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A CHARACTERISTIC SUBGROUP OF A
GROUP OF ODD ORDER

Z. ARAD (ARDINAST) AND G. GLAUBERMAN

Let G be a finite solvable group of odd order. Suppose p is
a prime, S is a Sylow p-subgroup of G, and O,(G)=1. Let
J(S) be the Thompson subgroup of S. Then, by a result of the
second author (Lemma 6), Z(J(S)) = G.

The object of this paper is to generalize the above result by
replacing the prime p by a set of primes .

We obtain the following results:

THEOREM 1. Let G be a finite solvable group of odd order, 7 be a
set of primes, and H be a Hall m-subgroup of G. Assume that
0O,.(G)=1. Then:

(a) for everyp € m —{3} and A € 4(H), O,(A) C 0,(G);

(b) the prime divisors of d(H), of |Z(J(H))|, and of |F(G)|
coincide;

(c) d(G)=d(H); and

d ZJ(G)=ZJH)).

In particular, if G# 1, then 1CZ(J(H)) = G.

CorOLLARY. Suppose G is a finite solvable group of odd order, p is
a prime, and S is a Sylow p-subgroup of G. Assume that O,(G) =
1. Then Z(J(S))=Z(J(G)). Moreover, if p#3, then J(S)=J(G) =
J(F(G)).

By the Odd Order Theorem of Feit and Thompson [1], Theorem 1
and its corollary apply to all finite groups of odd order. Since much of
our argument requires only that G be w-solvable and have an Abelian
Sylow 2-subgroup, we obtain a related result:

THEOREM 2. Suppose = is a set of primes, G is a finite m-solvable
group, and H is a Hall w-subgroup of G. Assume that G has an
Abelian Sylow 2-subgroup and that O,(G)=1. Then:

(@) 0AG)=0LZJ(G)) = OAZ(J(H))) = OH);

(b) if 2& m, then for every p € —{3} and A € 4(H), O,(A)C
0,(G);

(c) if 2&m, then Z(J(H)) < G; and

(d) if 2& m, then the prime divisors of d(H), of | Z(J(H))|, and of
| F(G)| coincide.
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In particular, if 2& 7 and G # 1, or if O,(G) # 1, then there exists a
nonidentity characteristic subgroup of H that is a normal subgroup of
G.

COROLLARY. Assume the hypothesis of Theorem 2 and assume
that 23& w. Then J(H) = J(F(G)).

Some related results for groups with a nilpotent Hall 7- subgroup
were obtained by Schoenwaelder in [5].

All groups in this paper are assumed to be finite. Our notation is
standard and taken mainly from [4]. In particular, let G be a
group. Then F(G) denotes the Fitting subgroup of G and [A, B, C]
denotes the triple commutator [[A, B], C] of three subgroups A, B, C of
G. Moreover, d(G) is the maximum of the orders of the Abelian
subgroups of G. Let &/(G) be the set of all Abelian subgroups of order
d(G)in G. (Thisis denoted by A(G) in [4].) Then, as in [4], J(G) is the
subgroup of G generated by /(G), that is, the Thompson subgroup of
G.

For a prime power q, we will denote the finite field of g elements by
GF(q). Let p be a prime. Sometimes we will use Z, to denote
GF(p) considered as a field or as an additive group. We will often use
without reference the elementary result that if G is a group, 7 a set of
primes, and H a normal subgroup of G, then O,(H)C O,(G).

At times we shall assume one of the following hypotheses:

(H) (@) m is a set of primes
(b) G is a m-solvable group
(c) H is a Hall 7-subgroup of G

(H,) (a) m,G, and H satisfy (H)

(b) G has an Abelian Sylow 2-subgroup.
(The concept of a - solvable group is defined in §6.3 of [4], in which it is
proved that every =-solvable group possesses a Hall o-subgroup.)

2. Preliminary results.

LEMMA 1. Suppose p is a prime, V is a finite nonidentity elemen -
tary Abelian additive p-group, and A is an Abelian group of automorph -
isms of V. Regard V as a vector space over Z,. Assume that A acts
irreducibly on V and that A preserves some nondegenerate alternating
bilinear form on V into Z,. Let F be the ring of endomorphisms of V
generated by the elements of A.

Then:

~ (a) There exists a positive integer k such that |V |=p* F=
GF(p™), and | A | divides 1+ p*.
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(b) Let E be the unique subfield of F that is isomorphic to
GF(p*). Take v, € V —{0} and let W =v,E. Then for every non-
degenerate alternating bilinear form f on V that is preserved by A,

flw,w)=0 for all w,w €W.

Proof. Let F, be the set (ring) of all endomorphisms of V that
commute with every element of A. We regard Z, as a subfield of
F,. Asiswell known, F,is a division algebra ([4], page 76) and, since it
is finite, F, is a field. Clearly, F is a subfield of F,. Hence the
multiplicative group F-{0}iscyclic. As A isa subgroup of F-{0}, A is
cyclic. Let p™=|V|. We may regard V as a vector space over F;
then V is a direct sum of I-dimensional subspaces over F. As
ACF-{0} and A acts 1rreducnbly on V, V is l-dimensional over
F. Therefore, |F|=|V|=p"

Let N be the set of all nondegenerate alternating bilinear forms on
V into Z, that are preserved by A. By hypothesis, N is not
empty. Hence m is even. Choose a generator a of A. Define g(x)
to be the minimal polynomial of a« over Z,. Then g(x) can be
expressed as

gx)= ax',

0=i=m

where ao, -+, an € Z, and a, = 1. By the elementary theory of ﬁelds
the roots of g(x) over F are distinct and are precxsely a,a’ -, af”

~Take some f € N and some v € V-{0}. Let v’ =vg(a™). Then,
forall we v,

f,w)=> af(va™,w)=>, af(v,wa')
= f(v, wg(a)) =0.

Sirice f is not degenerate, v’ =(0. As v was chosen arbitrarily, g(a™') =
0. Hence, a™'=a” forsome i suchthat0=i=m —1. Ifi=0,then
a’=1, contrary to the fact that m =2 and a # a®. Therefore, 1=i =
m—1. Now

a=(a)'=@")'=(@')y =a"
Smce a generates F and F = GF(p ), 2i is a multiple of

m. Consequently, i =!m. Let k ='m. Then a™'=a*, and o' =
1. This proves (a).
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Let =a +a'. Since

2k k
8" =a” +a" =a+ta” =3,

2k -1

d € E. Since a generates F over Z,, it follows that a,a” - -, a’
form a basis of F over Z,. Hence §,8°,---,8" ' are distinct. So, §
generates E over Z, and §,8%,---,8"" ' form a basis of E over Z,, that
is,

at+al,a"+a”’ a2 +a

is a basis of E over Z,.

Takef€ Nand w,w' € W asin(b). Ifw =0,then f(w,w')=
0, as desired. Assume that w# 0. Then there exists 8 € E such that
w'=wpB. Take by, b,, -, b, € E such that

Z b(a” +a™®)=p.

0=isk-1
Fori=0,---,k—1,

flw,w(a” +a™)) = f(w,wa”) + f(w, wa ™)

= f(w, wa®) + f(wa®,w) =0,

since f is an alternating form. Hence,

flw, w') = f(w, WB)=OZ bf(w,w(a” +a™)) =0,

=<i=k-1
as desired. This completes the proof of (b) and thus of Lemma 1.

LeEMMA 2. Supposep is a prime, B is a finite, non-Abelian p-group,
and A is an Abelian group of automorphisms of B. Assume that A acts
irreducibly on B|®(B) and that O,(A) acts trivially on ®(B).

Then:

(a) there exists a positive integer k such that | B/®(B)|=p*;

(b) |A| divides 1+p*; and

(¢) B contains an Abelian subgroup B, such that B, ®(B) and
| B/®(B)| = p*.

Proof. For convenience in notation, we embed A and B in the
natural manner in their semi-direct product AB.
Let A, =0,(A), A*=0,(A), and V = B/®(B). Since A acts
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irreducibly on V, A/C,(V) acts faithfully and irreducibly on V. We
may regard V as a vector space over Z,. By [4], Theorem 3.1.3, page
62,

A,Co(V)ICs(V)=O0,(A]C,(V)) = 1.
Hence
€)) A, CC4(V)and A *acts irreducibly on V.

Since B is not Abelian, B is not cyclic. Therefore, |V |=
| B/®(B)|=zp?® It follows that 17# [V, A*] and therefore that

(2 [V.A*]= V.
Consequently, B =[B, A*])®(B). By [4], page 173.
3) B =[B,A*].
By (1) and the hypothesis of this lemma,
[A,,B,A*]C[®(B),A*]=1 and [A* A, B]=[1,B]l=1.
Therefore, by (3) and the Three Subgroups Lemma ([4], page 19),
1=[B,A* A,]=[B,A,l

As A, CAutB, A, =1. Hence A isa p’-groupand A =A* Bya
theorem of Burnside ([4], page 174),

4) A acts faithfully on V.

Since C,;(®(B)) is a normal subgroup of AB that contains A, (3)
yields that C,;(®(B)) contains B. Therefore, ®(B)C Z(B). Since B
is not Abelian and B’ C ®(B) C Z(B), B has nilpotence class two. By
an easy calculation, [x,y]’ =[x?,y]=1 for all x,y € B. Thus

) B’ is an elementary Abelian group.

Take any subgroup C of index p in B’. Let ¢ be an isomorphism
of B’/C onto the additive group of Z, Since ®(B)C Z(B), the
mapping f: VXV — Z, given by

f(x®(B),y®(B)) = ¢([x,y]C)
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is a well-defined, nonzero, alternating bilinear formon V into Z,. As A
acts trivially on B’, A.preserves f. Therefore, A preserves the radical
of f, that is, the group R/®(B), where

RO®B)DC and R/C=Z(B/C).

As R/®B)CV and A acts irreducibly on V, R/®B)=
1. Consequently, f is a nondegenerate form. By (4) and Lemma 1,
there exists a positive integer k such that |V |=p* and | A | divides
1+ p*. This yields (a) and (b).

Take E and W as in Lemma 1(b). Define a subgroup B, of B such
that B,D ®(B) and B,/®(B)=W. Then

| B/®(B)|=|W|=|E|=p"

Suppose B, # 1. Then, by (5), there exists a subgroup C* of index p in
B’ such that B;Z C*. For convenience in notation, we will assume
that C* is the group C chosen above. Take a form f as above. Take
X,y € B, such that [x,y]&Z C. Then

f(x®(B), y®(B)) = ¢(Ix, y]1C) # 0,

contrary to Lemma 1(b). This contradiction proves that B;=1 and
hence completes the proof of (c) and of Lemma 2.

LEMMA 3. Assume (H) and assume that O,(G)=1. Then:

(@) Cs(F(G))C F(G), and

(b) if A is a subgroup of Aut G that fixes every element of F(G)
and if |A | and |G| are relatively prime, then A = 1.

Proof. (a) Let N =0,(G) and C = C;(F(G)). Then N is a
solvable group. Clearly, F(N)= F(G). By [4], Theorem 6.3.2,
Cs(N)C N.

Suppose x is a w'-element in C. Let L =(N,x). Then

N=0,(L) and [N,O0.(L)ICNNO.,(L)=1.

Since Cs;(N)CN, it follows that O,(L)=1. Hence F(N)=
F(L). Since L is solvable,

xXECNL=C.(F(L)CF(L)=F(N),

by [4], page 218. Therefore, x = 1.
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Thus, C is a m-group. Since C <G, C CO,(G)=N. By [4],
page 218 again, C = Cy(F(N)) C F(N).

(b) Embed A and G in their semi-direct product AG. Let
B = 0,(AG). Since BNG C 0,(G)=1,|B|divides |[AG/G |, that is,
|B| divides |A|. Since |A| and |G| are relatively prime and

|A/(A NB)|

divides | AG/B|, B C A. However,

[G,B]CIG, 0.(AG)] C O,(G) = 1.

As B is a group of automorphisms of G, B =1. Hence F(AG)=
F(G). By (a), A C F(G). Therefore, A =1.

LEMMA 4. Assume (H). Supposep €m, O,.(G)=1,and Tis a
p-subgroup of O, ,(G) that centralizes F(O,(G)). Then T C O,(G).

Proof. Let K = O,(G). Apply Lemma 3 with K in place of G
and T/C;(K) in place of A. We obtain the conclusion that T/C,(K) =
1, in other words, T centralizes K. Let R be a Sylow p-subgroup of
0, ,(G) that contains T. Let T*= Ci(K). Then O, ,(G)= KR and
T* is normalized by K and by R. Hence T* < KR and

T C T*C 0,(KR) C 0,(G).

We also use the following result of J. Thompson, whose proof is
sketched in the remark on page 164 of [3]:

THEOREM OF THOMPSON. Suppose p is an odd prime, G is a
p-solvable group, and S is a Sylow p-subgroup of G. Assume that
0,(G)=1. Assume also that G satisfies one of the following condi-
tions:

W pzT7

(i) p =S5 and G has an Abelian Sylow 2-subgroup.

Then J(S) C O,(G).

LEmMA 5. Assume (H,). Suppose p&€m, S is a Sylow
p-subgroup of G, and A € A4(S). Assume that p =5 and that A
centralizes F(O,(G)). Then A C O,(G).

Proof. Let K = O,(G). Note that G is p-solvable. By the
Theorem of Thompson,
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AK/K C 0,(G/K) = 0, ,(G)/K.
Hence A C O, ,(G). By Lemma 4, A C O,(G), as desired.

LEMMA 6. Suppose p is an odd prime, G is a p-solvable group, and
S is a Sylow p-subgroup of G. If p =3, assume also that G has an
Abelian Sylow 2-subgroup. Then

0,(G)Z(J(S)) =G.
Proof. Let K =0,(G), G*=G/K, and S*=SK/K. Then
0,(G*)=1 and S* is a Sylow p-subgroup of G* From the
hypothesis, G* must be p-constrained and p-stable. By a theorem of

the second author ([4], pages 268-269 and 279, or [2], Theorem A),
Z(J(S*)=G*. Since

ZJ(S*)=ZU(S)KIK,

the result follows.
The next result can be easily verified by calculation. It is a special
case of Lemma 10.1, page 1131, of [2].

LEMMA 7. Let K be a group of linear transformations on a

finite-dimensional vector space V over a field F. Let V* be the dual
space of V over F and let K act on V* in the natural manner, i.e.,

fe()=f@*"), for fEV* g€EK vEV.

Let T be the set of all ordered triples (v,f,a) forv €V, f€ V*,
a € F. Define multiplication on T by the rule

(v, fi, @) (U3, fo, 00) = (U + Vo, i + fo, 1+ @, = fi(02).
For each g € K, define a mapping M(g) of T into itself by
(0, f, a)"® = (0%, f*, @).
Then:
(@) T forms a group under multiplication;

(b) for (U,f,a), (vlafh al) and (Uz,fz, aZ) in T’

(vyfa a)“:-_.(_v, _f9 “‘f('l))_a)

and
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[(v1, fi, @1), (02, f2, @2)] = (0,0, fx(v)) — fi(vy)); and

(c) M isanisomorphism of K into the automorphism group of T.

3. Some Properties of </ (G).

ProposITION 1. Suppose G is group, A € 4(G), B is a nilpotent
subgroup of G, and A normalizes B. Assume that B has an Abelian
Sylow 2-subgroup and that either | A | is odd or B is Abelian. Then AB
is nilpotent.

Proof. Assume that the result is false, that G is a counter-example
of minimal order, and that, within G, B has minimal order.

Clearly, G = AB and G D F(G) D B. Therefore, AZ F(G). For
some prime D, O,(A)Z F(G). Let A, =0,(A). Then
A,Z O,(G). Hence A,B,A4G. Since A normalizes A,B,, B does
not. Consequently, there exists a prime g such that O,(B) does not
normalize A,B,. Let B, = O,(B). Then B, does not centralize A,B,
and therefore does not centralize A,. Thus AB, is not nilpotent. By
the minimal choice of B, B = B,.

Let A*=0,(A) and V =B/B’. Then A* does not centralize
B. By [4], page 174, A* does not centralize V. By the minimal choice
of B,

7) A * centralizes ®(B).

From (4], page 177, V = C,(A*) X[V, A*]. By the minimal choice of
B,

V=[V,A*] and C,(A¥)=1.
Let W be a minimal A-invariant subgroup of V. Then W is elemen-
tary Abelian. Since Cy(A*)C Cyv(A*) =1, the minimal choice of V
yields that V = W. Hence ®(B)C B' C ®(B). Consequently,
(8 B’'=®(B)and A acts irreducibly and nontrivially on B/B’.

Let C=C,(B) and n =|A/C|. Then A/C acts faithfully as a
group of automorphisms of B. By (8),

9) CNBCB'.

Take B, € A4 (B). Since CB, is Abelian and A € 4(G),
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|A|z|CB\|=|C]| [B\|[[CNB/|z|C]| BB,
by (9). Hence
(10) n=|A/C|z|B\|/|B'|=d(B)|B'
Suppose first that B is Abelian. Then B'=1 and d(B)=
|[B|. For every a€A—-C, Cs(a)CB and Cs(a)< AB; by (8),

Cz(a)=1. Hence every non-identity element of A/C acts in a fixed-
point-free manner on B, and

|A/C|=|B-{1}]<|B|=d(B)/|B'|.

However, this contradicts (10).
Thus B is not Abelian. By hypothesis,

(11) q is an odd prime and | A | is odd.

By (7) and (8), A and B satisfy the hypothesis of Lemma 2. Take k
and B, as in Lemma 2. Then

|B/B'| = g™ n divides 1 + q*, B, is abelian, and | B./B'| = q".

Therefore, by (10), n = d(B)/|B’'|=|B./B’'| = q* Since n divides
1+qg* n=1+q"* But this is impossible, by (11). This contradiction
completes the proof of Proposition 1.

PropoSITION 2. Assume (H,). Suppose O,.(G)=1. Then
0xG)=0,(H)=0(Z(J(H))) = 0OZ(J(G))).

Proof. Let K = O(Z(J(H))) and N = O,(G). Then N is a solv-
able group. By (H,), K centralizes OG). For every odd prime p,

0,(G)C O,(H) C Cs(0:(H)) C Cs(K).

Hence K centralizes F(G). By Lemma 3, K CCs;(F(G))C
F(G). So K CO,(F(G))= 04G).

On the other hand, let A € #(H) and B = O,(G). By Proposition
1, AB is nilpotent. Therefore, O.(A) centralizes B. By (H,), A
centralizes B. Hence BC Cy(A)=A. Thus BCZ(J(H)) and B C
K. Consequently, B = K, as desired. Since m, H, and H satisfy (H,),
we obtain as a special case that K = O,(H).
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A similar argument with A € #/(G) and B = O,(G) = K shows that
K CZ(J(G)). Hence

K CO4ZJ(G)) S 0AG) =K.
So K = 0LZ(J(G))).

ProprosiTiON 3. Assume (H,). Suppose p €7 and A € A (H).
Assume that O.(G)=1, d(H) is odd, and p=S. Then O,(A)C
0,(G).

Proof. We use induction on the order of G. Let A, = O,(A),
T=0,(G), K=0,,(G) and G*= AK, and H*= A(H N K). Then
H N K is a Hall 7- subgroup of K and H * is a Hall #- subgroup of G*.

Suppose G*CG. Since A C H*, d(H*)=d(H). By induction,
A, CO,(G*). Hence

[K,Ap] CKnNn Op(G*) c OP(K) =T.

Therefore, A,T/T C Csr(K/T). By [4], page 228, Cs+(K/T)C
K/T. Consequently, A, C K. So,

A, CKNO,(G*=0,K)=T,

as desired.

Suppose G*=G. Then A,T is a Sylow p-subgroup of G. Let
A*=0,(A). By hypothesis, |A | is odd. By Proposition 1, AT is
nilpotent. Therefore, A* centralizes T and hence A,T. For every
Abelian subgroup B of A, T, A*B is Abelian and

|A*] |A,|=]A|z]|A*B|=]A*| |B].

Hence A, € A(A,T). By Proposition 1, AF@O,(G)) is
nilpotent. Then A, centralizes F(O,(G)).” By Lemma 5, A, C O,(G),
as desired.

ProrosiTION 4. Assume (H,). Suppose m is a set of odd primes
and O,(G)=1.

Let K = Cs(0:(G)). For every pEm and A € A(H), let A, =
O,(A). Define d; to be the maximum of |C| for all Abelian 3-
subgroups C of HN K and define 4, to be the set of all Abelian
3-subgroups of order d; in H N K. Let S be any Sylow 3-subgroup of
K. Then:
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(@ {A,|A€eAH)}=A(0,(G)), for every prime p =5;

(b) {A;|]A € A(H)} = o3

) O,(Z(J(H)))=ZJ(O,(G))), for every prime p = 5; and
(d) O(ZUJH))=ZUJ(S)) =G and d,= d(S).

Proof. Note that d(H) is odd.

(@) Assume p=5. Let A€o (H). Let A*=0,(A)and M =
0O,(G). By Proposition 3, A, C M. By Proposition 1, A* centralizes
M. Hence, for every Abelian subgroup B of M, A*XB is
Abelian. Therefore, |A,|=d(M), and A*x B € 4(H) for every
B € 4 (M). This proves (a).

(b) Suppose A € (H). By Proposition 1, AF(G) 1is
nilpotent. Hence, A, centralizes F(O+(G)). Since

0.(0+(G)) C 0.(G) =1,

A, centralizes O+(G), by Lemma 3. By (a), O+(A)C O:(G). Now (b)
follows by an argument similar to that of (a).

(c) This follows immediately from (a).

(d) Assume first that K is a 3’-group. Then #,={l} and S =
1. Since Z(J(H))CTA for every A€ A(H), O(ZUJH))=1=
Z(J(S)), as desired.

Now assume that K is not a 3'-group. Then S#1. Let T =
O«(Z(J(H))) and U =ZJ(S)). By Lemma 6, UO:(K)<K. Since
O+(K)C 0+(G) and K = C5(0+(G)),

UO(K)=U X O+«(K).
Hence
(12) 1CU = 04(UO0+(K)) == K.

As O.(G)=1and 1CU CO«(K)C O4G), 3€ .

Suppose A € 4(H). By (b), A;,CHNK. Let A*=0;(A) and
let S* be a Sylow 3-subgroup of H N K that contains A;. Since K <G
and 3€ 7, HN K is a Hall =-subgroup of K and S* is a Sylow
3-subgroup of K. As S* and S are conjugate in K, (12) yields that

(13) U=ZJ(S*).
By (a), A*C O:(G). Therefore, S* centralizes A* Since A =

A;C A. As A is an arbitrary element of #(H), UCZUJ(H)). So,
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UCT. On the other hand, TCA, for every
A € 4(H). Consequently, T C B for every B € 4(S), by (b), and
hence TCU. Thus T =U.

By (12), U=ZJ(R)) for every Sylow 3-subgroup R of
K. Therefore, U is a characteristic subgroup of K and hence a normal
subgroup of G. This completes the proof of (d) and thus of Proposition
4,

4. Proof of Theorems.

We first prove Theorem 2. Parts (a) and (b) follow directly from
Proposition 2 and 3. Since

Z(J(H) =(O0,(ZUJ(H))|p € m),

(c) follows from Proposition 4. To prove (d), assume 2 & 7 and let
m,, 7, and m; be the sets of prime divisors of |Z(J(H))|, d(H), and
| F(G)| respectively. Since Z(J(H))C A for every A € A (H),

(14) ™ C .

Take S as in Proposition 4. Note that O;(G)CK, so O4G)C
S. Therefore,

(15) 3€ m ifandonlyif 3 € 7y,
by Proposition 4(d). By parts (b) and (d) of Proposition 4,
(16) if3€ 7, then A, #{1}, S#1,and3 € m,.

Now (14), (15), and (16) yield that 3 belongs to all of #,, m,, and 7, or
none of them. Parts (a) and (c) of Proposition 4 yield an analogous
statement for each prime greater than 3. This completes the proof of
Theorem 2.

Finally, we prove Theorem 1. For each prime p, define d(p) to be
the highest power of p that divides d(H). Let o be the set of all odd
primes. We may and will assume that 2& 7. Define d, as in Proposi-
tion 4.

Parts (a) and (b) of Theorem 1 are special cases of Theorem 2. By
Proposition 4,

d(3)=d;and d(p) = d(0,(G)) for every prime p > 3.

Hence d(H) = d,ll,.;d(O,(G)). Thus, d(H) does not depend on the
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choice of , provided that # Co and O,(G)=1. As G is a Hall
o-subgroup of G, d(G) =d(H). A similar argument from Proposition
4 shows that Z(J(G)) = Z(J(H)).

5. Some examples.

ExaMpPLE 1. Let g be a power of a prime p. Let E = GF(q) and
F = GF(q?. Take afixed element u of F-E and define B to be the set
of all ordered pairs of the form (a,B8) for « € F and B € E. Define
multiplication on B by the rule

(a,B) (v,8)=(a+y,B+8+auy’+a'uy).

By calculation one may show that B is a group of order
q’. Moreover, for (a,8) € B,

Cs((a, ) ={(,8)]y EaE,8 EE} if a#0.
By further calculations,
(17) d(B)=gq’and B'=®B) = Z(B) ={(0,8)|B € E}.

Take a nonzero element y of F that has multiplicative order
q +1. The mapping ¢: B — B given by

¢ ((a, B)) = (ay,B)

is an automorphism of B that has order ¢ + 1. Let G be the semidirect
product of B by (¢). Embed (¢) and B in G in the natural
manner. Let A =(¢,B’). Then A is Abelian and |A|=(q + 1)qg >
d(B), by (17). A short argument shows that C;(b) C B for every
b € B-B’' and that d(G)=(q +1)q and A € A(G).

The group of automorphisms (@) yields an example of the ‘ex-
treme’ cases of Lemmas 1 and 2, that is, |[(¢)|=1+p* for p* =
q. Since B is nilpotent and AB is not nilpotent, G violates the
conclusion of Proposition 1; here, B is not Abelian, B is a 2-group if
p=2,and |A|is even if p#2.

Let 7 be the set of all prime divisors of |G | and let H = G. Then
G violates various conclusions of Theorems 1 and 2. For every
remx-{p}, O,(A)#1 and O,(G) =1, although it is possible that r =
5. Furthermore, every element of 7 divides d(G), but p is the only
prime divisor of |Z(J(G))| and is the only prime divisor of
|F(G)|. Note, however, that obviously Z(J(H)) <G.
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ExampLE 2. Let F = GF(3) and let V be a 3-dimensional vector
space over F. Then there exists a group K of linear transformations of
V over F such that K has order 39 and is not cyclic. Define T and M
as in Lemma 7, and define K to be an operator group on T by the rule
tt=tM® forteT, g EK.

Let G be the semi-direct product of T by K and embed T and K in
G in the natural manner. Let 7 be {3} and H be a Sylow 3-subgroup of
G. Then T is an extra-special group of order 3’, T = F(G), and
d(H)=d(T)=3* There exists A € 4(H) such that AZT. Then
A =0,(A)Z OG)=T. Thus, part (a) of Theorem 1, part (b) of
Theorem 2, and the corollary of Theorem 2 cannot be extended to
include the case in which p =3.

ExampLE 3. Here G is defined as in Example 2 except that K is
taken to be isomorphic to the alternating group of degree 4.

REFERENCES

1. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963),
755-1029.

2. G. Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math., 20 (1968),
1101-113S.

3. , Prime-power factor groups of finite groups, Math. Zeit., 107 (1968), 159-172.

4. , Finite Groups, Harper and Row, New York (1968).

5. U. Schoenwaelder, Normale Komplemente zu nilpotenten Hall-Untergruppen, Archiv der
Math., 19 (1968), 361-377.

Received December 26, 1973. The first author wishes to express his gratitude to his dissertation
advisor, Professor M. Herzog, of the Department of Mathematical Sciences, Tel-Aviv University,
for his guidance and concern. During the preparation of this paper, the second author was
supported by a National Science Foundation Senior Postdoctoral Fellowship and a grant from the
Science Research Council and enjoyed the hospitality of the University of Oxford and the
Weizmann Institute of Science. He gratefully acknowledges the support of these institutions.

TeL-AvVIV UNIVERSITY
AND
UNIVERSITY OF CHICAGO








