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TWO RELATED INTEGRALS OVER SPACES
OF CONTINUOUS FUNCTIONS

R. H. CAMERON AND D. A. STORVICK

In this paper the authors evaluate Yeh-Wiener integrals
(which apply to functionals of a variable continuous
function of two arguments) in terms of multiple Wiener
integrals (which apply to functionals of several variable
continuous functions of one argument). First somewhat
specialized cases are given where the multiplicity of the
Wiener integral is finite, and then quite general Yeh-Wiener
integrals are evaluated in terms of limits of n-fold Wiener
integrals as n — co.

Introduction. James Yeh [5]' defined Wiener measure in the
space G,[S] of continuous real valued functions of two variables
defined on the square S:0<s =<1, 0 <t <1 and vanishing whenever
s or t equals zero. More recently James Kuelbs [3, 4] extended
Yeh’s integral to integration over C,[X], the space of continuous real
valued functions on any compact subset X of the plane. Kuelbs
also defined a similar integral over spaces of functions of several
variables and even infinitely many variables [4].

In the present paper we shall consider integration over C,[X]
in the case where X is the rectangle R = {(s, ) |a < s <b,a <t < g8}.
We note that this is closely connected with Yeh’s integral over C,[S]
and that Kuelbs has given a formula for relating integrals over
GC,[R] with integrals over GC,[S], [3, p. 18].

Yeh’s measure as applied to the space

C.[R] = {a(-, -) | %(a, t) = a(s, @) = 0, a(s, ?)
continuous for a <s<h, a =t < B}

is defined as follows. Let a =5, <s < ++-<s8,=0b, and a =¢, <
t, < +-+ <t,= B be subdivisions of [a, b] and [a, B8] respectively and
let —0 < P;,<Q;, <+ co be given for 5=1, .-, m and k=
1, ---,n. Then

I:{xeCz[R“Pj,k<w(sj; t=Q;yforg=1--- m k=1, - n}

will be called an “interval” in C,[R]. He defines the measure of the
interval I by

t See also reference to Kitagawa in [5].
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m(I) = a7 E[(sy — 80) + -+ (Sm— 8w )] [ — B0) - o+ (b0 — Eun)] "

Qm,n (mn) Q1,1 mn J—y — . . 2
. S o S exp{_z (%56 i1, — Wog s+ U, ] }duu N

n
Pm,n P11 J=LE=1 (85— 8-t — i)

where %,,=u;, =0 for j=1, -, m; k=1, ---, n.

This measure is countably additive on the set of intervals in
C,[R] and can be extended in the usual way to the sigma-algebra of
sets generated by the intervals and can then be further extended so
as to be a complete measure. Thus “Yeh-Wiener measurable set”
and its “measure” are defined in C,[R].

The integrals of functionals integrable with respect to this
measure will be called “Yeh-Wiener integrals”.

In Theorem 1 of the present paper we establish a formula for
evaluating in terms of a Wiener integral the Yeh-Wiener integral of
a functional of x(-, -) which actually depends solely on the values
of # on one horizontal line.

Theorem 2 treats the case of a functional depending only on the
values of x on a finite number of horizontal lines.

Theorem 4 deals with the case of a functional depending only
on the values of 2 on the two (perpendicular) free edges of R.
Examples are given to show how Theorem 4 can be used to evaluate
Yeh-Wiener integrals of specific functionals.

Finally in Theorem 5 we consider a class of functionals that may
depend on the values which x assumes at all points of the rectangle
R and not only on the values x assumes on some restricted set.

1. The one line theorem. Let Cia, b] = {y(-)]|y(a) =0, y(t)
continuous on [a, b]}, let R = [a, b] X [, 8] and let

GlE] = {a(-, )| 2(a, t) = a(s, @) = 0, a(s, ?)
continuous for a <s<ba=t<g}.

THEOREM 1. Let a« <7 = B, and let f(-) be a real or complex
valued functional defined on Cila, b] such that f(V' (Y — @)/2y) is a
Wiener measurable functional of y on C,la, b]. Then f(x(-, 7)) is a
Yeh-Wiener measurable functional of x(-, -) on C[R] and

f(«/ Ty)dy ,

where the existence of either integral implies the existence of the
other and their equality.

(1) Scz[R]f(x(.’ Mdz = S

Cylea,b]

Proof. Let g(y) = f(V'(v — @)/2y). Then it suffices to prove that
g(V'2[(v = a)x(-, 7)) is Yeh-Wiener measurable and that
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(1.2) Scz[ze] (J

where the existence of either implies the existence of the other and
their equality.

o, M)z = | @)y

1le,

Case I. Let us consider a subdivision ¢ = s, <s, < +-- <8, =Db
and let g(y) = x,(y) where I is the interval

={yeCla,b]| -~ =2 <y(s) =w; = +oo,0=1 -, m}

so that
g<\/7 E a'x(.’ 7)> - X’(\/y E

—a(, 7)) = s(a(-, )

where

K={ocClBl |~ = /7 %2 <als, ) 5 Y15 %0,
é +OO, /i’ e, m} .
Thus in this case, g(v'2/(y — a)x(-, 7)) is Yeh-Wiener measurable on
C.[R] (see Definition (2.1) of [4, p. 434]).
Because g(V'2/(v — a)x(-, 7)) is the characteristic functional of

an interval, the left member of equation (1.2) equals the measure of
the interval K, i.e.,

Soz[m g(]/fy._Tax(’ 7)>dx = Sogtze] Xx(x(-, -))dw

= [ — 85— 8) -+ (s — 8)(7 — )] |

V=aifzw, (m) S«/(y—a}/zwl

Vv (r—a)|2zy, V (r—a)l2zy

. exp{ 2 G (ibi :1)(:;‘)_ )}du1 coo Ay ,

where u, = 0.

The right hand member of (1.2) can be evaluated in the following
manner,

wy

SCl[a,b]g (w)dy = S ostert) X:(W)dy = [(Rm)™ (s, — 8¢) * * * (S — Sm)] 7 S,w: " S

-exp{ ;H}dvl---dvm,

%

where v, = 0. If we set v, = V'2/(v — a)u, we obtain (1.2) and hence
1.1).

Case II. Let g(y) = x.(y) where 2 is the union of the disjoint
intervals I, I,y ---. Then by Case I, we have
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e

T - 1la,

S 1 W)dy
0ol R) b

including the measurability of the left hand integrand. The functional
obtained by summing over %k is Yeh-Wiener measurable, i.e.,

_——x(., '7)> = Yo <\/Tx(., 7))

7T—a 7T«

kz=1 X%(N/
is Yeh-Wiener measurable. Then summing the integrals we have

SC’ZER] XQ(JZx(" 7)>dx - Sc[

1te,

Xe(¥)dy .
5]

Thus (1.2) holds in this case.

Case III. Let g(y) = x.y) where 4 is a countable intersection
of sets Q of the type considered in Case II. Since finite intersections
of such sets are of the same type, we can set

where 2, 02,002,D --- and each 2, is of the type considered in
Case II. Thus

o) = lim 75,(0) ,

and g(y) is Yeh-Wiener measurable. If we now apply (1.2) to o,
and take limits we obtain (1.2) for g(y) = %.(y), including the meas-
urability of g(v'2/(v — a)x(-, 7)).

Case IV. Let g(y) = y»(y) where N is a Wiener null set. Let
N, be a Wiener null set of the type discussed in Case III such that
N,D N. Then (1.2) holds for Xy (y) and we have

SCZ[R] X‘V‘(/:_z-—a—x(.’ A/)>dx = Sc (ot XNl(y)d?/ =0,

1

including the measurability of the left hand integrand which we now
know to be Yeh-Wiener almost everywhere zero. Thus

(/o)

is also Yeh-Wiener almost everywhere zero and (1.2) holds.

Case V. Let g(y) = xz(y) where E is any Wiener measurable set.
Then E = 4 — N where 4 and N are sets of the type considered in
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Cases III and IV. By applying (1.2) to 4 and to N we obtain (1.2)
for E including the measurability of the left hand integrand.

Case VI. Let g(y) be a simple functional (with respect to Wiener
measure). Then g¢(y) is a linear combination with constant coefficients
of a finite number of functionals of the type considered in Case V.
Hence (1.2) holds.

Case VII. Let g(y) be a real nonnegative Wiener measurable
functional. Then g(y) is the limit of a monotone increasing sequence
of simple functionals and (1.2) follows from Case VI by monotone
convergence.

Case VIII. General case: Because any complex valued functional
can be decomposed into its real and imaginary parts and they into
their positive and negative parts, the theorem is proved.

2. The n-parallel lines theorem. Having obtained a formula
for Yeh-Wiener integrals where the functional of x(-, -) actually
depends only on the values of z(-, 7), i.e., on the values of © on one
horizontal line of the fundamental rectangle R, it is natural to
inquire next concerning functionals that depend solely on the values
of  on a finite number of horizontal lines, i.e., functionals of the
form

(2'0) F(x) = f[.’L'(', tl); x(': t2)9 Tty x(', tn)] .

One might expect to obtain the Yeh-Wiener integral of F' as an
n-fold Wiener integral over the product of n Wiener spaces. Since
it is not immediately apparent what the formula should be, we begin
with the case where f depends on the values of the y,(-) at a finite
number of points. Thus we let

f[yly R yn]

1
(2 ) = g’[yl(sl)’ Sty yl(sm); yz(sl)’ tty yz(sm); ces yn(sl)y Ty yn(sm)]

where
?(ul,ly uz,u ct u’m,l; sy ul,m *t um,n) = g)( U)

is defined on R™ and U denotes the rectangular array
{s,i}im1,.mj=1,.,ne Then from (2.0) and (2.1) we have

(2.2) Fl@) = Pl{a(s, t))emy )

Integrating over C,[R] and evaluating the Yeh-Wiener integral we
have
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Swfwmzhﬂﬁﬁ@—%mj b ]

where dU = du,, -+ dup,, Where u,; = u,,=0.
We now make the transformation

R

J—1

SO

;= 1/'51 ; s + A=l e 1 x/fi—_z—t"—“ivi,j

2

and obtain
[, P =@ [ 65|

@.4) [..2({ t_'—“v DRV
4 o/ Ei b, }

11 exp {— L i ©os = V)’ vi“"')z}dV , where dV =4dv,, -+ dvp.,.,

where v,; =0.

For each fixed j, the sums in the exponential are those which
would occur in the evaluation of a Wiener integral, and so we see
that the whole expression is the evaluation of an n-fold Wiener
integral. Thus

Scz[R] Fla)ds = SCl[a b] Scl[a b] <{ tl yl(s)
by s) e x/t bist gy (s, )} - _ﬁ)dyl... dy. .

We shall use the following notation for the cartesian product of =

n (n)
Wiener spaces X Ci[a, b] = Cjfa, b] x --- x Ci[a, b].
We have given the motivation for the following theorem:

(2.5)

THEOREM 2. Leta=t<t, < --- <t,=p and let fly, *--, ¥.]

n
be a real or complex valued functional defined on X Ca, b] such that
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(2.6) f[x/tl ; boy,, x/t‘ ; boy,

5, — 1 F— —
+J22 11/2)“', 1/§12_t0y1+o--+-‘/t” 2t11,—1 yn]

n
is a Wiener measurable functional of (y, +--,¥y. on X C]la,b].
Then flx(-, t), +--, (-, t.)] 78 a Yeh-Wiener measurable functional
of z(-, -) on G,[R] and

S f[x('r tl); Tt x(': tn)]dx
Co[R]
— tl - to tl - to

S %0ytab] f[.‘/ 2 Yu \/ 2 Y

+\/t2;tlyz, ---,/t‘;t"ler

@.7)

by ety o e x )

where the existence of either integral implies the existence of the
other and their equality.

Proof.? Let
g(yb ) y’n) = f('\/tl ; toyh Tty k2=1 ‘/EIL_2—tk_'l—yk> .

Making the substitution z, = 3., V(¢ — t,-,)/2 ¥, We have

P12 = oV g =, o (e = 200

Thus it suffices to prove that if g(y,, ---, ¥.) is a Wiener measurable
functional of (v, ---, ¥.), then

@8 oW I ), -y R, 1) = (e, )]

is a Yeh-Wiener measurable functional on C,[R] and

SCZ[R] Q[Jtl E tox(.’ t), <o \/ﬁ(x(, t.) — (-, tn_l)):ldx

(2.9)

(n)
S 9@y -, Y)AdY, - dy, .

Sc‘l[a,b] ¢yla,b]
Case 1. Let g(y, -, ¥.) = %:(¥y, + -+, Y.), where I is the interval

2 The proof has to proceed in the opposite order from the motivation because of
the measurability argument.
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n
I={(y, -+, ¥.)eXCla, bl | —eo < 2, <uils;) = wj < +o0, for j=
1, ---,m k=1 ---,m}. Clearly I=LnLN---NI, where I;=

n
(s +++, Y)€X Ca, b] | —o0 < 2; < Yuls;) S wjp = +oo, for k=
1, ..., n}. Now

Vet o 2

(@, £) = a(-, ) |

t, — &, t, — tus
= 1 2 . e .
@10) =Tz [V 2, o Ve, 1)~ ot 6]
= I 2x,a, )
where

K, = {oe CIRI | — = = /BT lmta, <lats, 1) - a(s5, t.)

g\/t_k:gﬁc_iwj,kg +o for k=1, ---,n},

and

(2.11) A, (@, ) = Az lw(ss, 8, - ooy @y, ta)]

where

Lj = {[uj,u Tty uj,'n] eRn! e \/tk — tk 1z] r < Wik — Uj

éJE%#im¢§+w mrk:L.wny
Thus in this case (2.8) is Yeh-Wiener measurable on G,[R] since X,

is a Lebesgue measurable function in R™. Integrating the expression
(2.8) we obtain by using (2.10) and (2.11)

G = Sozmg[l/:”( ), oy N B, ) = 2 1) [de

t ——tnl

= S H Az, [a(s, B, - -, w(sy, ta)ldw

ColR] j=1

= a7 ™ [(g, — 85) o v (Sm — Sw_ )]t — )+ (En — ]

oo (mn) © m
° g_m e S_ H XL][ui,ly Tt uj,'n.]

=1

2 & (Ug = Wi — Wiy + Wiy k—1)2
'9XP{"ZZ 9, =1, i-1, dU’
I=1 k=1 (sj - si—l)(tk - tk—l)

where u;, = u,, = 0. If we set v, = V2[(t, — tp_)Wjr — Uj 1) SO
that Ui = i'czl V(tl - ti_l)/zvf,q;y we Obtain
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G = @r)y " P(s — 80) + -+ (Sm — Sw-0)] T

o (mn) o m — R
g 3_ 11 <\/t12t°vj,1,. ,;V/t__z__z;l_vm...,

Z\/t Z11)“>exp{ ii W}dvl’l...dvmm

(n) m
= T @), s v, e, v, - dy,
Cyla,b] Cila,d] =1
(n)
= S e S g(yh *t %y yn)dyl"'dyn
Cylab] 0yla,b]

and Case I is proved. The remaining cases are analogous to those
of Theorem 1 and are proved in the same way.

3. The orthogonal transformation. Theorem 2 which we have
just proved gives us an evaluation of the Yeh-Wiener integral of a
functional F'(x(-, -)) which depends only on the values of x on » parallel
lines. It is natural to inquire next concerning functionals that depend
solely on the values of  on two perpendicular lines. We shall limit our
investigation in this paper to the case where the two perpendicular
lines are the free edges of the fundamental rectangle. Before we
can obtain such a theorem, we will need to establish a generalization
of Bearman’s theorem [1, 130] on rotations in the product of two
Wiener spaces. (A theorem of this sort was once proved by Edwin
Sheffield, but so far as the authors know, it was never published.)

THEOREM 3. Let F(y, ---, y,) be any Wiener integrable func-

n
tional of yi(+), «-+, ¥.(-) on X Cila, b] and let (¢; ;)i j-1,...., D& @& real
orthogonal matrix (so that >y, ¢ i, = 0,; for 4,5 =1 +-- m).
Then the transformation

(3.0) Vi) = o) for i=1 - n

n
s @ measure preserving transformation of X Cla, b] onto itself.
Moreover,

F(yly Tty yn)dyl e dy'n

v Cqla,b]

(n) ‘

3.1 5”1[“ "

6.1 ) ® )
\ S <Z C1,iRjy =% ch,jzj>dz1 “'dzn .
JCila,b] Cyla,b] =1

j=1

Proof. Case I. Let F depend only on the values of y,, -*-, ¥,
at a certain finite set of points, a =5, <8, < +++ < 8, = b, i.e., let
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F(y, - ¥a) = FW:(80), «++ (Sn); ¥s(81), =+ +
yz(sm); AN yn(31); ) yn(sm)) ’

where f(uy,, *+* Upms *+ 3 Unyy, **, Un,m) i8S & bounded measurable fune-
tion of its mm arguments. It is clear that F' is Wiener measurable

(3.2)

n
and bounded on X C,a, b]. Now we have

()
IES ...S F(yl’...,yn)dyl...dyn
Cyle,b] cyla,b]

o (mn) poeo
(3.3) = @) ™6 — @) -+ (o — s |

—c0 —o0

sy -y Unn) exp{ S @:_@ii_dz—_l)f}dum N
B 2, — 5,
where u,, = 0.
Let us make the transformation wu,, = > ¢;;v;, Where 7 =
1, :---,mand k=1, ---, m, to obtain

I= (@) ™[5, = a) -+ (30 = 500" |
* f(é C1,V5,1 * ]ézl cn,ivi,m>

© (m’rl,) Soo

—o0

AT 20, — s
Since (¢;,;) is an orthogonal matrix,
z‘ <Z Ci,i(va e Vik— 1)) 2 (vj,k - vj,k—l)z
i=1 \j=1 j=1
and we obtain
I = @m) (s, — a) «++ (5 — su )|
> . & (Vie — Viee l)}
. iV, t w,iVim ) €X —
f(;c,ﬂ)],l jzzlc,a'v,>ep{ k2=llgzi 2(3k—sk 1)
(3.4) cdvy, e AUy
=0 A(Sewsee), - S ensmifen) da - dz,
¢yla,b] 0,la,b] 1 i=

i=

IS (mn) Soo

—oo

(n) n n
= F(Sea), e B nimi())da - da,
Ciyla,b] Cyla,b] 1 ji=1

=

In the above argument, the measurability of each successive inte-
grand follows from the measurability of f(u,, -*, %.n»), and the
boundedness of f implies the integrability of each integrand. Thus
(3.1) is established for Case I. If we apply (8.1) to the case where
f is a characteristic function of a measurable set we observe that

n
(8.0) is a measure preserving transformation of X C[a, b] onto itself.
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Case 11. Let F(y,, +++, ¥.) = Xo(¥,, -+, ¥,), where 2 is the union
of a countable disjoint set of intervals 2 = Uy, [; and each I; is

an interval in the product space )(% C,[a, b], (as in the proof of
Theorem 2, Case I). Because each ¥, satisfies the hypothesis of
Case I, the theorem holds when F is of the form F(y, -+, ¥.) =
Xz, (Y, **+, ¥a). Since 2 is the countable union of measurable sets, it
is measurable, and by summing both sides of (3.1) applied to ¥, we
obtain (3.1) applied to Y.

Case I1I. Let F = yu(y, ---, ¥.) Where E is a Wiener measurable
set in X" C [a, b]. The result of Case II can be extended from 2 =
Ui, I; to countable intersections of sets of this form and then to
null sets and then to general measurable sets in the usual way.

Case IV. Let F be a nonnegative functional. If F is actually a
simple functional the result follows from Case III by multiplication
by constants and addition. If F is not a simple functional, it can
be expressed as a limit of a monotone increasing sequence of simple
functionals, and the theorem follows for this case.

Case V. General Case: If F is real, we write FF=F*— F~
and apply Case IV to F'* and to F~ and thus establish the theorem
for real functionals. The extension to complex functionals is
immediate.

4. The two perpendicular lines theorem. We now proceed to
establish a formula for the evaluation of the Yeh-Wiener integral of
a functional that depends solely on the values of © on two perpen-
dicular lines.

THEOREM 4. Let f(z, y) defined on Cia, b] x C,a, 8] be a functional
such that

w0 AVESZe () - all YIS WO Vi)

18 Wiener measurable on Cla, b] x CJa, 8. Then it follows that
flz(-, B), z(b, )] is Yeh-Wiener measurable on C,[R], where R =
[a, ] X [, B]. Moreover,

SUz[ziz]f[x(.’ ‘8)’ x(b’ )]dx

@4y - Sol[a,b]xolla,ﬁ] f{\/ﬁ—_—;az’ )= a][\/b——;;Sf) z('iy—(z.c)t

+ ]-/—E(Z()*b)__—a)]}d(z % ¥)
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where the existence of either member implies the existence of the
other and their equality.

Proof.* Case I. Let f(z, )= g(z; y(t), - --, y(t.)), Where a = t, <
t, < -+ <t,=pgand let g(z; u,, ---, u,) be the characteristic functional
of a half-open interval I in C\[a, b] x B"™; i.e., I={(2; Uy * >+, Uy) | —c0 =
Y, <2(8;)£0; +oo forj=1, v, m; —o L, <u, = d, < +oo for
k=1, nja=5<s8< - <s, =>.

The right member of (4.1) becomes

L=\ oy lut-w
0yla,b1 Joyla, £ 2

[V o]

(4.2) —
b—af(? dy(Z‘) Z(b)
(b — a)[ 5 Stn—l T—a 1/5(79_:7)] ’
— a2
(t, — @) Vm}dydz .

We now apply the well-known result: If @, ---, », are ortho-
normal on [e, b] and of bounded variation on [e, b] and if A(u,, ---, u,)
is measurable, then

Scl[a,b] h{gi P, -+, SZ g?n(t)dx(t)}d:c

o  (m)

(4.3) . .
° S h(uli M) un) exp{~ ‘ uj}dul cee dun ’

.
where the existence of either member implies that of the other and
their equality.

To apply this result, we let

0 if ast<t;,

. = fOI‘ j:].,"‘,n
6:) {tlaifu<t§5

and note that 6,(t) = 0, so

(4.4) Sf —ziiy;(}-c)(— = Si 01(t)dy(t)y for j = 1, e, M.

We define

8 This proof is given in the logical order. For motivation read in reverse order,
using the inverse of the matrix (c,;).
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P,(t) = ;[05+1(t) — 6;(8)]
W\, 650 = 0@y

— _J(tj - a)(t_j.Ht— @) [0;4:(t) — 0;@®)] for =1, -+, m — 1,

tj+1 3

and observe that {®, ---, ®,_,} forms an orthonormal set on [a, 5].
To solve for 6; we write

0;..(t) — 0,(t) = ‘“\[( ry _ti;')l(f:fj_ @) P4(t)

and sum from j =% to j = n — 1 to obtain

10 = SV ™

and consequently (4.4) becomes

[, 2O~ St [ oa)

iy T — J=k (tj — af)(tj.ﬂ —

Substituting the value of Sﬁ (dy()/(zr — a) for k=1, -+, m—1
t
into (4.2) we obtain *

Iz - SC’;_[a,b] gc&[a,ﬁ] g{l\/E—:;‘—d—z; (tl - a{)[ b ; -

n—1

. bivn — & g . ____.wz(b) .
s [ e0a) + 20— -

(t - a)(t.7+1 - ) 1/2(/9
(@.4) b—a —
(toes = @ y 25N e | o0t
0) 20
e Ry e il

We now use (4.3) to evaluate the inner Wiener integral above
and obtain

L= XCL[a,b] (@m)=or Sw . *1) S {\/B > a
-l B f?.&;f’; )

®) b— tams
(i ™ 00[1/259 \/ 2 - J(tn-l — a)(ts — )u"_‘] ’

(ta — )17—263@———5} exp {—u_z_% —_ . — 3%_1}(%1,5l oo du, ,dz .
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If we set v; = u;1Vb — a, then
L=\ @ ay e Sf T oVEE

¢~ il 4 LS ]

V2B — = — a)(t:+1 —a)"

_ 2(b) 1 tw — oy
o a)[vz(ﬁ—a)+1/‘2‘ o — )t —@) " ]

_ 2(b) R S, -
e =) )} exp{ 206 — a) 200 — a)}
«dv, +--dv,_dz .

Using the formula

1 “ —22/(2(b—a)) —
Vo —a) S Flo)em*dv = Sclra,b] Fla(t)de

(n — 1) times, we see that (replacing z by z,)

(n) - L — (b
B L VSR (20

5 ta+1 _ tj tn—l — ﬂ(b)
Lo Ao =) 20 o (7 A
(te—a) 20 1y, ...
+ \/(tn— — a)(t — ) n—l(b):lv _l/—2~a _1/'28 = a}dzl dZn

We next apply Theorem 3, using the transformation

n
2 = Z{ Cr,iY;
=
where for k <n —1

(tk+1 — 7ﬁk)(t .7 1) 1 y
v e AL

Chi = —
wi=_ [ h—a if j=k+1
tk+1_
0 if j>k+1
and
Py .
Cuj = it for =11
o ;

We note that (¢, ;) forms a real orthogonal matrix and that

n—1

@ — a)[ﬂgz‘i—a + E 1/(t _tg)l(;ﬂtL a) }

——ZVt tiwy;, for k=1, -+, n
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Thus by Theorem 3

(m) et — ¢t
I = S oo S { Zi Zitly.s
2 ¢1la,0] ¢,la,b] g = \/ 2 Ys

and by Theorem 2,

I, = SC - g(@(-, t.); x(d, t), + -+, x(b, t,))dr = SC [R]f[x(., ), (b, -)dax

2 2

and Case I is established.

We then proceed as in Theorem 1 to establish Theorem 4.
5. Applications of Theorem 4.
ExampLE 1. Let us apply Theorem 4 to the functional:
(5.0) £, 9) = | ple@rds | a@w@ra
where p € L,[a, b] and g€ L,ja, g]. Then
1= A p@t, ords| aoe, orad

60 o [ H0(E5 %00 ot - o1

[T T

and each expression can be evaluated by known techniques to yield

_ipy _ o)t — (b — )6 —
sy TTELLAEOIO6 - ot = Dl6 - o - o

+ 2(s — a)(t — a)ldxdt .

ExAMPLE 2. We next show how to calculate the following
integral using Theorem 4: (the authors know of no way of evaluat-
ing the integral without applying Theorem 4)

(5.3) I= S%m exp {A S" [o(s, B)F'ds + B S:x(b, t)dt}dx :
Let us set

(5.4) £z, 9) = exp {4 Sb [(s)]'ds + B Sﬁ vt} .
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By Theorem 4,

I'= SCl[a 5 Scl[a,ﬂ] exp { A(B 2 S [x(s)Fds

(5.5) B Sﬂ v a][\/ﬁ? gﬂ—f‘ily_—(% + %%%]dt}dydz
= I, I, where

6.6 I = Sma,u exp {A(B_;.C_Q S" [#(s)P'ds} exp {BS 5—}2?(-63‘% t}az

and

6 L={ e {pyi 20— af 2O ula.

To evaluate I, we shall use the following theorem of Cameron
and Martin [2, 75] where we have changed the scale and the variance:

THEOREM la. Let q(t) be continuous and positive on [a, b] and
let p, be the least characteristic value of the differential equation

(5.8) R"(s) + pa(s)h(s) = 0
subject to the boundary conditions
(5.9) hla) = h'(d) =0.

Then if F(x) is any Wiener measurable functional, of p < t, and
iof hu(t) s any nontrivial solution of (5.8) satisfying hi(b) = 0, we
have

SCIEM] F(x) exp{ S q(s)xz(s)ds}

2
VB o] e

where the existence of either member implies that of the other and
their equality.

(5.10)

We now identify in the expression for I, in (5.6)

_ Bz(b) B — a\*"*
5.11 = __20) — — )
(5.11) F(2) = exp { i )5 (t a)dt} exp {Bz(b)( ) }
Let q(s) = 1, ¢ = A(8 — @). An examination of the differential system
shows that the least characteristic value is g, = 7%/(4(b — a)?). We
must therefore have A < 7?[4(b — a)(B — @)]'. Now
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hu(s) = cos ((s — b)'”)
=cos ((s — DYV A(B — a)) ,

and our integral I, may be evaluated:

1= 1
‘/cos (b — a)V A(B — a)) S 011,81

o 85"

2 acos (6 — bV A(B — «
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In order to employ (4.3), we normalize the secant function ap-

pearing in the Stieltjes integral, i.e., since

S sec’[(o — D)V AR — a)ldo = tan [(b — eV A — a)]

VAR — a)

we let p(0) = sec [(6 — bV A(B — a)](tan v) "' 2[A(B — a)]'", where ¥ =

(b — a)V A(B — @). Our integral I, becomes
I = V'secv S exp {c- Sb p(a)dy(o)}dy
Cila,d] a
where ¢ = B((8 — a)/2)"™/ Tan 7[A(8 — a)]-*/.

We apply (4.3) to obtain

Pk
2 J-w

= 1"sec exp

Bz<'8 ; a>3 tan v(A(B — a))“‘ﬂ}
2

= [sec [(b — a)(A(8 — a))"]]'"

BB — a)” tan [(b — a)[A(B — 06)]”2]}
Al29¢

-exp{
In I,, we set

J={"¢ - S dy(r) et

|
(1 0 2

% L (z — a)dy(z) .

™ R

Il

Il

We normalize the integrand of this Stieltjes integral and set »(r) =

(c — a)(p — a)™*/ 3, so the integral becomes
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7= B2 ey ,

and (5.7) becomes

L= SCIM exp { B W;r/:g(f/g— @)™ Y p(f)dy(f)}dy

- e[ o (2=
— exp (EC= ) — )

Thus our original integral has the value I = I, -1, so that
I = [sec [(b — a)(A(B — a))"]]'

. exp {BZ(B — a)’tan [XZ,{;‘ a)(A(B — )] }
B (b — a)(8 — a)"‘}
3.2 ’

where A < 7%/(4(b — a)¥(B — «)) and A == 0.

. exp{

6. General functionals. Finally we consider a class of func-
tionals which are not required to depend only on the values of z on
a restricted set. We do this by approximating F(x) by a sequence
of functionals F'(x,) where z, is determined by the values of z on
n horizontal lines and is defined in between the lines by linear inter-
polation. We then apply Theorem 2 to F(x,) and take limits.

THEOREM 5. Let F(x) be a functional which is bounded and
continuous in the uniform topology on C,[R]. Let

(6.0) gy, +-+, Yus s, t] = (Lt—>yk_1(8) + (Et—_—t—k—i)yk(S)

tk —_ tk—l kT tk—l

Jor a =s=0b, t, , =t=Zt, y.,€Cla, bl for k=1, ---, n; where o isa
subdivision, a =t,<t, <.+ <t,=p, and norm ¢ =max,_, ..., | t,— tr_il,
and y, = 0.

Then

) t— ¢
Fx)dx = 1 X cee S ﬂ[ 1 0 REEEN
(@)do - ¢yle,b] ¢yla,b] F{g \/ 2 y

ch[R] norm g—0
«/————t‘ ; t"yl +oeee + «/————t” —2t““‘yn:[}dyl cee Ay, -

Proof. If we set

(6.1)
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Ty o, ¥a) = Flgo[ys, + -, Yas -, -1}
so that
Sl ), -+, (-, t)] = Flgla(-, t), -+, (-, )5 -, -1}
our functional f satisfies the hypotheses of Theorem 2 and we have

ly oy 7@ 8, oy 2, t))da

(n) - 6 —t t — 1
= cee 1 0 1 (4 + 2 1 , *° N
Sc'l[a,b] gc&[a,b] f[\/ 2 ¥ ‘/ 2 Y \/ 2 Y

./tl ; toyl 4 oeee + x/?,’”____ti‘iyn]dyl...dyn .

2
If we let
Fyx) = F{g fa(-, t), -, a(-, t.); -, 1}
we obtain
S F(x)dx
ColR]
(n)

6t — 1t no et
F{ ,[ L~t, ... be = iy ]} cody, .
Scl[a,b] SW’” g 5 Vv kzj 5 Y dy, Y

It is clear that limuperm ..o Fo(®) = F(x) for all x € G,[R] and since F is
bounded we may apply Lebesgue’s convergence theorem to obtain
6.1).
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