DIFFERENTIAL INEQUALITIES AND LOCAL VALENCY

Q. I. RAHMAN AND J. STANKIEWICZ

An entire function f(z) is said to have bounded value distribution (b.v.d.) if there exist constants p, R such that the equation f(z) = w never has more than p roots in any disk of radius R. It was shown by W. K. Hayman that this is the case for a particular p and some R > 0 if and only if there is a constant C > 0 such that for all z

$$|f^{(p+1)}(z)| \le C \max_{1 \le \nu \le p} |f^{(\nu)}(z)|,$$

so that f'(z) has bounded index in the sense of Lepson.

The fact that f'(z) has bounded index if f(z) has b.v.d. follows readily from a classical result on p-valent functions. In the other direction Hayman proved that if

$$|f^{(n)}(z)| \le \max_{0 \le \nu \le n-1} |f^{(\nu)}(z)|,$$

then f(z) cannot have more than n-1 zeros in $|z| \leq \sqrt{n}/e\sqrt{20}$. Here the order of magnitude is correct in the sense that $\sqrt{n}/e\sqrt{20}$ cannot be replaced by $\sqrt{3}\sqrt{n}$. The result when applied to f(z)-w does show that f'(z) has bounded index only if f(z) has b.v.d. but it is clearly of interest to determine the largest disk containing at most n-1 zeros of f(z). We are able to replace $\sqrt{n}/e\sqrt{20}$ by $\sqrt{n}/e\sqrt{10}$.

The above mentioned result of Hayman appeared in [2]. He did not assume f(z) to be entire but simply regular in |z| < 2n. To be precise he proved [2, Theorem 3] the following:

THEOREM A. If f(z) is regular in |z| < 2n, where it satisfies

$$|f^{(n)}(z)| \leq \max_{0 \leq \nu \leq n-1} |f^{(\nu)}(z)|,$$

then f(z) possesses at most n-1 zeros in

$$|z| \leq \frac{\sqrt{n}}{e\sqrt{20}}.$$

In his proof of Theorem A Hayman made use of the following lemma.

LEMMA A. Let z_{ν} , $\nu=1, 2, ...$, n be complex numbers such that $\max_{1\leq \nu\leq n}|z_{\nu}|=\rho_0$. If

$$\varphi(z) = \left\{ \prod_{v=1}^{n} (1 - z_v z) \right\}^{\varepsilon} = \sum_{v=1}^{\infty} b_k z^k$$

166

and
$$b_1 = \sum_{\nu=1}^n z_{\nu} = 0, \, \varepsilon = 1$$
 or -1 , then

$$|b_k| < (\sqrt{n})^k \rho_0^k, \quad k > 1.$$

The bound in (1.4) is not the best possible and this is one of the reasons why the conclusion of Theorem A is not precise. We observe that (1.4) can be considerably improved, viz. we have

LEMMA A'. Under the hypotheses of Lemma A

$$|b_k| \le \left\{ \sqrt{\left(\frac{n}{2}\right)} \right\}^k \rho_0^k, \qquad k > 1$$

Now Hayman's reasoning itself gives us the following improvement of Theorem A.

THEOREM A'. Under the hypothesis of Theorem A f(z) possesses at most n-1 zeros in

$$|z| \le \frac{\sqrt{n}}{e\sqrt{10}}.$$

This refined version of Theorem A gives corresponding refinements in several of the other theorems proved by Hayman in [2]. For example, Theorems 4 and 6 of his paper may respectively be replaced by

THEOREM 4'. Suppose that f(z) is regular in $|z - z_0| < R$ and satisfies there

$$(CR)^{p+1} \left| \frac{f^{(p+1)}(z)}{(p+1)!} \right| \le \max_{1 \le \nu \le p} (CR)^{\nu} \left| \frac{f^{(\nu)}(z)}{\nu!} \right|$$

with $C \le 1/2$. Then f(z) is p-valent in $|z - z_0| \le CR/\{e\sqrt{10}(p+1)^{1/2}\}$.

THEOREM 6'. Consider the differential equation

$$y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0,$$

in the disk $D_0 = \{z | |z - z_0| < R\}$, where $0 < R \le \infty$ and the functions a_1 to a_n are supposed to be regular and bounded in D_0 . Let t_0 be the positive root of the equation

where

$$\sum_{\nu=1}^{n} \alpha_{\nu} t^{\nu} = 1$$

$$\alpha_{\nu} = \sup_{z \in D_{0}} |a_{\nu}(z)|.$$

If y(z) is a solution of the differential equation then y(z) has at most n-1 zeros in

$$|z-z_0| \le R'_1 = \min \left\{ t_0 \frac{\sqrt{n}}{e\sqrt{10}}, \frac{R}{2e(10n)^{1/2}} \right\},$$

i.e. the differential equation is disconjugate in $|z - z_0| < R'_1$.

DEFINITION. Let \mathscr{P}_n denote the class of polynomials

$$p_n(z) = \prod_{v=1}^n (1 - z_v z)$$

which do not vanish in |z| < 1 and for which $p'_n(0) = \sum_{\nu=1}^n - z_{\nu} \equiv 0$. Lemma A' may now be stated in the following equivalent form.

THEOREM 1. If

(1.7)
$$\varphi(z) = \{p_n(z)\}^{\varepsilon} = \sum_{i=0}^{\infty} b_{k,\varepsilon} z^k$$

where $p_n(z) \in \mathcal{P}_n$ and $\varepsilon = 1$ or -1, then

$$(1.8) |b_{k,\varepsilon}| \le \{\sqrt{(n/2)}\}^k.$$

If *n* is even and $p_n(z) = (1 - e^{i\gamma}z^2)^{n/2}$ where γ is real then $|b_{2,1}| = |b_{2,-1}| = n/2$ which shows that (1.8) is the best possible result of its kind.

The bound in (1.8) is not sharp for $k \ge 3$ and it is clearly of interest to get precise estimates for $|b_{k,\epsilon}|$ for each k. We are able to do it for $k \le 4$.

THEOREM 2. Under the hypothesis of Theorem 1 we have

(1.9)
$$|b_{2,\epsilon}| \le n/2$$
,
(1.10) $|b_{3,\epsilon}| \le n/3$,

$$|b_{4,1}| \le (n^2 - 2n)/8,$$

$$|b_{4,-1}| \le (n^2 + 2n)/8.$$

The example $p_n(z) = (1 - z^2)^{n/2}$ where *n* is even shows that (1.9), (1.11) and (1.12) are sharp. To see that (1.10) is sharp we may consider $p_n(z) = (1 - z^3)^{n/3}$ where *n* is divisible by 3.

The following theorem shows that $|b_{2,\epsilon}|$ and $|b_{3,\epsilon}|$ cannot both be large at the same time.

THEOREM 3. Under the hypothesis of Theorem 1 we have

$$|b_{2,\varepsilon}| + |b_{3,\varepsilon}| \le \frac{25}{48}n$$

$$|b_{2,\varepsilon}| + \frac{3}{4}|b_{3,\varepsilon}| \leq n/2$$

(1.15)
$$\frac{2\sqrt{2}}{3} |b_{2,\varepsilon}| + |b_{3,\varepsilon}| \leq n/2.$$

If k is fixed, k > 4 and n is large, the bound in (1.8) can also be sharpened.

THEOREM 4. Let $p_n(z) \in \mathcal{P}_n$ and λ a real number $\neq 0$. If

$$\varphi_{\lambda}(z) = \{p_n(z)\}^{\lambda} = \sum_{i=0}^{\infty} b_{k,\lambda} z^k$$

then for every given $0 < \delta < \pi$ there exists an integer n_0 depending on λ and δ such that

$$(1.17) |b_{k,\lambda}| \leq 2 \frac{\left(1 + \sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n} - 1}{\left(1 + \sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n} + 1} \left\{ \sqrt{\left(\frac{|\lambda|n}{\delta}\right)} \right\}^{k}$$

provided $n > n_0$.

The proof of Theorem 4 depends on the fact that if $p_n(z) \in \mathcal{P}_n$ then

(1.18)
$$\omega(z) = \frac{1 - \{p_n(z)\}^{1/n}}{z^2}$$

is analytic in |z| < 1 and there exists a positive number ρ_0 independent of n such that

$$|\omega(z)| \leq \frac{1}{2} + \frac{1}{8}|z|^2 + |z|^4$$

for $|z| < \rho_0$. For the study of polynomials $p_n(z) \in \mathcal{P}_n$ it will be very helpful to get precise estimates for $|\omega(z)|$. The example

$$p(z) = (1 - z^2)^{n/2}$$
, n even

shows that

$$\max_{p(z) \in \mathscr{P}_n} |\omega(z)| \geq \frac{1}{2} + \frac{1}{8}|z|^2 + \frac{1}{16}|z|^4 + \frac{5}{128}|z|^6.$$

We prove

THEOREM 5. If $p_n(z) \in \mathcal{P}_n$ then

$$|\omega(z)| = \left| \frac{1 - \{p_n(z)\}^{1/n}}{z^2} \right| \le \frac{1}{2} + \frac{1}{8}|z|^2 + \frac{1}{16}|z|^4 + \frac{3\sqrt{3}}{4}|z|^6$$
at least for $|z| \le 1/2$.

The following corollary is obtained by applying Theorem 5 to the reciprocal polynomial $z^n p_n(1/z)$, and setting $\alpha = z^{-1}\omega(z^{-1})$.

COROLLARY 1. Let
$$p_n(z) = \prod_{k=1}^n (z - \alpha_k)$$

be a polynomial of degree n having all its zeros in $|z| \le 1$. If the centre of gravity of the zeros lies at the origin then for |z| > 2 the equation

(1.21)
$$\sum_{k=1}^{n} \frac{1}{n} \log \left(1 - \frac{\alpha_k}{z} \right) = \log \left(1 - \frac{\alpha}{z} \right)$$

has a solution which satisfies

$$|\alpha| \leq \frac{1}{2|z|} + \frac{1}{8|z|^3} + \frac{1}{16|z|^5} + \frac{3\sqrt{3}}{4|z|^7}.$$

If α_k , k = 1, 2, ..., n are complex numbers of absolute value ≤ 1 and $m_k = p_k/q_k$, k = 1, 2, ..., n are positive rational numbers such that $\sum_{k=1}^n m_k = 1, \sum_{k=1}^n m_k \alpha_k = 0$ then

$$\left\{\prod_{k=1}^n (z-\alpha_k)^{p_k/q_k}\right\}^{q_1q_2\dots q_n}$$

is a polynomial of degree $q_1 q_2 \cdots q_n$ having all its zeros in $|z| \le 1$. Besides, the centre of gravity of the zeros (taking into account their multiplicity) lies at the origin. Hence by the above corollary the equation in α

$$\sum_{k=1}^{n} \frac{p_k q_1 q_2 \cdots q_{k-1} q_{k+1} \cdots q_n}{q_1 q_2 \cdots q_n} \log \left(1 - \frac{\alpha_k}{z} \right) \equiv \sum_{k=1}^{n} m_k \log \left(1 - \frac{\alpha_k}{z} \right) = \log \left(1 - \frac{\alpha}{z} \right)$$

has a solution α which satisfies (1.22) at least for $|z| \ge 2$. It is clear that if some or all the numbers m_k are irrational then we get the same conclusion by a limiting process. Thus we have

COROLLARY 1'. If we have $m_k > 0$, $\sum m_k = 1$, $|\alpha_k| \le 1$, $\sum m_k \alpha_k = 0$, $|z| \ge 2$ (where k = 1, 2, 3, ..., n) then there exists an α such that

$$|\alpha| \le \frac{1}{2|z|} + \frac{1}{8|z|^3} + \frac{1}{16|z|^5} + \frac{3\sqrt{3}}{4|z|^7}$$

with

(1.23)
$$\sum m_k \log \left(1 - \frac{\alpha_k}{z}\right) = \log \left(1 - \frac{\alpha}{z}\right).$$

This result was proved by Walsh (see [4], Lemma 2 and (1.10) on p. 358) except that he had

$$|\alpha| \leq \frac{1}{2|z|} + \frac{3}{2|z|^2}$$

for |z| > 3 instead of (1.22) which we prove to be valid for $|z| \ge 2$. As illustrated by Walsh (see [4], pp. 358–360) such a result is very useful for applications.

2. Lemmas. We shall need the following subsidiary results.

Lemma 1. If

$$f(z) = \sum_{0}^{\infty} a_k z^k$$

is analytic in |z| < 1, where $|f(z)| \le 1$ then

$$|a_0|^2 + |a_k| \le 1, \qquad k \ge 1$$

and

(2.2)
$$\sum_{0}^{\infty} |a_{k}|^{2} \leq 1.$$

For (2.1) we refer to [3, p. 172, exer. #9]. Inequality (2.2) follows from the fact that for 0 < r < 1

$$\sum_{0}^{\infty} |a_{k}|^{2} r^{2k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(re^{i\theta})|^{2} d\theta \leq 1.$$

LEMMA 2. Under the hypothesis of Lemma 1 we have

(2.3)
$$\left|\sum_{0}^{\infty} \frac{a_k}{k+2} z^k\right| \leq \frac{1}{2} |a_0| + \frac{1}{3} (1 - |a_0|^2) |a_0| |z| \quad \text{for} \quad |z| < 1.$$

Proof of Lemma 2. By Schwarz's lemma

$$|f(\zeta)| \leq \frac{|a_0| + |\zeta|}{1 + |a_0||\zeta|}$$

for $|\zeta| < 1$. Hence

$$\left| \sum_{0}^{\infty} \frac{a_{k}}{k+2} z^{k} \right| = \left| \frac{1}{z^{2}} \int_{0}^{z} \zeta f(\zeta) d\zeta \right| \leq \frac{1}{|z|^{2}} \int_{0}^{|z|} |\zeta| \frac{|a_{0}| + |\zeta|}{1 + |a_{0}| |\zeta|} d|\zeta|$$

$$= \frac{1}{2} |a_{0}| + (1 - |a_{0}|^{2}) \sum_{k=1}^{\infty} (-1)^{k+1} \frac{|a_{0}|^{k-1}}{k+2} |z|^{k}$$

$$\leq \frac{1}{2} |a_{0}| + \frac{1}{3} (1 - |a_{0}|^{2}) |a_{0}| |z|.$$

Lemma 3. If
$$g(z) = 1 + \sum_{k=1}^{\infty} \alpha_k z^k$$

is analytic in |z| < 1, where

and

$$(2.5) |g(z)| < M$$

then

$$|\alpha_k| \le 2 \frac{M^2 - 1}{M^2 + 1}.$$

Proof of Lemma 3. The function $G(z) = F^{-1}(w)$ where

$$F(w) = \left\{ \left(\frac{iM - w}{iM + w} \right)^2 - \left(\frac{iM - 1}{iM + 1} \right)^2 \right\} / \left\{ \left(\frac{iM - w}{iM + w} \right)^2 - \left(\frac{iM + 1}{iM - 1} \right)^2 \right\}$$
$$= \frac{1}{2} \frac{M^2 + 1}{M^2 - 1} (w - 1) + \dots$$

maps the unit disk |z| < 1 onto the semicircular disk

$$D^+ = \{ w : \text{Re } w > 0, |w| < M \}$$

such that G(0) = 1, $G'(0) = 2(M^2 - 1)/(M^2 + 1)$. Since the function g(z) maps the unit disk into D^+ and the function G(z) is convex univalent it follows from a well-known result (see e.g. [3], p. 238, exer. #6) that

$$|\alpha_k| \leq |G'(0)| = 2 \frac{M^2 - 1}{M^2 + 1}, \qquad k \geq 1.$$

LEMMA 4. If

$$p_3(z) = \prod_{\nu=1}^3 (1 - z_{\nu}z) = \sum_{0}^3 b_{k,1} z^k \in \mathscr{S}_3$$

then

$$(2.7) |b_{2,1}|^2 + |b_{3,1}|^2 \le 1.$$

Proof of Lemma 4. Let $|z_1| = \max_{1 \le \nu \le 3} |z_{\nu}|$. The polynomial

$$\hat{p}_3(z) = p_3\left(\frac{z}{z_1}\right) = 1 + \hat{b}_{2,1}z^2 + \hat{b}_{3,1}z^3$$

also belongs to \mathcal{P}_3 and $|b_{2,1}| \leq |\hat{b}_{2,1}|$, $|b_{3,1}| \leq |\hat{b}_{3,1}|$. Hence it is enough to prove (2.7) for $\hat{p}_3(z)$. We have

$$\hat{p}_3(z) = 1 - (1 - \hat{z}_2 \hat{z}_3) z^2 - \hat{z}_2 \hat{z}_3 z^3$$

where $|\hat{z}_2| \le 1$, $|\hat{z}_3| \le 1$ and $1 + \hat{z}_2 + \hat{z}_3 = 0$. Since $\hat{z}_2 + \hat{z}_3 = -1$ we may suppose

$$\hat{z}_2 = -a + ib, \hat{z}_3 = -1 + a - ib, \quad 0 \le a \le 1/2.$$

Since $|\hat{z}_3| \le 1$ we have $(1 - a)^2 + b^2 \le 1$, i.e.

$$(2.8) b^2 \le 2a - a^2.$$

We write
$$\hat{z}_2\hat{z}_3 = (-1 + a - ib)(-a + ib) = x + iy$$
, where $x = a(1 - a) + b^2$, $y = b(2a - 1)$.

Then

$$|\hat{b}_{2,1}|^2 + |\hat{b}_{3,1}|^2 = |1 - x - iy|^2 + |x + iy|^2$$

$$= 2(x^2 + y^2 - x)$$

$$= 2\{(b^2 + a(1 - a))^2 + b^2(2a - 1)^2 - b^2 - a(1 - a)\}$$

$$= 2\{(b^2 - a(1 - a))^2 - a(1 - a)\}.$$

In view of (2.8) and since $0 \le a \le 1/2$, we have

$$(b^2 - a(1-a))^2 \le a^2 \le a(1-a),$$

and now Lemma 4 follows.

3. Proofs of theorems.

Proof of Theorems 1, 2, 3. It has been proved by Dieudonné [1, p. 7] that if

$$p_n(z) = \prod_{v=1}^n (1 - z_v z)$$

is a polynomial of degree n with all its zeros in $|z| \ge 1$ then in |z| < 1

(3.1)
$$\frac{p'_{n}(z)}{p_{n}(z)} = \frac{n}{z - \frac{1}{\Psi(z)}}$$

where $\Psi(z)$ is analytic and $|\Psi(z)| \le 1$. We observe that if $p_n(z) \in \mathcal{P}_n$, i.e. $\sum_{\nu=1}^n z_{\nu} = 0$ then $\Psi(0) = 0$ and hence by Schwarz's lemma $\Psi(z) = z\psi(z)$ where $\psi(z)$ is analytic and $|\psi(z)| \le 1$ in |z| < 1. Thus for polynomials $p_n(z) \in \mathcal{P}_n$ the representation (3.1) takes the form

(3.2)
$$\frac{p'_n(z)}{p_n(z)} = \frac{-nz\psi(z)}{1 - z^2\psi(z)}.$$

If
$$\varphi(z) = \{p_n(z)\}^{\epsilon} = \sum_{0}^{\infty} b_{k,\epsilon} z^k$$
 then

(3.3)
$$\frac{\varphi'(z)}{\varphi(z)} = \frac{-\varepsilon nz\psi(z)}{1 - z^2\psi(z)}$$

(3.4)
$$z\phi'(z) = \{z^3\phi'(z) - n\varepsilon z^2\phi(z)\}\psi(z).$$

Setting $\psi(z) = \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu}$ and comparing coefficients on the two sides of (3.4) we get

(3.5)
$$kb_{k,\varepsilon} = \sum_{\substack{v=0\\v\neq 1}}^{k-2} (-n\varepsilon + v)b_{v,\varepsilon}c_{k-2-v}, \qquad k \ge 2.$$

In particular

$$(3.6) 2b_{2\varepsilon} = -n\varepsilon c_0, 3b_{3\varepsilon} = -n\varepsilon c_1$$

which give (1.9) and (1.10) immediately since the coefficients of a function $\psi(z)$ analytic and bounded by 1 in |z| < 1 are themselves bounded by 1.

Again from (3.5) we have

$$4b_{4,\varepsilon} = -n\varepsilon c_2 + (-n\varepsilon + 2)b_{2,\varepsilon}c_0$$

$$= -n\varepsilon c_2 - \frac{1}{2}n\varepsilon(-n\varepsilon + 2)c_0^2 \qquad \text{using (3.6)}$$

$$= -n\varepsilon \{c_2 - \frac{1}{2}(n\varepsilon - 2)c_0^2\}.$$

By (2.1)
$$|b_{4,\varepsilon}| \le \frac{n}{8} \{ (|n\varepsilon - 2| - 2) |c_0|^2 + 2 \}$$

which readily gives (1.11), (1.12) and completes the proof of Theorem 2.

Theorem 3 is an immediate consequence of (3.6) and (2.1).

Now we come to the proof of Theorem 1. From inequalities (1.9)-(1.12) it follows that Theorem 1 holds for $k \le 4$. For a given $n \ge 4$ let (1.8) hold for $k \le j - 1$. We shall show that it then holds for k = j and (for $n \ge 4$) the theorem will follow by the principle of mathematical induction. By formula (3.5) we have

$$|j|b_{j,\varepsilon}| \leq \sum_{\substack{\nu=0\\\nu\neq 1}}^{j-2} |-n\varepsilon + \nu| |b_{\nu,\varepsilon}| |c_{j-2-\nu}|$$

$$\leq (n+j-2) \sum_{\nu=0}^{j-2} |b_{\nu,\varepsilon}| |c_{j-2-\nu}|$$

$$\leq (n+j-2) \left(\sum_{\nu=0}^{j-2} |b_{\nu,\varepsilon}|^2 \right)^{1/2} \left(\sum_{\nu=0}^{j-2} |c_{j-2-\nu}|^2 \right)^{1/2}.$$

Using (2.2) and the induction hypothesis we deduce

$$\begin{split} j|b_{j,\varepsilon}| &\leq (n+j-2) \left\{ \sum_{v=0}^{j-2} (n/2)^{v} \right\}^{1/2} \\ &= (n+j-2) (n/2)^{j/2} \left\{ \sum_{v=0}^{j-2} (2/n)^{j-v} \right\}^{1/2} \\ &< (n+j-2) (n/2)^{j/2} \frac{2/n}{\sqrt{1-(2/n)}} \\ &< j \left(\sqrt{\frac{n}{2}} \right)^{j} & \text{if } j \geq 5. \end{split}$$

This completes the proof of (1.8) for $n \ge 4$. If n = 2 or 3 we argue as follows.

It follows from (2.7) that if

$$p_3(z) \,=\, \sum_0^\infty b_{k,1} z^k \,\in\, \mathcal{P}_3$$

then

$$|b_{2,1}| \le 1, |b_{3,1}| \le 1.$$

Since $|b_{k,1}| = 0$ for $k \ge 4$ we trivially have

$$|b_{k,1}| < \left(\sqrt{\frac{3}{2}}\right)^k, \qquad k \ge 2.$$

From (1.9), (1.10) and (1.12) we have

(3.7)
$$|b_{k,-1}| \le \left(\sqrt{\frac{3}{2}}\right)^k$$
 for $k \le 4$.

Hence (3.7) will be proved for all k if we show that it holds for k = j provided it holds for $k \le j - 2$. So let (3.7) be true for $k \le j - 2$. From the identity

$$\frac{1}{1 + b_{2,1}z^2 + b_{3,1}z^3} \equiv \sum_{k=0}^{\infty} b_{k,-1}z^k$$

we have

$$b_{j,-1} + b_{j-2,-1}b_{2,1} + b_{j+3,-1}b_{3,1} = 0.$$

Using this, Lemma 4, and the induction hypothesis, we deduce

$$\begin{aligned} |b_{j,-1}| &\leq (|b_{j-2,-1}|^2 + |b_{j-3,-1}|^2)^{1/2} (|b_{2,1}|^2 + |b_{3,1}|^2)^{1/2} \\ &\leq (|b_{j-2,-1}|^2 + |b_{j-3,-1}|^2)^{1/2} \\ &\leq \left(\left(\frac{3}{2}\right)^{j-2} + \left(\frac{3}{2}\right)^{j-3}\right)^{1/2} \\ &< \left(\sqrt{\frac{3}{2}}\right)^{j}. \end{aligned}$$

This completes the proof of (1.8) for n = 3.

If

$$p_2(z) \approx \prod_{v=1}^2 (1 - z_v z) \in \mathscr{P}_2$$

then $z_2 = -z_1$. Hence $p_2(z) = 1 - (z_1 z)^2$ and

$$|b_{k,e}| \leq |z_1|^k \leq 1 = \left(\sqrt{\frac{2}{2}}\right)^k, \qquad k \geq 2.$$

Next we prove Theorem 5 since we shall need it (in a weaker form) for the proof of Theorem 4.

Proof of Theorem 5. It was shown by Dieudonné (see [1], p. 7) that if

$$p_n(z) = \prod_{\nu=1}^n (1 - z_{\nu} z)$$

is a polynomial of degree n having all its zeros in $|z| \ge 1$ then

$$\Omega(z) = \frac{1 - \{p_n(z)\}^{1/n}}{z}$$

is analytic in |z| < 1 and $|\Omega(z)| \le 1$. If $p_n(z) \in \mathcal{P}_n$ then $\Omega(0) = 0$ and hence by Schwarz's lemma

(3.8)
$$\omega(z) = \frac{\Omega(z)}{z} = \frac{1 - \{p_n(z)\}^{1/n}}{z^2}$$

is analytic in |z| < 1 and $|\omega(z)| \le 1$. From (3.8) we get

(3.9)
$$\frac{p'_n(z)}{p_n(z)} = \frac{-n\{2z\omega(z) + z^2\omega'(z)\}}{1 - z^2\omega(z)}.$$

The two representations (3.2) and (3.9) for $p'_n(z)/p_n(z)$ give us the identity

(3.10)
$$\{2\omega(z) + z\omega'(z)\} \equiv \{1 + z^2\omega(z) + z^3\omega'(z)\}\psi(z).$$

Setting

$$\omega(z) = \sum_{\nu=0}^{\infty} \alpha_{\nu} z^{\nu}, \quad \psi(z) = \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu},$$

and comparing coefficients on the two sides of (3.10) we get

$$\alpha_0 = \frac{1}{2} c_0, \quad \alpha_1 = \frac{1}{3} c_1,$$

(3.11)
$$\alpha_{\nu} = \frac{1}{\nu+2} c_{\nu} + \frac{1}{\nu+2} \sum_{\mu=0}^{\nu-2} (\mu+1) \alpha_{\mu} c_{\nu-2-\mu}, \quad \nu \geq 2.$$

In particular

$$\alpha_2 = \frac{1}{4}c_2 + \frac{1}{4}\alpha_0c_0 = \frac{1}{4}c_2 + \frac{1}{8}c_0^2,$$

$$\alpha_3 = \frac{1}{5}c_3 + \frac{7}{30}c_0c_1,$$

$$\alpha_4 = \frac{1}{6}c_4 + \left(\frac{5}{24}c_0c_2 + \frac{1}{9}c_1^2 + \frac{1}{16}c_0^3\right),$$

$$\alpha_5 = \frac{1}{7}c_5 + \left(\frac{13}{70}c_0c_3 + \frac{17}{84}c_1c_2 + \frac{157}{840}c_0^2c_1\right).$$

Thus

(3.12)
$$\omega(z) = \sum_{\nu=0}^{\infty} \frac{1}{\nu+2} c_{\nu} z^{\nu} + \frac{1}{8} c_{0}^{2} z^{2} + \frac{7}{30} c_{0} c_{1} z^{3} + \left(\frac{5}{24} c_{0} c_{2} + \frac{1}{9} c_{1}^{2} + \frac{1}{16} c_{0}^{3}\right) z^{4} + \left(\frac{13}{70} c_{0} c_{3} + \frac{17}{84} c_{1} c_{2} + \frac{157}{840} c_{0}^{2} c_{1}\right) z^{5} + \sum_{\nu=6}^{\infty} \left(\alpha_{\nu} - \frac{c_{\nu}}{\nu+2}\right) z^{\nu}.$$

Now let $|z| \le 1/2$. By (2.1) we have

(3.13)
$$\left| \frac{1}{8} c_0^2 z^2 + \frac{7}{30} c_0 c_1 z^3 + \frac{1}{30} c_0 c_2 z^4 \right|$$

$$\leq \left\{ \left(\frac{7}{60} + \frac{1}{120} \right) |c_{0}|^{2} + \frac{7}{60} |c_{1}| + \frac{1}{120} |c_{2}| \right\} |z|^{2} \leq \frac{1}{8} |z|^{2},
(3.14) \qquad \left| \left(\frac{1}{16} c_{0} c_{2} + \frac{1}{16} c_{0}^{3} \right) z^{4} \right| \leq \frac{1}{16} |z|^{4},
\left| \left(\frac{9}{80} c_{0} c_{2} + \frac{1}{9} c_{1}^{2} \right) z^{4} + \left(\frac{13}{70} c_{0} c_{3} + \frac{17}{84} c_{1} c_{2} + \frac{157}{840} c_{0}^{2} c_{1} \right) z^{5} \right|
\leq \left(\frac{9}{640} |c_{2}| + \frac{1}{72} |c_{1}| + \frac{13}{1120} |c_{3}| + \frac{17}{1344} |c_{1}| + \frac{157}{13440} |c_{1}| \right) |z|
\leq \left(\frac{9}{640} + \frac{1}{72} + \frac{13}{1120} + \frac{17}{1344} + \frac{157}{13440} \right) (1 - |c_{0}|^{2}) |z|
(3.15) \qquad \leq \frac{1}{6} (1 - |c_{0}|^{2}) |z|.$$

Using (3.12)-(3.14) and Lemma 2 in (3.12) we get

$$\begin{aligned} |\omega(z)| &\leq \frac{1}{8}|z|^2 + \frac{1}{16}|z|^4 + \frac{1}{2}|c_0| + \frac{1}{2}(1 - |c_0|^2)|z| + \sum_{\nu=6}^{\infty} \left(|\alpha_{\nu}| + \frac{|c_{\nu}|}{\nu + 2}\right)|z|^{\nu} \\ &\leq \frac{1}{2} + \frac{1}{8}|z|^2 + \frac{1}{16}|z|^4 + \sum_{\nu=6}^{\infty} |\alpha_{\nu}||z|^{\nu} + \frac{1}{8}\sum_{\nu=6}^{\infty} |c_{\nu}||z|^{\nu} \,. \end{aligned}$$

But by (2.2)

$$\sum_{\nu=6}^{\infty} |\alpha_{\nu}| |z|^{\nu} \le \left(\sum_{\nu=0}^{\infty} |\alpha_{\nu}|^{2} \right)^{1/2} \left(\sum_{\nu=6}^{\infty} |z|^{2\nu} \right)^{1/2} \le \frac{|z|^{6}}{(1-|z|^{2})^{1/2}} \le \frac{2}{\sqrt{3}} |z|^{6},$$

$$|\omega(z)| \le \frac{1}{2} + \frac{1}{8} |z|^{2} + \frac{1}{16} |z|^{4} + \frac{3\sqrt{3}}{4} |z|^{6}.$$

Hence

$$\sum_{\nu=6}^{\infty} |c_{\nu}| |z|^{\nu} \leq \left(\sum_{\nu=0}^{\infty} |c_{\nu}|^2 \right)^{1/2} \left(\sum_{\nu=6}^{\infty} |z|^{2\nu} \right)^{1/2} \leq \frac{|z|^6}{\left(1-|z|^2\right)^{1/2}} \leq \frac{2}{\sqrt{3}} |z|^6.$$

This completes the proof of Theorem 5.

Proof of Theorem 4. By Theorem 5

$$p_n(z) = \{1 - z^2 \omega(z)\}^n$$

where $\omega(z)$ is analytic in |z| < 1 and

$$|\omega(z)| \le \frac{1}{2} + \frac{1}{4}|z|^2$$
 for $|z| \le \frac{1}{2}$.

If λ is a real number $\neq 0$ and $n > 6/|\lambda|$ then by simple geometrical considerations $\text{Re}\phi_{\lambda}(z) > 0$ if $|z| < \rho_0$ where ρ_0 is the only positive root of the equation

(3.16)
$$\rho^4 + 2\rho^2 = 4\sin\frac{\pi}{2|\lambda|n}.$$

In other words, Re $\phi_{\lambda}(\rho_0 z) > 0$ for |z| < 1. Besides, in |z| < 1

$$|\varphi_{\lambda}(\rho_0 z)| \leq \left(1 + \sin \frac{\pi}{2|\lambda|n}\right)^{|\lambda|n}.$$

Hence by Lemma 3

$$|b_{k,\lambda}|\rho_0^k \le 2\frac{\left(1+\sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n}-1}{\left(1+\sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n}+1}.$$

This gives

$$|b_{k,\lambda}| \le 2 \frac{\left(1 + \sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n} - 1}{\left(1 + \sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n} + 1} \left(\frac{1}{\sqrt{1 + 4\sin\frac{\pi}{2|\lambda|n} - 1}}\right)^k$$

from which the desired result follows at once.

It may be noted that for fixed λ

$$\frac{\left(1+\sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n}-1}{\left(1+\sin\frac{\pi}{2|\lambda|n}\right)^{2|\lambda|n}+1} \to \frac{e^{\pi}-1}{e^{\pi}+1} \text{ as } n\to\infty.$$

4. Some remarks.

REMARK 1. Theorem 2 can be easily extended to read as follows.

THEOREM 2'. Let

$$p_n(z) = \prod_{v=1}^n (1 - z_v z)$$

be a polynomial of degree n not vanishing in |z| < 1 and let

$$p'_n(0) = p''_n(0) = \dots = p_n^{(l)}(0) = 0.$$

If

$$\varphi(z) = \{p_n(z)\}^{\varepsilon} = \sum_{0}^{\infty} b_{k,\varepsilon} z^k$$

where $\varepsilon = 1$ or -1 then

$$|b_{k,\,\varepsilon}| \le n/k \qquad (l+1 \le k \le 2l+1),$$

and

$$|b_{2l+2,1}| \le \frac{n}{2(l+1)^2} (n-l-1), |b_{2l+2,-1}| \le \frac{n}{2(l+1)^2} (n+l+1).$$

For the proof we simply need to observe that in |z| < 1

(4.1)
$$\frac{p'_n(z)}{p_n(z)} = \frac{-nz^l \psi(z)}{1 - z^{l+1} \psi(z)}$$

where $\psi(z)$ is analytic and $|\psi(z)| \le 1$ for |z| < 1.

REMARK 2. The radii of starlikeness and of convexity of the family

$$\{z[p_n(z)]^{\alpha}: p_n(z) \neq 0 \text{ in } |z| < 1, p_n(0) = 1\}$$

were determined by Dieudonné [1] with the help of the representation (3.1) for $p'_n(z)/p_n(z)$. In precisely the same way we may use (4.1) to determine the radii of starlikeness and of convexity of the family

$$\{z[p_n(z)]^\alpha: p_n(z) \neq 0 \text{ in } |z| < 1, p_n(0) = 1, p'_n(0) = 0, p'_n(0) = \dots = p_n^{(l)}(0) = 0\}.$$

We are thankful to Professor Hayman for giving a series of very inspiring lectures on the subject of his paper at the University of Montreal.

REFERENCES

- 1. J. Dieudonné, Sur quelques propriétés des polynomes, Actualités Sci. Indust. No. 114, Hermann, Paris, 1934.
- 2. W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44 (1973), 117-137.
- 3. Z. Nehari, Conformal Mapping, 1st ed., McGraw-Hill, New York, 1952.
- 4. J. L. Walsh, A theorem of Grace on the zeros of polynomials, revisited, Proc. Amer. Math. Soc., 15 (1964), 354-360.

Received June 1972. The work of both authors was supported by National Research Council of Canada Grant A-3081 and by a grant of le Ministère de l'Education du Gouvernment du Québec.

Universite de Montreal