = 0 and hence z = 0.

Now suppose g€ Q(R) and D a large ideal of R so that ¢D & R.
Let S be a maximal orthogonal set of idempotents from D. By the
above, SR is large. Now ¢S is an orthogonal set in R and suppose
SUPo @S = s. As shown in (4), Q(R) is Baer and so supex S is an
idempotent with trivial annihilator (as in the remark following (4)).
Hence supenr S =1. Then, supewx ¢S = ¢ SUbPem S = ¢. Hence Q(R)
is an orthogonal extension of R which by (2) is orthogonally complete.

LEMMA 15. Let R be a Baer ring and B(R) its Boolean ring
of idempotents. Then if I is a large ideal of B(R), a maximal
orthogonal set from I has trivial annihilator in R.

Proof. Let I be large in B(R) and S a maximal orthogonal set
from I. If I =0 for some r ¢ R, there exists q € Q(R) with r’q = r.
Put f= f* = rqe B(R), since idempotents in Q(R) are in R. Now
/S =0 which implies f =0 and » = 0.

PROPOSITION 16. Let R be a reduced Baer ring where aR N bR =
0 ivmplies ab=0. Then R is orthogonally complete 1ff for every
large ideal I of B(R) and fe Homy (IR, R) there is a € R with fle) =
ea, for all ecl.

This proposition says that R is orthogonally complete when cer-
tain elements of Q(R) are, in fact, in R. This will be exploited later.

Proof. Suppose R orthogonally complete. Let S be a maximal
orthogonal set in I. Since Ann, S =0 and SR is an ideal of R, SR
is large. Now f(S) is orthogonal so let a be its supremum. Thus
fe) < a for all ec S and, therefore, f(e) = f(e)e < ae. Also, f(e')e =
fe) for all e, ¢’eS since if ¢ = ¢ we have equality and if ¢ # e,
f(€)e = 0. But, sup (f(S)e) = (sup f(S))e = ae and so ae < f(e) for
all ec S. Combining the inequalities we have f(¢) = ae for all ec S.
Since Ann, S = 0, f, as an element of Q(R), equals a and f(e) = ae
for all ee I.

Conversely, let S be an orthogonal set in B. Then SQ(R) is an
ideal in Q(R) and SQ(R) @ J is large for some ideal J of Q(R). Let
I be the set of idempotents of SQ(R) P J, I is a large ideal of B(R).
In fact, I S (SQ(R) N R) @ (J N R) since an idempotent in I is a sum
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of an idempotent in SQ(R) with one in J. Hence IR S (SQ(R) N R) D
(/N R). Define 6:(SQRYNR)YDINR)—R by 0|, =0 and for
se S, 0(s) = s*. This is well-defined since S is orthogonal. Let f =
0|;z- By hypothesis there exists a € B so that f(e) = ea for all ecl.
For se S, s = s%¢ for scme qe Q(R) and sq = ec I. Therefore, s* =
0(s) = O(es) = eas = as. Hence S has an upper bound in R and then,

since it is Baer, a supremum.

LEMMA 17. The set & of right ideals of R which contain sets
of tdempotents with trivial annihilator forms a topologizing idem-
potent filter ([3]).

Proof. If D, D,e& with S, =D,N B(R) then S,S,& D, ND,
since idempotents are central and Ann S.S, = 0. If De &, DN B(R) =
S then SRS D and SR is an ideal in &. Hence for ac R, a™'D 2
SR 2 S. Next if De & with S= DN B(R) and J < D is such that
for all deD, d'Je &, then, in particular, for e¢cS, e'Je &. If
S, =e' JNBR), T=U.,.s¢S, S J has trivial annihilator.

THEOREM 18. Let R be a reduced Baer ring so that aR N bR =
0 tmplies ab = 0 and & the filter of right ideals of R which con-
taitn sets of idempotents with trivial amnihilator. Let Q. be the
ring of right quotients associated with %, then Q. 1is the orthogonal
completion of R.

Proof. We will first use the criterion of (16) to show that Q.
is orthogonally complete. Let I be a large ideal of B(R) = B(Q(R)),
fIQ, — Q. and D={relQNR|f{(r)eR}. D is a right ideal of R
and, in fact, De &. Indeed, for ecl, f(ejec Q. so f(e)S,& R for
some set of idempotents with trivial annihilator, S, (i.e., f(e)D’' S R
for some D'e &). Then U..;eS.= D so that De &. Hence there
is a g€ @, so that f|, = q. Hence f(e) = qe for all ecI.

Next, every element of Q. is the supremum of an orthogonal set
in B. Let ge@. then ¢o'DE R for some De ¥ with I = DN B(R)
a large ideal in B(R). By (16), I contains an orthogonal set S with
Ann, S = 0. Then ¢S is orthogonal in R and has a supremum, say
¢, in Q.. Then ge < ¢ for all ecS and so geq = ¢%¢. Hence,
(g¢" — ¢)e = 0 for all ec S and, consequently, q¢' = ¢ giving ¢ < ¢'.
Also, q(ge) = ¢*¢ = (qe)* s0 qe < ¢ for all ec S. But since ¢’ = sup ¢S,
¢ <q. Hence q=¢'.

Finally a remark about orthogonally complete rings.

THEOREM 19. Let R be a reduced ring in which aBRNbOR =0
implies ab =0. If R 1is orthogonally complete then the classical
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ring of right (and of left) fractions Q.(R) exists and Q.(R) = Q(R),
the complete ring of right quotients.

Proof. Since Q(R) is, here, a two-sided ring of quotients of R,
regular elements of R are invertible in Q(R). If qe R, ¢D S R for
some large right ideal D of R. Let S be a maximal orthogonal set
from D, which is easily seen to have trivial annihilator in R and in
Q(R). Put supS =ac R and e is regular since it has the same an-
nihilator in Q(R) as S (remark after (4)). Hence sup¢S = qa and
gac R since ¢S & R. Putting qa = b we get ¢ = ba™". Similarly for
left fractions.

The following shows that the converse of (19) is false, which
leaves open the question: Which rings are orthogonally complete?

ExAMPLE 20. Let R =T[;Z then QR) =1[;Q. Let S =
{xe Q(R)| for almost all 1 I, x,€ Z}. Although Q.(S) = Q(R) = Q(S),
it is easily seen that S is not orthogonally complete and, in fact,
Q(S) is its orthogonal completion.
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