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DIFFERENTIAL INEQUALITIES AND LOCAL VALENCY
Q. I. RAHMAN AND J. STANKIEWICZ

An entire function f(z) is said to have bounded value distri-
bution (b.v.d.) if there exist constants p, R such that the equation
f(2) = wnever has more than p roots in any disk of radius R. It was
shown by W. K. Hayman that this is the case for a particular p and
some R > 0 if and only if there is a constant C > 0 such that for all
2z

e =c [max @),
=v=p

so that f’(z) has bounded index in the sense of Lepson.

The fact that f'(z) has bounded index if f(z) has b.v.d. follows
readily from a classical result on p-valent functions. In the other
direction Hayman proved that if

fP@I= max_ |fPE)

O=v<n-—

then £(z) cannot have more than n — 1 zeros in |z| < /n/e/20.
Here the order of magnitude is correct in the sense that \/n/e+/20
cannot be replaced by \/3/n. The result when applied to f(z) — w
does show that f’(z) has bounded index only if f(z) has b.v.d. but it
is clearly of interest to determine the largest disk containing at
most n — 1 zeros of f(z). We are able to replace \/n/e/20 by
Vn/e\/10.

The above mentioned result of Hayman appeared in [2]. He did not
assume f(z) to be entire but simply regular in |z| < 2n. To be precise he
proved [2, Theorem 3] the following:

THEOREM A. If f(2) is regular in |z| < 2n, where it satisfies

(LD /@l = max 7@,
then f(z) possesses at most n — 1 zeros in
Jn
1.2 < .
(12) g ey/20

In his proof of Theorem A Hayman made use of the following lemma.

LEMMA A. Let z,,v = 1, 2, ... , n be complex numbers such that
max |2, = po. If

I<v<n
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n -}
(1.3) o(z) = {Hl(l -z,2)}° = gbkz"
v=
and bp=2)_,2,=0,e=1 or -—1,then
(1.9 b < (Vn)pl, k> 1.

The bound in (1.4) is not the best possible and this is one of the reasons
why the conclusion of Theorem A is not precise. We observe that (1.4) can
be considerably improved, viz. we have

LemMA A’.  Under the hypotheses of Lemma A
3
2

Now Hayman’s reasoning itself gives us the following improvement of
Theorem A.

k .
(1.5) 16, < pk, k>1

THEOREM A’. Under the hypothesis of Theorem A f(z) possesses at
most n — 1 zeros in

(16) |z] < e“//_’;_o.

This refined version of Theorem A gives corresponding refinements in
several of the other theorems proved by Hayman in [2]. For example,
Theorems 4 and 6 of his paper may respectively be replaced by

THEOREM 4'.  Suppose that f(z) is regular in |z — zo| < R and satisfies

there
p+1 f‘p+‘)(z)
(CR) I (p+1)!

with C < 1/2. Then f(z) is p-valent in |z — z,| < CR/{e\/10 (p + 1)"*}.

< max (CR)"

1<v<p

()
v!

THEOREM 6'.  Consider the differential equation

W +ap P+ +ay=0
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in the disk Dy = {z| |z — 24| < R}, where 0 < R < oo and the functions a, to

a, are supposed to be regular and bounded in D,. Let t, be the positive root of
the equation

where v=1

a, = sup |a,(z)].
ze D,

If y(z) is a solution of the differential equation then y(z) has at most n — 1
zerosin

. R
z-zg < R =m1nt—————‘/;,—————
| o ! 09\/10 2¢(10n) 12

i.e. the differential equation is disconjugate in |z — zo| < R',.
DEFINITION.  LetZ, denote the class of polynomials

p,,(z) = vl;ll(l - sz)

which do not vanish in |z| < 1 and for which pj(0) = Z;_, — z, = 0.
Lemma A’ may now be stated in the following equivalent form.
THEOREM 1. If

a7 0(2) = lpy(2)1* = Dbyt

where p,(2) €, ande = 1 or — 1, then

(1.8) br..| < {V(n/2)}~
Ifnisevenandp,(z) = (1 — €”z*)”*whereyisreal then [b, | | = |by _i |

= n/2 which shows that (1.8) is the best possible result of its kind.
The bound in (1.8) is not sharp for k = 3 and it is clearly of interest to
get precise estimates for |b, | for each k. We are able to do it for k < 4.

THEOREM 2.  Under the hypothesis of Theorem 1 we have
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(1.9) b < n/2,
(1.10) b5 | < n/3,

(1.11) by 1| < (n* — 2n)/8,
(1.12) Ba 1| < (7 + 2n)/8.

The example p,(z) = (1 — z%)"* where n is even shows that (1.9),
(1.11) and (1.12) are sharp. To see that (1.10) is sharp we may consider p,(z)
= (1 — 2*)" where n is divisible by 3.

The following theorem shows that |b, . | and |b; . | cannot both be large
at the same time.

THEOREM 3.  Under the hypothesis of Theorem 1 we have

25
(L13) 16y, + 185 ] < ="
3
(1.14) 66 + 3 183.] < nf2
22
(1.15) —3‘/:lb2,el + byl < nf2.

If k is fixed, k > 4 and n is large, the bound in (1.8) can also be
sharpened.

TueorEM 4. Let p,(z) € &, and \ a real number + 0. If
(116) 02(2) = 1Pa(2))* = Lby 2"

then for every given 0 < 8 <  there exists an integer n, depending on \ and
0 such that

(1 . - )2]/1]71 i
+ sin —— - k
(1.17) bl <2 2|Aln (Iﬂln)
| k,,1| = e 5
1+ sin——) + 1
2|Aln

provided n > ny.

The proof of Theorem 4 depends on the fact that if p,(z) € &, then
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1= {p,(2)}""
2

(1.18) w(z) =

4

is analyticin |z| < 1 and there exists a positive number p, independent of n
such that

(1.19) lw(z)] <

v glal?+ |2l

ts)lv--

for |z| < p,. For the study of polynomials p,(z) € Z, it will be very helpful
to get precise estimates for |w(z)|. The example

p(2) = (1 — 22)"% neven
shows that

max_ |w(z)|

112 4
b e 2 slzl+ Gl -

6
Byl
We prove

THEOREM 5. Ifp,(z) € &, then

1= {p,(2)}'"
22

420 o) - oAt s 2

at least for |z| =< 1/2.

<1 12y
72 8

16

The following corollary is obtained by applying Theorem 5 to the
reciprocal polynomial z" p,(1/z), and setting & = z 7 'w(z™").

CoOROLLARY 1. Let

p,(z) = ﬁ (z - a)
k=1

be a polynomial of degree n having all its zeros in |z| < 1. If the centre of
gravity of the zeros lies at the origin then for |z| > 2 the equation

.21 5 Liog(1-2%) - 1og(1 -2

' K=1n z) T BT Z)

has a solution which satisfies

o < L 4L, 1 : 3\/‘7
2|zl 8|z|*  16]7| 4|z|

(1.22)

Ifay, k = 1,2, ..., nare complex numbers of absolute value < 1 and
mg = pi/qk, k = 1,2, ..., nare positive rational numbers such that 2} _, m;
=1, 2,';,., mioy = 0 then
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n
_ pilax) 9192...qn
FINCRE G

is a polynomial of degree g, ¢, - - - ¢, having all its zeros in |z| < 1. Besides,
the centre of gravity of the zeros (taking into account their multiplicity) lies
at the origin. Hence by the above corollary the equation in a

¢ Prd192 9k-19k+1" In log(l _ﬁ) =
k=1 qlqz...qn z

o 23 a
Y mklog(l ——-—-) = log(l ——)
k=1 z z

has a solution a which satisfies (1.22) at least for |z] = 2. It is clear that if
some or all the numbers m, are irrational then we get the same conclusion
by a limiting process. Thus we have

CoRrOLLARY I'.  Ifwe havem;, > 0,Zmy = 1, Jay, | < 1, Zmy ey = 0, |2
=2 (wherek = 1,2, 3, ..., n) then there exists an a such that

(122) [alsi+ 13+ 15-0-3‘/:‘;7
2|zl 8|z 16]z]° 4|z

with
(1.23) kalog(l —%) = log(l —f) .

This result was proved by Walsh (see [4], Lemma 2 and (1.10) on p.
358) except that he had

1 3
t o3
20z] 22|

for |z| > 3 instead of (1.22) which we prove to be valid for |z] = 2. As
illustrated by Walsh (see [4], pp. 358-360) such a result is very useful for
applications.
2. Lemmas. We shall need the following subsidiary results.
LemMa 1. If
f(z) = %akzk

is analytic in |z| < 1, where |f(z)| < 1 then
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(21) lagl? + la,l <1, k=1
and

For (2.1) we refer to [3, p. 172, exer. #9]. Inequality (2.2) follows from
the fact thatfor0 <r < 1

V. 122k 1 (= 012
a = — <
Zol fr 2”j'_nlf(re )°de < 1.

LEMMA 2. Under the hypothesis of Lemma 1 we have

o

e

0o k+2

2.3)

S%laol+%(l—la0|2)|a0||zl for |2 < 1.

Proof of Lemma 2. By Schwarz’s lemma

laol +1¢]

IF(O)] <
| 1+ lao”d

for |§] < 1. Hence

y ok

0 k+2

1+ |agl|¢]

5 A0 dc] ol dlcl

2 70

ol + (1~ laf?) 3 (1% laol ™

kz'zl

Nlr—l

1
< 2lagl + 3 (1 - lagl")lagll2].
Lemma 3. If w
g(z) =1+ Z ayz*
k=1
is analytic in |z| < 1, where
(24) Reg(z) > 0

and
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25) 5@ <M
then
M? -1
(2.6) a,l <2 .
e M+ 1

Proof of Lemma 3. The function G(z) = F~'(w) where

ro = (3] - (B 1] 1) - ()]

1M +1
2 M -1

(w=1)+ ...

maps the unit disk |z| < 1 onto the semicircular disk
D* = {w:Rew >0, |w| < M}

such that G(0) = 1, G’(0) = 2(M? — 1)/(M* + 1). Since the function g(z)
maps the unit disk into D* and the function G(2) is convex univalent it
follows from a well-known result (see e.g. [3], p. 238, exer. #6) that

2
el < 16'(0)] = 2L =1 k> 1.
M +1
Lemma 4. If
3 3
p;3(z) = H1(1 -2,2) = Lby 2k e R
v= 0
then
2.7 21> + by P < 1.

Proof of Lemma 4. Let|z|| = max |z,|. The polynomial

N z 2 7
p3(z) = Ps(Z) =1+ b2,122 + 173.123

also belongs to % and |b, || < |b, 1}, |b51| < |bs, |- Hence it is enough to
prove (2.7) for p;(z). We have

p3(Z) =1- (1 — 2223)22 - 222323
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where |2, = 1, || < 1and | + 2, + 23 = 0. Since 2, + £, = — 1 we may
suppose

SHh=—a+ibi=—1+a—ib, 0<a<1,2

Since |2;] =< 1 we have (1 — @) + B> < 1, ie.
(2.8) P <2a-d

We write 2,23 = (=1 + a — ib)(—a + ib) = x + iy, where
x=a(l —a)+ b,y =ba— 1)
Then
o i + b3 =11 — x — iy’ + |x + i
=2(x* 4+ y* — x)
=2{(* + a(1 — a@))* + b*(2a — 1)’ — b* — a(1 — a)}
=2{(¥* — a(1 — a))* — a(l — a)}.

In view of (2.8) and since 0 < a < 1/2, we have

B — a(l — a))’ < a* < a(l — a),

and now Lemma 4 follows.
3. Proofs of theorems.

Proof of Theorems 1, 2, 3. It has been proved by Dieudonné [1, p. 7]
that if

pa(e) = JL(1-2,2)

is a polynomial of degree n with all its zeros in |z| = 1 then in |z| < 1
p',(2) - n
po(z) 1

v (z)
where ¥(z) is analytic and |¥(z)| < 1. We observe that if p,(z) € Z,, i.e.
3)_1z, = 0 then ¥(0) = 0 and hence by Schwarz’s lemma ¥(z) = z{y(z)
where {(z) is analytic and [{(z)| =< 1in |z| < 1. Thus for polynomials p,(z)
€ &, the representation (3.1) takes the form

G.1)

P,(2) _ _—nzy(z)
Pa(z)  1-22(z)
If 9(z) = {p.(2)}* = =F by, .2* then

(3.2)
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(3.3) g(z) _ —enzy(z)
e(z)  1-22y(2)
(3.4) 2¢'(2) = {2 ¢'(2) — nez2 $(2)} Y(2).

Setting Y(z) = 272 ¢, z” and comparing coefficients on the two sides of (3.4)
we get

k-2
(3.5) kb, = 2 (-ne+v)b,,cop_y, k>2.
Vil
In particular
(3.6) 2b)y, = —necy,  3by,=—nec

which give (1.9) and (1.10) immediately since the coefficients of a function
¥(2) analytic and bounded by 1 in |z| < 1 are themselves bounded by 1.
Again from (3.5) we have

i

4by, = —necy + (-ne +2)b, .o

-nec, - % ne(-ne +2)cd using (3.6)

-neley - % (ne = 2)cd}.

By (2.1) "
by | < 3 {(Ine - 2] = 2)|ql? + 2}

which readily gives (1.11), (1.12) and completes the proof of Theorem 2.

Theorem 3 is an immediate consequence of (3.6) and (2.1).

Now we come to the proof of Theorem 1. From inequalities
(1.9)-(1.12) it follows that Theorem 1 holds for k < 4. For a given n = 4
let (1.8) hold for k < j — 1. We shall show that it then holds for k = j and
(for n = 4) the theorem will follow by the principle of mathematical
induction. By formula (3.5) we have

Jj=2
jlbj,gl < Zol-ne + vav,s“cj—Z-vl
v=

vel

j-2
< (n+j-2) Zolbv,eHCj-Z—vl
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< (n +j—2)(i_§2()|bv,e| ) (ZI -2- "')12

Using (2.2) and the induction hypothesis we deduce

Jj=2
jlbj,e| <(n+j-2) {vgo(n/z)villz

-2
(4 -2 (W2Y2( 3 Q)™

(n+J - 2) (2?21

V1 - (2/n)

J
<_](V-;) if j25.

This completes the proof of (1.8) for n = 4. If n = 2 or 3 we argue as
follows.

It follows from (2.7) that if

A

p3(z) = %‘,bk,lzk €A

then ; by | =1, |by, | = 1
Since |b;, || = O for k = 4 we trivially have
k
1b,1] < ( %) , k22

From (1.9), (1.10) and (1.12) we have

k
3.1 1oy 4l < (\/g) for k< 4.

Hence (3.7) will be proved for all k if we show that it holds for k = j

provided it holds for k < j — 2. Solet (3.7) be true for k < j — 2. From the
identity

1 o
2 3 = Zbk,—lzk
L+ b, 42° + by g2 0

we have
bj,—l + bj—2,—lb2,l + bj+3,—lb3,l =0
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Using this, Lemma 4, and the induction hypothesis, we deduce
'bj,~1‘ < ([bj-z,-ﬂz + 'bj~3,-1‘2)1/2('b2,1!2 + 153,1'2)1/2

< (lbj—2,-l|2 + |bj-3,-1|2)1/2

(3" 6 )"
(B

This completes the proof of (1.8) forn = 3.

If
2
py(2) = l:[l(l -z2,2) e AR
then z, = — z;. Hence p,(z) = 1 — (z;2)* and
k 2\

Next we prove Theorem 5 since we shall need it (in a weaker form) for
the proof of Theorem 4.

Proof of Theorem 5. 1t was shown by Dieudonné (see [1], p. 7) that if

n
2y(z) = ] (1-2,)
is a polynomial of degree n having all its zeros in |z| = 1 then

1/n
9(2)_—,1_’___{1’;_(2)‘}_/

is analyticin |z] < 1and |Q(2)| < 1. If p,(z) € Z, then ©(0) = 0 and hence
by Schwarz’s lemma

Q) _1-p, )"

Z 22

3.9 w(z) =
is analytic in |z| < 1 and |&(z)| < 1. From (3.8) we get

(3.9) P'Az) _ -nl2z0(z) + 220'(2))
Py(2) 1-z%w(z) '
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The two representations (3.2) and (3.9) for p’, (2)/p.(2) give us the identity
(3.10) (20(2) + z0'(2)} = {1 + Z20(2) + 20" (2)}1Y(2).
Setting

w(z) = Y a,2%, y(z) = Zocvz",
v=0 v=

and comparing coefficients on the two sides of (3.10) we get

ay = 2cp @ =ic
0 2 0> 1 3 1
1
@G3.1D av=v+2c"+v+2,,z~" (,u+1)a Co2-p> v>2.
In particular
4y =Ly + 2ape =lc2+lc02,
2= 36T %% = 3
a3 ='1'C3+ 7 COCI,
5 30
1 5 1 1
a4=8C4+<24COC2+9C%+1—6‘C3),
1 13 17 157 >
O = —
s=g0+ (Tans gaar o a0 <061
Thus
v 1 1 7
(3.12) w(z) = vgo — cvz"+§c0222+ o — coc;2°
5 1 1 13 17 157
+(—2—4-cocz+§c12+—l—6—cg)z4+(%c0c3+ 72t 5o cozcl) 5
b ¢
+ - ) v,
vgs(a" v+2l®
Now let |z| < 1/2. By (2.1) we have
(3.13) lc522+ 7 —y¢12° + — ¢4y 2t
8 30 30
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7 ) 2 2 2
<L <2
(& + 25) leol® + L lerl + o< leal| 12 < 21al?,
1 1 1
(3.19 I(l6 coc2+ 1¢ cg)z4 < T6—|z|4

|< o CoCy + lcf)z4+<13 coC3 + 17 10y + o 157 cgcl) >

80 9 70 84 840
< (Gslead + 5lerl + oslesl + Tlley] + ey )12
640 1120 1344 ‘1 T3a40

9 1 13 17 157 )
<2+ L .
(640 "7 o0 * i * aao) (U 1ol

G.15) ~leol®) 1l .

O\Ir—t

Using (3.12)-(3.14) and Lemma 2 in (3.12) we get

el o
o)) = L+ L1l s Degh+ = lePylal + T (1ol + 225 ) 1
1.1, 4 v, 13 v
< 4= —_— ol
< 2ol e Lllts Tlall e ] T lall.
But by (2.2)
oo [ [ 6
Selir < (o) ()" s 2,

o)l < 2 djer s Lt s 3B e,

Hence

o0

v < 12 12 6
Y lellzl” < ( >le) (3 o) < I
v=6 v=0

218,
V=6 (1-]z)" " 3

This completes the proof of Theorem 5.
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Proof of Theorem 4. By Theorem 5
Pn(@ = {1 = Ze(2)}"

where w(z) is analytic in |z| < 1 and

lw(z2)] < |2I* for |2| <

[ SR
-hl»—d
N |

If A is a real number #0 and » > 6/[A| then by simple geometrical
considerations Reg, (z) > 0 if |z| < p, where p, is the only positive root of
the equation

3.16 44+ 2p? = 4sin—"—.
(3.16) p*+2p 2l
In other words, Re ¢, (pgz) > 0 for |z| < 1. Besides, in |z] < 1

|A|n
n
lo;(poz)| < (1 + sin —— 2Tl ) .

Hence by Lemma 3

(1+sm d )MI -
2|A|n

k
|bk’;‘lp0 <2 - 2|A|n
(1 + sin ——— ) +1
2|Aln
This gives
2|A|n
(1 + sin =—2— ) -1 k
|6l €2 21An 1
> - 2|An
(1+sm2MI) +1 V1+4sm2]/1| -1

from which the desired result follows at once.
It may be noted that for fixed A

) - 2|iln i
( + sin 2|/1|n) B e 1

n 2]‘”” eu + I

as n — oo,
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4. Some remarks.
REMARK 1. Theorem 2 can be easily extended to read as follows.

THEOREM 2’. Let

P,,(Z) = H (1 —ZVZ)

v=1

be a polynomial of degree n not vanishing in |z| < 1 and let
P =pi(0) = ... =p,P0) = 0.
iIf
0(2) = [pu(2))* = Tby*

wheree = 1 or — 1 then

.| < n/k (+1<k<2+1,

and
16y 0il € —2—(n=1-1), |by,, | S —L—(n+1+1).
20+2,1 21+1)? )5 1b27g, il 2+1)? )

For the proof we simply need to observe that in |z| < 1

@n pa(z) _ _-nz'y(2)
p.(z) 1 -zi+ly(z)

where §(2) is analytic and |[{(z)| < 1for |z| < L.

ReMARK 2. The radii of starlikeness and of convexity of the family

{zlpn @1 : pa(2) # 0 in |z <1, p,(0) =1}
were determined by Dieudonné [1] with the help of the representation (3.1)
for p;,(z)/p.(2). In precisely the same way we may use (4.1) to determine the
radii of starlikeness and of convexity of the family
{dpa @] : pa(2) # Oin |2| < 1, p,(0) = 1, p1(0) =
p:, (O) =..= p,,([)(O) = 0}
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