AN OBSTRUCTION TO EXTENDING ISOTOPIES OF PIECEWISE LINEAR MANIFOLDS

EWING L. LUSK

Let $F: M \times I^n \to Q \times I^n$ be an *n*-isotopy (not necessarily PL) of a compact PL *m*-manifold M in a PL q-manifold Q, and let $G: Q \times I^n \to Q \times I^n$ be an ambient isotopy of Q which covers F on $Q \times \partial I^n$. If $m \le q - 3$ there is in $\pi_n \operatorname{PL}(M, Q)$ an obstruction to finding an ambient isotopy of Q, isotopic to G, which covers F and agrees with G on $Q \times \partial I^n$.

Introduction. In the proof of the Hudson-Zeeman cover-1. ing isotopy theorem [6], one has no control over the homeomorphism of the ambient manifold which one obtains at the end of the isotopy. In general, one might ask for sufficient conditions under which a given *n*-isotopy $F: M \times I^n \to Q \times I^n$ of one PL manifold in another, fixed on ∂M , can be covered by an ambient *n*-isotopy $H: Q \times I^n \to Q \times I^n$ fixed on ∂Q , in such a way that $H \mid Q \times \partial I^n$ is equal to some given levelpreserving homeomorphism G of $O \times \partial I^n$ which covers $F \mid M \times I^n$ ∂I^n . Necessary conditions are that F be level-preservingly locally flat and that G have some extension to $Q \times I^n$ which is fixed on ∂Q . That these conditions are not sufficient can be seen by considering an isotopy $F: S^1 \times I \to I^2 \times I$ of a circle in the interior of I^2 which rotates the circle through 360°. Since F can be chosen PL and locally flat, it follows from the ordinary covering isotopy theorem [6] that F can be covered by an ambient isotopy H of I^2 which is fixed on ∂I^2 . But if $G: \partial(I^2 \times I) \rightarrow \partial(I^2 \times I)$ is the identity homeomorphism, then H cannot be an extension of G. The difficulty here arises from the fact that the space of embeddings of S^1 into I^2 is not simply connected. theorem below extends results of Gluck, Husch, and Rushing [3,8]. Let M and O be PL m- and q-manifolds respectively, with M compact, and let PL(M,Q;f) denote the semi-simplicial complex of proper PL embeddings of M into Q, with base point f.

THEOREM 1. Let $F: M \times I^n \to Q \times I^n$ be a proper level-preservingly locally flat n-isotopy (not necessarily PL) fixed on ∂M . Let $G: Q \times I^n \to Q \times I^n$ be an ambient n-isotopy of Q, fixed on ∂Q , such that $G \circ (F_0 \times 1) | M \times \partial I^n = F | M \times \partial I^n$. Suppose that $m \le q-3$. Then there is a homeomorphism h of Q such that hF_0 is PL and an obstruction α in π_n PL(M, Q; hF_0) such that $\alpha = 0$ if and only if there is a level-preserving isotopy K of $Q \times I^n$, fixed on $\partial (Q \times I^n)$, such that $K_1G \circ (F_0 \times 1) = F$; i.e. K_1G extends $G | Q \times \partial I^n$ and covers F.

REMARK 1. If F and G are PL, then the local flatness condition on F need not be level-preserving, and K can be taken to be PL. The proof of Theorem 1 in this PL case is like the proof given in [8] for the case n = 1 and so is known. In the topological case, Theorem 1 follows straightforwardly from the fact that the inclusion $PL(M, Q) \subset TOP(M, Q)$ is dense and a weak homotopy equivalence (See Theorem 2 below).

REMARK 2. Various combinations of dimension and connectivity conditions are sufficient to ensure that π_n PL $(M,Q;hF_0)=0$ and hence that the obstruction vanishes. We list some of them here. (See [7] and [9].)

- (a) $\pi_r(Q) = 0$ for $n \le r \le m + n$ and $2m + n \le q 2$.
- (b) M is (2m-q+n) connected, Q is (2m-q+n+1) connected, $\pi_r(Q) = 0$ for $n \le r \le m+n$, and $m+n \le q-2$.
- (c) $\pi_r(Q) = 0$ for $n \le r \le m + n$, F_0 is (2m q + n + 1) connected, and $m + n \le q 2$.
- **Definitions.** Let I^n be the n-fold product of the unit interval [0,1]. The point $(0,0,\cdots 0)$ in I^n will be denoted by 0, and the subset $I^{n-1} \times 0 \cup \partial I^{n-1} \times I$ of $I^n = I^{n-1} \times I$ will be denoted by J^{n-1} . An *n-isotopy* of M in Q is an embedding $F: M \times I^n \to O \times I^n$ which is level-preserving $(p \circ F = p)$ where p is projection onto I^n). It is proper if $F^{-1}(\partial Q \times I^n) = \partial M \times I^n$. An embedding $F_i: M \to Q$ is defined for each $t \in I^n$ by $F(x,t) = (F_t(x),t)$. A 1-isotopy is called an isotopy, and F_0 and F_1 are said to be isotopic. An n-isotopy F is fixed on X if $F|X \times I^n = F_0 \times 1|X \times I^n$, where 1 denotes the identity map. It is level-preservingly locally flat if for each $(x,t) \in M \times I^n$ there is a neighborhood N of t in I^n , a level-preserving embedding H of either $E^m \times N$ or $E_+^m \times N$ into $M \times N$ (depending on whether x is in int M or ∂M) with H(0,t)=(x,t), and a level preserving embedding G of either $E^q \times N$ or $E_+^q \times N$ into $Q \times N$ depending on whether $F_t(x)$ is in int Q or ∂Q) with G(0,t) = F(x,t), such that G^{-1} FH is of the form $i \times 1$, where i is the natural inclusion of E^m into E^q or E^m_+ into E^q_+ , as the case may be. An ambient n-isotopy of Q is a level-preserving homeomorphism H of $Q \times I^n$ such that $H_0 = 1$. If $A \subset X$, an ε -push of (X,A) is an ambient isotopy of X which is fixed outside an ε neighborhood of A.

We make use of the semi-simplicial complexes $\operatorname{Aut}_{PL}(Q)$ and $\operatorname{PL}(M,Q)$, whose k-simplices are ambient k-isotopies of Q fixed on ∂Q and proper k-isotopies of M in Q fixed on ∂M , respectively. The Hudson covering n-isotopy theorem [5] can be used to prove, as in [4], that if $f: M \to Q$ is a given PL embedding then the simplicial map $p: \operatorname{Aut}_{PL}(Q) \to \operatorname{PL}(M,Q)$ given by $p(H) = H \circ (f \times 1)$ is a fibration, i.e.,

given level-preserving embeddings $K: Q \times J^{n-1} \to Q \times J^{n-1}$ and $L: M \times I^n \to Q \times I^n$ such that $p(K) = L \mid M \times J^{n-1}$, there is an *n*-isotropy $H: Q \times I^n \to Q \times I^n$ such that p(H) = L and $H \mid Q \times J^{n-1} = K$. An element of π_n PL(M,Q;f) is represented by a level-preserving PL embedding $L: M \times \partial I^{n+1}$ such that $L_0 = f$.

- 3. Spaces of embeddings. In this section we consider the relationship between PL(M, Q) and TOP(M, Q), the semi-simplicial complex of topological embeddings of M into Q. Recent work of Edwards and Miller [2, 12] has relaxed the dimension restrictions on the results in [10]. The key lemma is the following.
- Lemma 1. Let $H: M \times I^n \to Q \times I^n$ be a level-preserving embedding. Suppose that $m \le q-3$ and $q \ge 5$. Then for any $\varepsilon > 0$ there is a $\delta = \delta(\varepsilon, H) > 0$ such that if $G_0, G_1: M \times I^n \to Q \times I^n$ are level-preserving PL embeddings with $d(G_i, H) < \delta$, then there is a level-preserving ε -push K of $(Q \times I^n, H(M \times I^n))$ such that $K_1G_0 = G_1$. If G_0 and G_1 agree on $M \times \partial I^n$, then K can be assumed fixed on $Q \times \partial I^n$.
- **Proof.** If H is of the form $h \times 1$ for some embedding $h: M \to Q$, then the lemma follows directly from Corollary 2 of [2] and Corollary 3 of [1]. Generalization to the case in which H is not of this form can be carried out as in the second half of the proof of Theorem 4.2 (m,s) in [10].
- REMARK 3. The above "local solvability" result is the basis for Theorems 2.1-2.5 of [10] which are stated there with more stringent dimension restrictions. We may now regard those results to be true for $m \le q 3$, $q \ge 5$. In particular, Theorems 2.1 and 2.4 give us
- THEOREM 2. If $m \le q-3$ and $q \ge 5$, then the inclusion $PL(M,Q) \subset TOP(M,Q)$ is dense and a weak homotopy equivalence; i.e., if $f: M \to Q$ is PL, then the homomorphism i: $\pi_n PL(M,Q;f) \to \pi_n TOP(M,Q;f)$ induced by inclusion is an isomorphism for all n.
- **4. Proof of Theorem 1.** The following lemma, which is Theorem 2.3 of [10] with the new dimension conditions, makes possible the treatment of the non-PL case with PL techniques.
- LEMMA 2. Let $F: M \times I^n \to Q \times I^n$ be a level-preservingly locally flat proper n-isotopy which is PL on $\partial(M \times I^n)$. Suppose $m \le q-3$ and $q \ge 5$, and that $\varepsilon > 0$ is given. Then there is a level-preserving

 ε -push T of $(Q \times I^n, F(M \times I^n))$, fixed on $\partial(Q \times I^n)$, such that T_1F is PL.

Proof of Theorem 1. By Lemma 2 with n=0 (See [11]), there is a small homeomorphism h of Q such that hF_0 : $M \to Q$ is PL. Consider the embedding $(h \times 1)G^{-1}F$: $M \times I^n \to Q \times I^n$. Since it is a level-preservingly locally flat n-isotopy and $(h \times 1)$ $G^{-1}F \mid \partial (M \times I^n) = (hF_0) \times 1$, which is PL, there is by Lemma 2 a level-preserving isotopy T of $Q \times I^n$, fixed on $\partial (Q \times I^n)$, such that $T_1(h \times 1)G^{-1}F$ is PL. Now define $L: M \times \partial I^{n+1} \to Q \times \partial I^{n+1}$ by considering I^{n+1} as $I^n \times I$ and letting L be $T_1(h \times 1)G^{-1}F$ on $M \times I^n \times 1$ and $(hF_0) \times 1$ on $M \times J^n$. Then L is PL and so represents an element α of $\pi_n PL(M,Q;hF_0)$. To say $\alpha=0$ in $\pi_n PL(M,Q;hF_0)$ is to say that there is a PL (n+1)-isotopy $H': M \times I^{n+1} \to Q \times I^{n+1}$ such that $H' \mid M \times \partial I^{n+1} = L$. Therefore we can use the lifting property of the fibration $p: Aut_{PL}(Q) \to PL(M,Q)$ given by $p(K) = K \circ (hF_0 \times 1)$ to find an ambient (n+1)-isotopy $H'': Q \times I^{n+1} \to Q \times I^{n+1}$ such that $H'' \mid Q \times J^n = 1$ and $H'' \circ (hF_0 \times 1) = H'$. Now we define

$$K = (G \times 1)(h^{-1} \times 1 \times 1)T^{-1}H''(h \times 1 \times 1)(G^{-1} \times 1):$$
$$(Q \times I^n) \times I \to (Q \times I^n) \times 1.$$

Then K_1G covers F and extends $G \mid Q \times I^n$, as desired.

Conversely, if K exists with the desired properties, then $K': M \times \partial I^{n+1} \times I \to Q \times \partial I^{n+1} \times I$ defined by $K'_{t} = T_{1-t}(h \times 1)G'K_{1-t}G(F_{0} \times 1)$ on $M \times J^{n} \times I$ and $hF_{0} \times 1$ on $M \times (I^{n-1} \times 1) \times I$ is a level-preserving isotopy taking L to $hF_{0} \times 1$. Therefore α is trivial as an element of $\pi_{n} \operatorname{TOP}(M, Q; hF_{0})$, the semi-simplicial complex of embeddings of M into Q. By Theorem 2, α is trivial in $\pi_{n} \operatorname{PL}(M, Q; hF_{0})$.

5. The obstruction α . In the construction above, α appeared to depend on h, T, and G. In this section we show that α can be chosen in such a way that it depends only on F.

In applying Lemma 2 to construct h, above, we may choose h so that hF_0 is within $\delta(F_0,1)$ of F_0 , where δ comes from Lemma 1. Any two such homeomorphisms h and h' will then be such that hF_0 and $h'F_0$ are ambient isotopic. Similarly we choose T to be a $\delta((h \times 1)G^{-1}F,1)$ -push, so that if T' is another push which takes $(h \times 1)G^{-1}F$ to a PL embedding, $T_1(h \times 1)G^{-1}F$ and $T'_1(h \times 1)G^{-1}F$ are PL ambient isotopic, and the α 's constructed with them will be homotopic in $\pi_n \operatorname{PL}(M,Q;hF_0)$.

Now suppose that G and G' are level-preserving homeomorphisms of $Q \times I^n$ satisfying the hypotheses of the theorem. Since $G^{-1}F$ and

 $G'^{-1}F$ are each isotopic to $F_0 \times 1$, they are isotopic. If we denote by α and α' the obstructions constructed as above from G and G', the isotopy of $G^{-1}F$ to $G'^{-1}F$ will induce a homotopy from α to α' in $\pi_n \text{TOP}(M,Q)$. By Theorem 2, α is homotopic to α' in $\pi_n \text{PL}(M,Q;hF_0)$, and so α does not depend on G.

REFERENCES

- 1. R. D. Edwards, The equivalence of close piecewise linear embeddings, preprint.
- 2. R. D. Edwards, and R. T. Miller, Local connectivity of spaces of embeddings, Notices Amer. Math. Soc., 19 (1972), A-467.
- 3. H. Gluck, Restriction of isotopies, Bull. Amer. Math. Soc., 69 (1963), 78-82.
- 4. A. Haefliger, and V. Poenaru, Le classification des immersions combinatoires, Pub. Math. I.H.E.S. Paris, 23 (1964), 75-91.
- 5. J. F. P. Hudson, Extending piecewise linear isotopies, Proc. London Math. Soc., 3, 16 (1966), 651-668.
- 6. J. F. P. Hudson, and E. C. Zeeman, On combinatorial isotopy, Pub. Math. I.H.E.S., Paris, 19 (1964), 69-94.
- 7. L. S. Husch, Homotopy groups of PL embedding spaces, Pacific J. Math., 33 (1970), 149-155.
- 8. L. S. Husch, and T. B. Rushing, Restrictions of isotopies and concordances, Michigan Math. J., 16 (1966), 303-307.
- 9. E. L. Lusk, Homotopy groups of spaces of embeddings, Ph. D. thesis, University of Maryland, (1970).
- 10. ——, Level-preserving approximations and isotopies, and homotopy groups of spaces of embeddings, Illinois J. Math., 18 (1974), 147-159.
- 11. R. T. Miller, Close isotopies on piecewise linear manifolds, Trans. Amer. Math. Soc., 151 (1970), 597-628.
- 12. ——, Fiber-preserving equivalence, preprint.

Received February 1, 1973.

NORTHERN ILLINOIS UNIVERSITY