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GENERATORS FOR THE SCHUR GROUP OF LOCAL
AND GLOBAL NUMBER FIELDS

GERALD J. JANUSZ

The main result of this paper gives a set of generators for
the Schur group, S(K), for any subfield X of a cyclotomic
extension of the rational field. This result is obtained from two
reduction theorems which apply to more general fields. In
particular we use them to derive in a rather simple way the
results of T. Yamada which determine S(k) when k is a p-adic
number field.

Some new results are given in the case K is a subfield of
Q(em) and Q(ew) is unramified over K. An example is given to
show how the Riemann hypothesis may enter into the computa-
tion of S(K) when Q(em) is ramified over K.

Introduction. For a field X, the Schur group S(K) is the
subgroup of the Brauer group of K consisting of those equivalence
classes which contain a cyclotomic algebra; that is a crossed product of
the form (K(em )/K,a) where em is a primitive m th root of unity and a is
a factor set whose values are roots of unity.

The Schur group is of particular interest in case K is a subfield of a
cyclotomic extension of the rational number field Q. In this case S(K)
coincides with the set of elements in the Brauer group of K which
contain a K- central simple algebra which is isomorphic to a direct
summand of a rational group algebra Q[G] for some finite group G.

The main result in this paper is Theorem 3. It gives a set of
generators for S(K) which have a particularly simple form. For certain
choices of K, this result makes the computation of S(K) an exercise.
Although we do not do this here, it is possible to recover a number of
results already in the literature which compute S(K) for various K. The
generator theorem is obtained as an application of two theorems
(numbered 1 and 2) of a more general nature. Another application of the
first of these is the calculation of S(K) when k is a p-adic number field.
In this case S(k) has already been determined by Yamada but the
proofs given here seem more elementary and the results are stated in a
slightly different form.

We also give some results about S(K) when K is a subfield of some
Q(em) and Q(em) is unramified over K. We close with an example to
indicate how the extended Riemann hypothesis may enter into the
computation of S(K) in case the least cyclotomic field Q(em) containing
K is ramified over K. (See note added to the end of the paper.)
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1. Two reduction t h e o r e m s . For a field K and a positive
integer n, let W(K, n) denote the group of roots of unity in K whose
multiplicative order divides some power of n. In particular if p is a
prime, W(K,p) denotes the roots of unity of p-power order in K.

If L is an extension field of K with Galois group G = G(L IK) and
if a is a factor set from G x G to L, we shall writ'j a E W(L. n) to rπ^aπ
α(σ, r) E W(L, n) for ?V σ\ τ 6 G . liie crossed product made with L
and α :s denoted by (L/K,a). This is the central simple K algebra
having L basis uσ, σ GG, subject to the rules

;?/- = α(σ, τ)uσιιτ, uίTx = σ(x)uσ for x E L.

In case G =(σ) is cyclic then we write (L,σ,α) for the crossed
product in which

= a c,

THEOREM 1. Let Kbe a field of characteristic zero, L an extension
field and G(L/K) = G an abelian group. Let n be a fixed integer and
suppose W(L, n) is finite. Let F be a fixed integer and suppose W(L, n)
is finite. Let F be a subfield of L containing K such that

(i) G(LIF) = (θ) is cyclic,
(ii) the norm map NLIFfrom L to Fcarries W(L, n) onto W(F,n).

Let (L/K, a) be a crossed product such that a E W(L, n). Then there
is a crossed product (F/K,β) with β E W(F, n) such that (L/K, a) and
(F/K, β) lie in the same class of the Brauer group of K.

Proof. The outline of the proof is this. We produce an idempotent
element e in A =(L/K,a) and show eλe = (F/L, β) for suitable β. The
conclusion follows because A and eAe belong to the same class
whenever e is a nonzero idempotent in A.

Let (L: F) = m so that θm = 1. Then the element uθ in (L/K,a) =
A satisfies

(uθ)
m =ζζΞW(L,n).

However since uθ centralizes (uθ)
m, ζ must be fixed by θ so ζ E F. Thus

ζEW(F,n) and so by (ii) there is an element yEW(L, n) with
NLIF(y) = ζ. Then
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We now replace wθ with (y~ιuθy for 1 ̂  / < | θ |. This changes the
values of the factor set but all values still lie in W(L, n). Hence we may
assume at the start that

(1) («βΓ = l.

Now we set e = 1/m ΣfLo1 wj.
We easily obtain the equations

(2) uθe = e

(3) e' = e.

Next we shall change some of the remaining uσ to make them
centralize e.

For each σ 6 G , let

(4) uσuθu~ι = ζ(Γθuθ.

If ^ = 1 set vσ = uσ. In particular vθ = uβ.
If ζσβ/ 1 proceed as follows. Raise both sides of (4) to the power m

and use (1) to get

\=(ζσθuθ)
m =Nύ/>(£*).

We now prove there is an element γ E W(L, n) such that γflίγ"1) =
ζσθ •

To do this we view W{L, n) as a (0) module. Let N ='NL/F and
Δ = l - 0 viewed as endomorphisms of W(L, n). Since W(L,n) is
finite, Herband's theory [4, p. 142] implies ker Δ/ImJV and kerN/ImΔ
have the same order. Our assumption (ii) implies ker Δ = imN so also
ker n = ImΔ. Since ^ is in ker N it follows that Δ(γ) = γflίγ"1) = ζσθ

holds for some γ G W(L, n).
We now set vσ = y~xuσ and observe that^vσvθ = vθυ(T for each σ EG

and ι;σe = evσ. The factor set has been changed now but

vσvτ = a'(σ,τ)vσr

implies a' G W(L, n) still holds. But in fact a1 G W(F, n) because all
the vσ centralize vθ.

It is a fairly easy matter now to identify eAe as a crossed product.
For x ELL and any σ in G we have
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exvσe = •— 2 v ιθXevσ
Yϊl i

= ^Σ Oι{x)υi

eevσ

TL

where TUF is the trace map from L to F.
It follows that eLvσe = Fvσe.
Next select a set of elements {σ,} such that (θ)σι gives all the cosets

of (θ) in G. Then any σ has the form σ = Qaσx and so

Fvσe = Fvσιv
a

θe = Fvσιe.

It now follows that

eAe = Σ eί^ve = Σ ^σ,^.
σ '

This last expression is a crossed product representation (F/K, α') where

^ * vσje = af(σhσj)vσισιe

and the coset representatives σ, are identified with the elements in
GI(Θ) = G(F/K). Since α ; G W(F,n) we are done.

Next we investigate how certain crossed products made with
complicated Galois extensions can be reduced to crossed products over
simpler extensions.

Suppose K is a field of characteristic zero, F0,Fu -,Ft are
extension fields of K which are linearly disjoint over K. Suppose also
G(FJK) = (θi) is cyclic for ί = 1,2, , t and G(F0IK) is abelian. The
linear disjointness means that the composite E = FoFi F, has Galois
group over K which can be identified with

G(F0/X)x<θ1>x x<θf> = G.

THEOREM 2. Let (E/K9a) be a crossed product with factor set
a E W(F0,n) for some positive integer n. Then the class of (E/K,a) in
the Brauer group of K can be expressed as a product of classes of
algebras of the following types:

(a) (FoFi/K,^-) with α, G W(F0,n) and ιV 0,
(b) (F.FJK,aiS) with aή G W(K,n) and iV 0, jV 0.
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Proof. The basic idea of the proof is to examine certain subalgeb-
ras B of A =(E/K,a) and use the relation A = B 0 C when B is
K- central simple and C is the centralizer of B in A.

The first step reduces to the case where the values of the factor set
are in the center.

Let AQ = (F0IK, res a) = ΣF0«σ. where σ runs through G(FJK).
This is a subalgebra of A and Ao is K-central simple. We want an
explicit representation of its centralizer as a crossed product. The
centralizer, CA(A0), of Ao in A contains F, Ft but need not contain
the elements uθl. For each i let u{ denote uθ,. We have

(5) UiXU T1 = JC for J C E F O

(6) u-tuσu 7ι = ζi,σuσ for σEG( Fo/K).

In this last equation ζ-uσ is a product of values of a so it lies in
W(F0,n). In particular this implies MI ΛOM71 = ΛO. Since every au-
tomorphism of Ao fixing K is inner, we know there is an element in Ao

which produces the same automorphism by conjugation as conjugation
by W/. Our next task is to produce such an element.

We can apply Artin's lemma on the independence of characters to
obtain an element x in F o such that

is not

(7)

zero. We claim

λ,
σEG(Fo/K)

τ(λ,) =

for each r in G(F0/K).
To prove this we begin by using (6) several times to obtain the

equations

ζi,τ<rUτσ =UiUnrU',i

ζi,ττ(ζi,σ)UrUσ = UiUτUσU~i\

Now all values of the factor set a lie in F o so are fixed by ft. It
follows that

ζi,τT(ζi,σ) = ζi,τσ

If we apply T to λ, we get
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τ(λ,) = Σ τσ(x)τ(ζl0y

= ζ,Λ.

This equation implies

A 'MΛ
 =

 A;1T(A,)MT = ζuτuτ

= UMTU ]\

Now define v, by the equation

(8) vt = λM,

We see v, centralizes F o and all the uσ for σ in G(F0/K), so i;,
centralizes Λo.

Let H = (0,) x x (ft). For any

0 = 0ΐ' θ?'

let ϋθ = ϋ?' ϋ"'. We assert

We already have seen the right side is contained in the left side.
From the equation A =AK)®CA(AO) we conclude CΛ(A0) has dimension
over K equal to | H |2. This is the dimension of the right side so equality
holds.

We have expressed CA(A{)) as a crossed product but the values of
the factor set are much different than those of the original a. In
particular the values need not be roots of unity. The rules for the
multiplication of the vθ can be deduced from the following equations:

(9) Op, =eιjvjvι 6 ί 7 G W(K,n)9

(10) t;ΐ =λί'6, ft, = | β , | , €,E W(F{hn).

The proof that these hold is straightforward. We need only
observe that A, is fixed by all θ} so
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and €f/ is a product of values of the original factor set a. Thus
€ij E W(F0,n). However eή also lies in F, Ft because CA(A0) is an
algebra so e, is in W(K, n).

Equation (10) follows in a similar way using

Let β denote the factor set determined by (9) and (10).
The first step of the proof is done. Next it is necessary to

decompose CA(A0) as a tensor product of certain subalgebras.
Let Et = F, F,_, and Ht = (θu , θt-λ) so that H = Ht x (θt).
We work entirely inside CA{Λ0) which can be written as a crossed

product

(EtFJK9β) = C.

Consider the subalg^bra

Bt= Σ Etυe=(EtIK,κsβ).
θ(ΞHt

This is a K- central simple subalgebra of C so as above we want to
identify its centralizer, Cc(Bt), in C. Clearly Ft centralizes Bt because
the subgroup Ht fixes Ft. However vt need not centralize all of Bt vt

fixes Et since θt fixes Et. However vt need not centralize the υ , for
1 ^ / ̂  t - 1, as we can see from equation (9).

We shall find an element in Bt that carries out the same automorph-
ism on Bt as vt does.

Let Xi be an element of Ĵ  which gives a normal basis of F, over K.
Then the element

is a nonzero element in Fh Moreover

(11) ft (Ωί.) = €fiΩfi,

(12) 0,(Ωfί) = α . , jV/.

For later use note for ht = \θt |, equation (9) implies eίf has order
dividing ht. This means (Ωtι)

ht is left fixed by ft as well as all θ} for jV ί.
This yields
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(13) (aj^K

Now we set Ω, = ΩnΩ ί 2 * ΩM_i, Then Ω, is an element in Et =
F, Fr_! and satisfies

(14) ft(Ωl) = 6</Ωt l^i^t-L

This equation follows from (11) and (12). Now we observe Ωtυt

centralizes each v-t because of (9) and (11), and centralizes Et also. Thus
Ωtvt centralizes Bt. Again by dimension counting we obtain

Since (Ωtυt)
ht = Ω^λ^^ = bt by (10) we obtain a presentation of

Cc(Bt) as the cyclic algebra (Ft,θt,bt). So we have to this point

A s(Fo/K, res α)(g)(F,, 0,Λ)<g>(Jv FtJK,β).

The proceedure used to split off Bt from C can be applied again to
Bt in place of C. The result can be stated as follows.

Let xt give a normal basis of Ft over K and let

(15) Ωπ =Σ(eπΓJ0! :(*,-), and

Ω r = Ω r , Ώr.r-i if r ^ 2
(16)

Ω,= 1.

We have inclusions analogous to (13) of the form

(17) (ΩΠ)Λ'<ΞK, l ^ / < r ^ ί .

The original algebra A =(ElK,a) is now expressed as a product of
Λo = (FJK, res a) and the cyclic algebras

for l i r ^ ί .
This is the end of the second step of the proof. Next (and lastly) we

show each of these algebras is similar to a product of algebras of type
(a) and (b) in the theorem.
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The algebra Ao is easy to deal with because we have a G W(FOy n).
We can inflate a to any convenient composite F0Fi so A0 is similar to an
algebra of type (a).

Now we consider Ar for 1 ̂  r ^ t. The relation (Fn θn ab) ~
(F r, βn fl)0(FΓ, 0r, b) can be applied to Ar by using (16) and (17) to get Ar

is similar to the product of the algebras

Pr = (Fn θn λ
h/er) and Qrj = (Fn θn ΩJ/), 1 ̂  / ^ r - 1.

These cyclic algebras are well defined because of (17). In the case
r = 1, Ar is already equal to Pr.

Now we show how to transform each of these algebras into similar

algebras of types (a) or (b). The algebra Pr is similar to

r0(Fo/A, 1)= (2J FrVr)®\2s F0^a)

\ j I \ σ I

where the " 1 " represents the trivial factor set so that wσwτ = wστ for σ,
T G G(FQIK). Note that λr is in F o so we may replace the element vr (g) 1
with Όr®λ~x = wr. Identify l ® w σ with wσ so we now have the
following multiplication rules:

wrwσ = 1 ®λrσ(λr)
ιwσwr = 1 <g) ζ~l wσwr.

We use (7) to obtain the last equality. Finally identify Fr(g)FQ with the
composite FrF0 and observe en ζrσ lie in W(F0, n) by the condition on a
and (6) and (10). This finally gets Pr is similar to (F0Fr/K,aor) where
aor G W(F0, n) which is of type (a).

The algebra Qrj is treated in a similar way. We have Qrj is similar to

Identify Fr 0 F} with the composite FrF), use the fact that Ωrj G F,
and set wr = vr 0 Ω ^ . Then we have

H>?' = 1, Whj' = 1

WrWy = Ω ^ 1 θj(Ωrj) WjW, = 6rjWjWr.

Here the erj comes from (15) and (9) and eΓ/ G W(K, n). It follows that
Qrj is similar to {FrF],/K, aη) with arj G W(K, n) which is an algebra of
type (b).
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When all the pieces are put together we reach a representation of A
as a product of algebras of type (a) and (b) up to similarity.

2. The generators for S(K). In this section K denotes
an algebraic number field which is a subfield of some cyclotomic
extension of Q, the rationals. We select an integer m such that
K C Q ( e J and keep m fixed throughout this section.

PROPOSITION 2.1. (Yamada, [11]). Let p be a prime integer Each
class in S(K)P contains a crossed product (Q(en)IK,a) with a E.
W(Q(en),p) and n = mpx- pt where px, ,p, are distinct odd primes
not dividing m in the cases p j4 2 or p = 2 and 4 divides m in the case
p - 2 and m odd, n = 4rap, -pt with the p, distinct odd primes not
dividing m.

Proof. Let the class [A] in S(K)P contain a crossed product
(K(es)IK,β) with β E W{K{es),p). By inflating the factor set we find
[A] also contains a crossed product (Q(eN)IK, inf β) where m divides
N. Let p,, , pt be the odd primes which divide N but not m. Define n
as in the theorem so we have the inclusions

Now every prime divisor of N also divides n so G(L/F) is cyclic.
(This is most easily seen by considering G(LIQ) and G(F/Q).) It is an
easy exercise to verify NL!F carries W(L,p) onto W(F,p). The proof
which is well-known in case L = Q(6P-), F = Q(ep»), a > b ^ 1 and
b ^ 2 if p = 2, works equally well in our case here. Hence the
hypothesis of Theorem 1 is satisfied and its conclusion completes the
proof of this proposition.

This brings us to the main theorem.

THEOREM 3. Let K C Q(em) and p a prime integer. For odd p, or
p -2 and 4 divides m, S(K)P is generated by classes which contain
algebras of the following types:

(a) (Q(emq)IK,a), a E W(Q(em),p), q is a prime not dividing m
(b) (K(€qr)IK9β), β E W(K,p), q, r are distinct primes not divid-

ing m.
In case p = 2, and m odd S(K)2 is generated by classes which contain
algebras of type (b) and of type

(a') (Q(e4mq)IK,a), a e W(Q{e4),2),

q an odd prime not dividing m.
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Proof. Any class in S(K)P contains a crossed product as de-
scribed in Proposition 2.1. Keep all the notation from there. Set
F, = K(€Pι) for 1 ̂  / ̂  t and set F o = Q(em) if p is odd or if p = 2 and 4
divides m. In the remaining case set F o = ζ>(€4m). Now the fields Fo,
Fu - ,F, are linearly disjoint over K and the algebra A = (Q(en)lK,a)
has factor set with values which are p- power roots of 1. We may ignore
the case where A is split. Then A has p-power index Φ\. By the
theorem of Benard-Schacher [2] (see also Janusz [5]) [5]) ep is in K.
Thus p divides m, or Am when p =2 and m odd. This means
a E W(F0,p). SO Theorem 2 can be applied. The algebras (ίvFJ/K, ai})
are of type (a) or (a') when / = 0 or j = 0 and of type (b) if / ̂  0 and jV 0.
Since Q(en) = F0Fj F,, we see A is in the group generated by classes
containing algebras of type (a) and (b) or (a') and (b), and the theorem
holds.

The reader should find no difficulty applying this theorem to
determine S(K) when K is one of the fields Q, Q{ep°), or Q{em). Of
course the determination of the index of the generating algebras
requires the local results in the next section.

3. The local case. The effect of Theorem 3 is to give us
generators for S(K)P but unfortunately these are not independent
generators. The relations between the generators can be found in some
special cases by the use of local invariants.

Crucial to this procedure is the identification of the Schur group of
a local field. This has been done by Yamada in a series of papers [8], [9],
[10]. He has given several proofs of the local results but in all cases he
has used some fairly deep results usually derived in the study of local
class field theory. We shall give still another proof which we believe is
more elementary. This is especially true in the case of a 2-adic local
field.

To fix the notation let q be a prime integer, Qq the complete q- adic
rationals, and k a subfield of Qq(em) for some positive integer m.

We begin with a lemma that helps compute the index of cyclic
algebras over k.

LEMMA 3.1. Let E be a Galois extension of k with ramification
index e = e(E/k). Let ζ be a root of unity in k having order relatively
prime to q. Then ζ = NElk (x) for some x in E if and only if ζ is the e Ίh
power of a root of unity in k.

Proof Suppose F is the maximal unramified extension of k in F.
Then (F: F) = e. Now assume ζ = ye for some root of unity γ in k.
Since ζ has order prime to q it may be assumed that γ also has order
prime to q. It is well known that NFlk maps the roots of unity in F of
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order prime to q onto the roots of unity in k of order prime to q. Hence
there is an x in F with NF/k(x)~y It follows NE/fc(jc) = γ€ = ζ as
required.

Conversely suppose ζ = NE/k(x) for some x in E. Let TΓ be a prime
element of E and let bars denote residual classes mod π. Then E - F
so there exists an element y in F such that x - y. In fact y may be taken
as a root of unity with order prime to q since all nonzero elements in F
are roots of unity. Now we have

with the congruence taken mod (TΓ). This means ζNFιk(y)~e is a root of
unity in k of order prime to q whose image in fc is ϊ . The only such root
of unity is 1 so we have ζ = ye with γ = NF / λ(j), a root of unity in k.
This completes the proof.

THEOREM 4. (Yamada [8]). Suppose q is an odd prime. Then
S(k) is a cyclic group of order (q - l)/e0 where e0 is the largest factor of
e(k/Qq) which is prime to q. A generator for S(k) is the class containing
a cyclic algebra (fc(e^),cr, ζ) where a is any integer > 1 , <σ) =
G (k (eq° )/k) and ζ is a generator of the group of roots of unity in k whose
order is prime to q.

During the proof of Theorem 4 we shall also obtain a proof of the
following.

PROPOSITION 3.2. (Witt [7]). Suppose q = 2 and e4 is in k. Then
S(k) has order one.

Proof. We shall prove the theorem by determining the p- primary
parts, S(k)p, for each prime p.

Suppose first p^ q. Any class in S(k)p can be represented by a
crossed product

A =(L/fc,α), aGW(L,p)

L = Qq(eq-,em), (<?, m ) = 1.

Now let F = k(eq"). Then L =F(e m ) is unramified over F so
G(K/F) is cyclic and iVL/F carries W(L,p) onto W(F,p). By Theorem
1, A is similar a crossed product (F/k,β) with β E W(F,p). Since
G(F/k) is isomorphic to a subgroup of G{Qq(eq°)IQq), it follows
G(F/k) is cyclic. This is also true if q = 2 when e4 is in /c. Thus (F/k,β)
can be written as (k(eq«), σ, e) with 6 in W'^p) . In particular this
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algebra is similar to a power of B = (k(eq°), σ, ζ) where ζ generates the
group W(k,p). This algebra has index pb if pb is the least power of ζ
which is a norm from k(eq«). By Lemma 3.1 pb is the p-factor dividing
e(k(eqa)lk). Since the p-factor of e(k(eq«)IQq) equals the p-factor of
(q - \)le0 as given in the theorem. Notice that for q = 2 and e4 in k,
S(k)p = 1 when p ^ 2 .

The computation of the index of B did not depend upon a so long
as α ̂  1. By combining this calculation for all primes p ^ ή we have
proved the theorem except for the last step which is to show S(k)q has
order one.

Now let

A =(Llk,a),aeW(L,q)

L = Q,(v,em), (q,m)= 1.

Suppose A has index qc ̂  1. Then by the root of unity theorem [2],
[5] we find eq is in k. In the case q = 2 we are assuming e4 is in k.

Now let F = k(em) so L = F(€,«).
We again have G(L/F) cyclic, and NL/F carries W(L,q) onto

W(F, q) because eq is in F (or e4 is in F). It follows from Theorem 1
that A is similar to a crossed product (F/fc, β) with β in W(F, q). But
F/fc is unramified so this algebra is split and S(k)q is trivial. This proves
both the theorem and the proposition.

We now have left the case of S(k) for q = 2 and e4 not in k. In this
case we see any element in S(k) is split by k(e4) because S(k(e4)) has
order one. Since (k(e4): k) = 2it follows that each element of S(k) has
order at most 2. Subgroups of the Brauer group of k which have an
exponent are cyclic so we now know S(k) has order 1 or 2. Before we
state the criterion which determines when S(k) has order two, we need
some notation.

Let h be the least positive integer which satisfies the conditions

(i) ft ^ 2
(ii) k C Q2(^2h, €c), c some odd integer.

LEMMA 3.3. IfkCL = Q2(€2
h, ec) with ft as above, thenk(e4c) = L.

Proof. Let G(L/Q2) = (σ_i, σ5) x (φ) where φ fixes 62ft, crx fixes eC9

and σx(€2") = ex
2

h for JC = — 1,5. If G{Ljk{e4c)) is not of order 1 then it
must contain τ = (σ5)

2" ' because this is the only element of order 2
fixing 64c. But then k(e4) belongs to the fixed field Q2(e2h - 1,6C) of τ
contrary to the choice of ft.

Now we can state the theorem originally proved by Yamada [9,10]
in a slightly different form.
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THEOREM 5. Let k be a subfield of Q2(em) for some m. S(k) has
order 1 or 2 in all cases and has order 2 if and only if there is an odd
integer n such that the following hold:

(i) k(€4)/k is ramified;
(ϋ) k(€4n) = Q2(€2*9cn)

(iii) (k(en): k) = 2Γw, w odd, r ^ 1;
(iv) the automorphism of order 2 in G{k(e4n)lk(en)) carries e2* to

its inverse;
(v) if r^h-l, then any root of unity in k(e4n) whose order

divides 2h~r+ι already lies in k(e4).

Proof. First suppose (k: Q2) is odd. Then k/Q2 is unramified so
k = Q2(er) for some odd r. If we set n = 5r then conditions (i)-(v) hold.
The factor 5 is inserted to make certain (iii) holds. Moreover the
oddness of (k: Q2) insures that

k <g>«?2(€4),σ, - 1) = (*(e4),σ, - 1)

is an algebra in S(k) of index 2.
From now on we assume (k: Q2) is even. We shall use several

times in the proof that (k(e4),σ, - 1) is split.
Suppose S(k) has a class of order 2 containing

Λ' = (k(ζ)lk, a'), ζ a root of unity.

By inflating a' to a larger field and then applying Theorem 1 we may
replace A' by an equivalent algebra

A =(L/k,a) aB W(L,2)

L = Q2{e2^en),

where n is odd and h is the minimal integer described before Lemma
3.3.

We may apply Lemma 3.3 to conclude L = k(e4n) so (ii) holds. If
k{e4)lk were unramified, then L/k would be unramified and so A would
be split. Thus k(e4)lk is ramified — in in fact totally ramified. So (i)
holds. We cannot have L = k(e4) because (k(e4)yσ, - 1) is split. Thus
k(e4) and k(en) are nontrivial extensions of k and they are linearly
disjoint over k because one is totally ramified and one is unramified.
This allows us to describe the Galois group:

G(Llk) = (σ)x(τ) where
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σ(en) = en τ(e4) = e4

σ(€4)= - €4 τ = Frobenius automorphism on k(en)/k,

p has order 2,τ has order t.

The factor set a for A is determined by the equations

(1) ul=eσ

(2) ul = €T

(3) UσUτ = €στUτUσ

where eσ, eτ, eστ G
There are certain restrictions upon these values:

(4) €σ=±\9

(5) σ(eστ)eστ = 1,
(6) σ{eτ)e~τ

x = eZ for some odd integer w determined below.

Equation (4) follows because eσ = u\ centralizes uσ that is σ{eσ) =•
eσ. But the only 2-power roots of unity in /c(eπ), the fixed field of σ, are
± 1 because e4 is not in k(en). To get equation (5) just use equations (3),
(1) and (4) to get

eσuτ = σ(eστ) uσuτuσ = σ(eστ) eστuτeσ

from which (5) follows.
In order to establish (6) we first make the following computation.

Let τ(e) = ev when e = e2h. Since τ(e4) = e4 we obtain v = 1 mod 4.
Thus we have

/-I

ΠΠ τ ' ( € ) = € I + B + +Bf-I =

where x - t if v = 1 and JC = (V - l)/(ι; - 1) if υ^ 1. The condition
t> = 1 mod 4 insures that the highest power of 2 in JC is the highest power
of 2 in t. Thus ex = etw for some odd w in either case. Now to get (6) we
use (3) and (2) to obtain

(uσuτu~ιY = σ(eτ) = (eστuτy

= e τ Πτ i (e σ τ ) = eτeZ-

Now suppose eστ = 1. Then the subalgebra (fc(e4),σ, eσ) of A has
k(en) and uτ in its centralizer. So by dimension count we obtain
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A = ( /C(6 4 ) ,σ,6 σ ) (g)(/C(6 n ) ,τ ,6 τ ) .

This algebra is split; the first factor is split because (k: Q2) is even; the
second because k(en)lk is unramified.

So now we assume eστ ^ 1. We must consider separate cases. Let
ζ = €2*. Then σ induces an automorphism of the cyclic group (ζ)
which inverts eA. There are only two possibilities:

Case (a) σ{ζ) = ζ~x

C a s e (b) σ(ζ) = ζ'ι+2h'\ h^3.

Assume case (b) holds. It is easily seen that only even powers
of ζ are inverted by σ, so in view of (5) we have

eσr = ζ2\ some b.

If we let c =b(l + 2h'2) then

Now let vτ = ζcuΎ. The last equation implies

uσvτ = σ(ζc)eστζ~cvτuσ = vτuσ.

As in the case just above with eστ = 1 we again have

A =

where e = v\ = (ζcuτy = eτ NL/Me4)(^c) Since this is a root of unity we
get A is split for the same reasons as above. Thus case (b) does not
occur if A has index 2.

Now assume case (a) so σ inverts all 2-power roots of unity. Thus
(iv) holds. Let JC = €4(1 - e σ τ ) . Since eστ^ 1, we have x/0. Also

σ(x) = - e4(\ - e~l) = €4e~]
τ (1 - eστ) = e'lx.

Set υτ = xuτ. This last equation implies uσvτ = vτuσ. For the third time
now

A = (/c(64),σ,eσ)(g)(/c(6n),τ, a)

where a = υ\ = eτNL/k(€4)(x).

The first factor on the right is split because (k: Q2) is even. The
second factor might not be split however. The previous reasoning does
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not apply because a is not a root of unity. Suppose π = πk is a prime
element of /c, and a = πqw, w a unit in the valuation ring of k. Since
every unit of the valuation ring is a norm from k(en) we obtain the
similarity

A - (/c(€j,τ,τr«).

This algebra is split if and only if t ={k{en): k) divides q. So we must
compute q.

Consider first eστ = - 1 so JC = - 2e4. Then a = 2' (except for
units). If 2 = πe then we conclude et = q so t divides q and A is split.

Now assume eστ has order 2d ^ 22. First notice the following fact.
If e is a root of unity of order 2r then the norm from Q2{e2r) to
Qi(€2r - 1) carries l - € t o l - e 2 i f r ^ 3 and to 2 if r = 2. This provides
us with the equation

Now use the transitivity of the norm to get

NLIQ2(x) = NLIQ2(l ~ eστ) = 2^^d)\

Let τr4 be a prime element of k{eA) and set NL/k{€4)(x) = πl We
should allow unit factors in this and other equations to follow, but the
units will not affect the outcome of the computation of the index so we
just drop them from the equations. Then we may write π2

4 = ττk and
a = π j = ΊT\ implies 2q = s. Set

2', f = f(k/Q2).

We now obtain from these norm equations

2{LQ^d)) = NklQ2Nki€4)lk(π
s

4) = 2sf.

Then

= (L:Λ(€4))2e(Λ/<?2)//2"-1.

Finally

2""1 '
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and
_ te{kJQ2)

From Lemma 3.3 we conclude e(L/Q2) = 2h~ι and so e(klQ2) = 2h~2.
This gives us the equation

Whenever d < h, q is divisible by t and A is split. When d - h then
2q = t and so the algebra has index 2 because t does not divide q. We
have yet to show condition (iii) holds; it is necessary to show t is even.
Since eστ has order 2h and equation (6) now reads

-2 _ ίw

(7)

we see the order of eZ is at most 2h~ι because it is a square. Since w is
odd it follows t is even. Thus we have shown conditions (i)-(iv) of the
theorem hold.

Finally we must verify (v). From equation (7) and the fact that eστ

has order 2h we find eτ has order 2h~r+ι if r g h - 1. This follows because
2r is the exact power of 2 dividing t. Moreover er = u\ centralizes uτ so
βτ is fixed by r. Hence roots of unity with order dividing 2h~r+ι lie in
fc(€4), the fixed field of T. This shows the conditions (i)-(v) are
necessary.

The computations also show how to prove the converse. We
assume conditions (i)-(v) hold. It is necessary to define a factor set a
for the extension k (e4n )/k so that the algebra (k (e4n )/fc, a) is given by the
conditions (1)~(3). It is required that eσr have order 2\ We set eστ = e2s
eσ = 1 and eτ a solution of equation (7). A solution is possible because t
is even and such an eτ is fixed by r. The odd integer w in (7) is 1 if
r(e2») = e2* and w is the odd integer which satisfies

tw ^ v - 1

when τ(e2

h) = e^s v φ 1. Then the equations (l)-(3) do define a factor set
and the algebra constructed has index 2. The proof is finally complete.

The five conditions in Theorem 5 can be described in terms of
Galois groups. Let L = Q2(e2», en) with h ^ 3 and n odd. Then

where φ fixes e2" cr_,, σ5 fix en and σ_j inverts e2* while σ5(e2*) =
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We want to describe which subfields k of L satisfy the conditions
in Theorem 5. We give a sketch of the characterization.

The group G(L/k(en)) must have order 2 and its generator inverts
e2*. Thus G(Llk(en)) = <σ> = (σ_,).

The group G(L/k(e4)) = (r) is a subgroup of (σs,φ). The condi-
tions (iii) and (v) force

where the order of φb is divisible by 2|σ? |.
Now suppose L = ζ)2(e4, en) with n odd. Let G(LIQ2) = (σ_,)x (φ)

with the same definitions as above. The conditions of the theorem
require G(L/k) = (cτ_,)x (φb) where φb has even order.

Summary. The subfields k of L = Qi(e2

h,en) which satisfy the
conditions of the Theorem 5 are the fields fixed by the groups

(a) (σ^)x(σa

5φ
b) if h ^ 3 and 2\σa

5\ divides \φb\;

(b) <σ.,>x<Φ*> if ft = 2 and 2 divides | φ * | .

4. Global fields. We return to the study of S(K) when K is
a global field. We assume K is a subfield of Q(em) for some positive
integer m.

For a rational prime q (either a prime integer or the infinite prime)
we denote by S(K,q) the subgroup of S(K) consisting of those classes
which are split at every completion of K except possibly at the primes
of K over q. As usual S(K,q)p denotes the p~primary subgroup of
S(K,q). It follows from Benard's theorem [1], that S(K,q)p is a cyclic
group (perhaps trivial). When p ^ 2, S(K, q )p can be nontrivial only if q
is a finite prime and p divides q - 1 by Theorem 4.

For certain X, it is known that S(K)P is the direct sum of its
subgroups S(K, q)p while, for example, S(Q)2 is not such a direct sum.
In fact S(Q,q)2 is trivial for all q while S(Q)2 is infinite. In all the
known cases where S(K)P fails to be the direct sum of the S{K,q)p, it
happens that p = 2. This suggests an obvious conjecture to which we
lend some support.

THEOREM 6. Let K C Q(em) and let p be an odd prime integer.
Assume K satisfies the following condition: Whenever p is a prime of K
which ramifies in Q(em), then the rational prime integer r in p is not
congruent to 1 mod p.

Then S(K)P is the direct sum of its subgroups S(K,q)p as q runs
through primes = 1 mod p.
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Proof To prove the theorem it is enough to show each member of
a generating set for S(K)P is the product of elements from distinct
subgroups S(K,q)p. We use the generators as described in Theorem 3.

A generator Aq = (Q(emq)IK,a) of type (a) is nonsplit only at those
primes of K which ramify in Q(emq). Let p be such a prime and suppose
first q is not in p. Let r be the rational .prime integer in p. Then Kp ®Aq

is an element in S{KP)P. The order of this group divides r - 1 by
Theorem 4. Our assumption is that p does not divide r - 1 so Kp (g)Aq

is split. Hence Aq is nonsplit only at the primes over q. (Since p / 2, Aq

is split at all infinite primes.) Thus [Aq] is in S{K,q)p.
Now consider an algebra Bqr = (K(eqr)IK,β) of type (b) in Theorem

3. The values of the factor set are p- power roots of unity in K. Suppose
6 is the generator of W(K,p). Then

G(K(eqr)IK) = G(Q(e,eqr)IQ(e))

so it follows that

Bqr = K®{Q{e,eqr)IQ{e),β).

Thus [Bqr] lies in the image of S(Q(e))p under the map from the Brauer
group of Q(e) to the Brauer group of K. The group S(Q(e))p is already
known by the results of Benard-Schacher [2] (and can also be easily
computed using Theorems 3 and 4). We find S(Q(e))p is the direct sum
of its subgroups S(Q(e),q)p. Thus [Bqr] is the product of elements in
distinct subgroups S{K,q)p, The proof is complete.

Notice the hypothesis of Theorem 6 holds trivially when K =
Q(em). However for this case S(K)P is known [6].

A less trivial case where Theorem 6 applies is a case when Q(em) is
unramified over K. In this case Theorem 6 applies for all odd p. The
following theorem is really just a restatement of facts already proved.

THEOREM 7. Suppose Q(em) is an unramified extension ofK and p
is an odd prime. Then S(K)P is the direct sum of its subgroups S(K,q)p

where q runs through primes congruent to 1 mod p. Moreover S(K,q)p

is cyclic and a generator can be taken as an algebra either of the form
(Q(€mq)IK,a) for a suitable factor set a G W(ζ)(em),p), or of the form
K(g)β with [B] in S(Q(€),q)pfor (e)=W(K,p).

We shall conclude this paper by illustrating the difficulty which
prevents us from making progress in cases not covered by Theorem 6.

Let p and t be odd primes with t = 1 mod p2. The field Q(ept) has
an automorphism σ of order p which fixes ep. Let K be the fixed field
under (σ). Then the prime p of K which divides t i$ ramified in Q{ept)
and of course p divides t - 1.
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If we are to compute S(K)P it will certainly be necessary to decide
if there is an algebra class in S(K)P which is nonsplit at t. This is even
weaker than asking if S(K,t)p has order 1 or not.

If there is a class in S(K)P nonsplit at t, then one of the generators
of S(K)P is nonsplit at t. The generators listed in Theorem 3 part (b) are
all split at t because the divisor p of t in K is unramified in K(eqr).
Hence we consider generators of type (a). Suppose

Λ =(Q(eptq)IK,a), a e W(Q(ept), p).

Suppose G(Q(eptq)/K) = (σ) x <τ) with σ fixing epq and τ fixing ept.
The important value of the factor set is eσr where

uσuT = eστuτuσ in A.

Let the Frobenius automorphism of p in K(eq) be τa. After some
calculation, one finds the t- local index of A is the order of e^. Since
there are no p 2 roots of unity in K we see eστ has order at most p and for
suitable a we can arrange eστ to have order p. This requires q = 1 mod
p. For such a q and suitable a we find A has ί-local index p if p does
not divide a, and A is split at t if p divides 0.

So the problem rests upon the existence of a suitable q namely we
want a prime g such that q = 1 mod p and the Frobenius automorph-
ism of p in K(eq) is not a pth power of any automorphism in
G(K(eq)IK).

The assumptions made at the beginning insure f(ρlt)= 1 so the
assertion about the Frobenius automorphism of p is equivalent to the
assertion that the automorphism φt(eq) = eρ is not the pth power of any
element in G(Q(eq)IQ).

The question of whether or not such a q exists for the given p and t
is open. It is related to a famous conjecture of Artin, a special case of
which says there exist infinitely many primes q such that φt generates
all of G(Q(eq)IQ). Of course we require somewhat less of φ} but we
require q = 1 mod p.

Artin's conjecture has been shown to hold by Hooley [3] under the
assumption that the extended Riemann hypothesis holds. Without this
assumption only very special cases of the conjecture are known to hold.

This suggests that explicit determination of S(K) for general K
may depend upon extremely deep properties and results about the
distribution on primes which are not yet known.*

* Note added in proof February, 1975. This is an embarrassing overstatement of the

difficulties of the problem. In fact the existence of the required primes can be proved without

reference to Artin's conjecture. The determination of S(K)P can be made for p and odd prime

and K any abelian extension of Q. The details will appear under the title "The Schur group of an

algebraic number field".
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