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ALMOST PERIODIC COMPACTIFICATIONS
OF TRANSFORMATION SEMIGROUPS

H. D. JUNGHENN

In this paper we generalize the notion of (weakly) almost
periodic compactification of a semitopological semigroup to
the corresponding notion for transformation semigroups.
The properties of these compactifications are studied and
applications are made to semidirect products.

0. Introduction. Let X be a Hausdorff topological space and
S a semitopological semigroup [2]. The pair (S, X) is a semitopological
transformation semigroup (abbr. s.t.t.s.) if there exists a separately
continuous mapping (s, ) —sx of S x X into X (called an action)
such that s(tz) = (st)x(s,teS;xe X). If S has an identity 1 and
1z = z(x € X) we say that (S, X) has an identity. If Sis a topological
semigroup and the action is jointly continuous, then (S, X) is called
a topological transformation semigroup (abbr. t.t.s.). (S, X) is com-
pact if both S and X are compact. Any semitopological semigroup
may be considered to be a s.t.t.s., where the action is left multipli-
cation.

Let (S, X) be a s.t.t.s. and denote by C(X) the Banach space of
all bounded continuous complex-valued functions on X. A function
S in C(X) is (weakly) almost periodic if O(f) = {.f:s e S} is relatively
(weakly) compact in C(X), where ,f(x) = f(sx)(x € X). The set of all
almost periodic (resp. weakly almost periodic) functions in C(X) is
denoted by A(X) (resp. W(X)). Both A(X) and W(X) are C*-sub-
algebras of C(X) which are invariant under the action s — .f [2].

A homomorphism of a s t.t.s. (S, X) into a s.t.t.s. (7, Y) is a pair
(0, &), where 6: S— T is a continuous homomorphism and & X—Y
a continuous map such that &(sz) = o(s)i(z)(x e X, s€S). The dual
of & is the map &: C(Y)— C(X) defined by &(f) = fo&. Clearly £ is
a bounded linear operator.

Recall that a weakly almost periodic (resp. almost periodic) com-
pactification of a semitopological semigroup S may be defined as a
pair (S, p), where S is a compact semitopological (resp. compact
topological) semigroup and p: S— S is a continuous homomorphism
such that o(S) is dense in S and (C(S)) = W(S) (resp. 9(C(S)) = A(S))
(see [6], [8]). Motivated by this we define a weakly almost periodic
(resp. almost periodic) compactification of a s.t.t.s. (S, X) as a com-
pact s.t.t.s. (resp. compact t.t.s.) (S, X) and a homomorphism (p, %)
of (S, X) into (S, X) such that (S, p) is a weakly almost periodic
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(resp. almost periodic) compactification of S, 7(X) is dense in X, and
7(C(X)) = W(X) (resp. 7(C(X)) = A(X)). Clearly 7 (and ) is an iso-
metric isomorphism. We shall write f for #77'(f). We shall also
occasionally use the notation (S*, X*) and (S*, X*) for weakly almost
periodic and almost periodic compactifications respectively.

In §1 we shall show that if S has a (weakly) almost periodic
compactification then (S, X) has a (weakly) almost periodic compac-
tification. Furthermore, a compactification is unique up to isomorphism
and satisfies a universal factorization property analogous to that
satisfied by a (weakly) almost periodic compactification of S. These
results are extensions of results in [11].

In §2 some specialized lemmas are proved, and in §3 we use these
to characterize almost periodic compactifications of semidirect products.
It is shown that if S is a topological group, then for a large class
of semitopological semigroups X (including abelian semigroups, compact
topological semigroups, and topological groups), the almost periodic
compactification of a semidirect product S©X of S and X is a semi-
direct product of S and X, where S is the almost periodic compac-
tification of S, and X is a certain compactification of X. These results
generalize Theorem 4 of [11]; for other results along this line see [5].
We also show that the kernel of an almost periodic compactification
of S©®X may be expressed as a semidirect product of the kernels of
S and X. A similar result is obtained for the weakly almost periodic
case.

1. Existence and uniqueness of compactifications.

LeEMMA 1.1. Let (S, X) be a s.t.t.s.

(a) If (S, X) is compact then W(X) = C(X).

(b) If (S, X) is a compact t.t.s. then A(X) = C(X).

(¢) If fe W(X) then the map s— .f, S—W(X) is continuous
wn the weak topology.

(@) If feA(X) then the map s — .f, S— A(X) is continuous in
the norm topology.

Proof. We prove only (a) and (c), the proofs of (b) and (d)
being similar. Let (S, X) be compact and f e C(X). Since s— ,f is
pointwise continuous, O(f) is compact in the pointwise topology of
C(X). Since this topology agrees with the weak topology on norm-
bounded pointwise compact subsets of C(X)[10], O(f) is weakly com-
pact, proving (a). For (c) simply observe that if (s,) is a net in S
and s, —s, then (,f) has a unique weak limit point in C(X).
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LEMMA 1.2. Let (0, &) be a homomorphism of (S, X) into (T, Y).
Then

(1) EW(Y)) c W(X) N E(C(Y))

and equality holds if §(X) is dense in Y and o(S) is dense in T.
The analogous statement holds for the almost periodic case.

Proof. If feC(Y) and g = Z(f), then
(2) sg:g‘(u(s)f) (SGS) .

If fe W(Y) then E(O(f)) is relatively weakly compact, and (2) shows
that g e W(X), verifying (1). If &(X) and o(S) are dense in Y and
T respectively, then £ is an isometry and (2) implies that £-(O(g)) =
O(f) (bars denote weak closures). Hence if g € W(X), then f e W(Y),
verifying equality in (1).

THEOREM 1.3. If (S, X) ts a s.t.t.s. and if S has a weakly almost
periodic (resp. almost periodic) compactification, then (S, X) has a
weakly almost periodic (resp. almost periodic) compactification. More-
over, any weakly almost periodic (resp. almost periodic) compactifica-
tion (S, X, p, ) satisfies the following universal property: Given
any homomorphism (o,&) of (S, X) into a compact s.t.t.s. (resp.
compact t.t.s.) (T, Y), there exists a homomorphism (G, E) of (S, X)
wnto (T, Y) such that Gop =0 and Eon = &.

The following corollaries are immediate.

COROLLARY 1.4. Let (S,, X,) be a s.t.t.s. with weakly almost
periodic compactification (S,, X,, 0., 1)@ = 1, 2). If (o, &) is a homo-
morphism of (S,, X)) into (S,, X,) then there exists a homomorphism
(G, &) of (S,, X)) into (S,, X,) such that Gop, = p,o0 and Eo7, = 7,0&.
A similar statement holds for the almost periodic case.

COROLLARY 1.5. Weakly almost periodic compactifications and
almost periodic compactifications are unique (up to isomorphism).

Proof of Theorem 1.3. Let (S, o) be a weakly almost periodic
compactification of S and let X be the maximal ideal space of W(X).
Define 7: X — X by n(x)(f)= f(z)(z € X, f € W(X)). Then X is compact,
7 is continuous and 7(X) is dense in X. Furthermore, if fe C(X)
denotes the Gelfand transform of f e W(X), then ﬁ(f) = f.

Define 7: S x X— X by n(s, 0)(f) = 0(.f)seS, 6 e X, f e W(X)).
Clearly, n(s, -) is continuous, and s —7(s, -) is a continuous homo-
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morphism from S into X% (Lemma 1.1(c)), where X¥ carries the product
topology. Let E denote the closure in X* of {n(s, :):seS}. E will
be a compact semitopological semigroup if we show that each ve F
is continuous. Since X is compact it suffices to show that gov is
continuous for arbitrary g e C(X). Let (s,) be a net in S such that
(Sqy +)— v, and let g = f, where f e W(X). For each e X, 6(, f) =
F(@(sa, 0))— g(v(6)). Also, there exists some & e W(X) and a subnet
(ss) such that , f —h weakly. Thus gov = heC(X).

By Theorem 2.2 of [8] there exists a continuous homomorphism
w—T(u, -) of S onto E such that 7(o(s), -) = 7(s, -)(s€S). Define
an action of S on X by uf = 7(u, O)ueS, 6 X). With this action
(S, X, 0, m) is a weakly almost periodic compactification of (S, X).

Now let (S, X, p, 1) be any weakly almost periodic compactification
of (S, X), and let (o, &) be a homomorphism into the compact s.t.t.s.
(T, Y). Let d:S — T be a continuous homomorphism such that Gop =
o. Define & 9(X)—Y by E(n(x)) = &). If &(x,) # &(x,) choose g€
C(Y) such Athat 9(&(x)) = 9(&(,)). TAhen f = &(g) e W(X) (Lemmas 1.1,
1.2) and f(p(z) = f(®) = f(@) = fO(x.)), so 7(x) # 7(w;). Thus &
is well defined. Now for any ¢gecC(Y), if f = &(9) then f|n(X) =
go&, hence gof is uniformly continuous. Since Y is compact, its
uniform structure is defined by C(Y'), hence & is uniformly continuous.

We may now extend & continuously to X. Since &(o(s)n(x)) =
E(n(sx)) = &(sx) = o(s)é(x) = G(0(s))E(())(s € S, = € X), (G, &) is a homo-
morphism.

The almost periodic case is proved similarly except that the set
E must be shown to be a topological semigroup. This follows readily
from the equicontinuity of {rn(s, -):seS}.

REMARK 1.6. In the almost periodic case of Corollary 1.4 it may
be shown that if X, is compact and if the action of S, on X, is
equicontinuous, then 7,: X,— X, is a homeomorphism and therefore
X, may be replaced by X, in the conclusion of the corollary. This
means that S, acts on X, such that o,(s)r = sx(s € S,, € X;), and that
& o, = é.

The following theorem exhibits the connection between our approach
to almost periodic compactifications and that of Landstad [11].

THEOREM 1.7. Let (S, X, p, 1) be an almost periodic compactifi-
cation of the s.t.t.s. (S, X) and let Z denote the coarsest uniform
structure on X relative to which each f e A(X) is uniformly con-
tinuous. Then (X, 1) is a Hausdorff completion of (X, Z). Further-
more, ZZ s the finest uniform structure 7" on X satisfying the
following properties:

(a) 7 defines a topology 7 (77) on X coarser than the given
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one,
(b) 7 is totally bounded, and
(c) the family of mappings x — sx (x € X, s€S) s 7 uniformly
equicontinuous (equivalently, 7 has a base consisting of those Ve
7 such that (x, y)e V implies that (sz, sy)e V for all se€S).

Proof. Clearly 7z satisfies (a). % satisfies (b) because H(X) is
totally bounded and % is the coarsest uniform structure on X making
77 uniformly continuous. These facts also imply that (X,7) is a
Hausdorff completion of (X, %). (See for example [3].) That Z
satisfies (c) follows from the total boundedness of O(f) in C(X) for
each f e A(X).

Now let 77 be a uniform structure on X satisfying (a), (b), and
(c), and let (Y, &) be the Hausdorff completion of (X, 7"). By (b), ¥
is compact. For each s S, x — &(sx) is 7 -uniformly continuous, hence
there exists a uniformly continuous function o(s): Y —Y such that
o(s)(é(x)) = &(sx) (e X). From (a) and (c) it follows that ¢o: S—Y?
is a continuous homomorphism and that F' = {o(s): s € S} is uniformly
equicontinuous. Let T be the closure of F' in the product space Y.
Then T is a compact topological semigroup and vy = v(y)(ve T,yc Y)
defines a jointly continuous action of T on Y. Furthermore, (o, &)
is a homomorphism of (S, X) into (7, Y), so there exists a uni-
formly continuous map &: X —Y such that Z07 = & (Theorem 1.3).
Thus & is Z~uniformly continuous, and it follows that 7" is coarser
than 7.

2. More lemmas. We shall assume throughout this section that
(S, X) is a s.t.t.s. with identity 1, that X is a semitopological semi-
group with identity 1, and that there exists a continuous homomorphism
¢: X — S such that ¢(1) = 1 and ¢(z)y = zy(z, y e X). If feC(X) and
ye X, f, shall denote the function z — f(xy). A subspace L of C(X)
is said to be right translation invariant if f e L implies that f,e
L for all y e X.

We shall denote by K(Q) the minimal ideal of the compact semi-
topological semigroup Q (see [6]). If B is a Banach space, L(B) and
B* are respectively the space of continuous linear operators and the
space of continuous linear functionals on B.

LEmMA 2.1. Let (S, X, p, 7) be an almost periodic (resp. weakly
almost periodic) compactification of (S, X). Then in order for X to
be a topological (resp. semitopological) semigroup and 7 o homo-
morphism it s necessary and sufficient that A(X) (resp. W(X)) be
right translation tnvariant.
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Proof. The necessity is clear. For the sufficiency we consider
only the weakly almost periodic case. By Corollary 1.5 and the proof
of Theorem 1.3 we may suppose that X is the maximal ideal space
of W(X) and that 7 is the map defined by 7(x)(f) = f(x)(xe X, fe
W(X)). Define u(s) e L(W(X))s € S) by u(s)(f) = .f, and let T denote
the closure of {u(s): s € ¢(X)} in the weak operator topology of L( W(X)).
Then T with this topology is a compact semitopological semigroup
(under the operation composition) [6; Theorem 3.1]. Given v ¢ T define
U(v) e W(X)* by T()(f) = (wf)A)Sf € W(X)). Clearly, ¥ is continuous
in the weak* topology of W(X)*, and ¥(u(¢(x))) = n(x)(x e X). It
follows that ¥(T) = X. If v, we T and ¥(v) = ¥(w), then (vf)(z) =
T()(f.) = T(w)(f.) = (wf)e)zxe X, fe W(X)), so v=w. Therefore
¥ is a homeomorphism of T onto X and hence induces a multiplication
on X making the latter a semitopological semigroup and ¥ an anti-
isomorphism. Finally, 7(zy) = ¥(u(4(xy))) = ¥ (w(g(¥))u(4(x))) = 7(x)7(¥),
completing proof.

The proofs of the following two lemmas are straightforward and
therefore omitted.

LEMMA 2.2. Let (S, X, p, 7)) be a weakly almost periodic compacti-
fication of (S, X) and let W(X) be right translation invariant. If
X has a unique minimal left ideal and if K(S) is a group with
identity e, then ef = 6 for all 6 ¢ K(X).

LeMMmA 2.3. Let (S% X% 0,7) and (S¥, X*, 0',7") denote respectively
almost periodic and weakly almost periodic compactifications of (S, X).
Suppose K(S*) is a group with identity e, W(X) and A(X) are right
translation invariant, X has a unique minimal left ideal, and for
some idempotent d e K(X"), uw(0d) = (u8)d(0 € X*, ue S*). Then K(X*)
and K(X¥) are canonically isomorphic as semitopological semigroups.

3. Applications to semidirect products. Let S and X be
semitopological semigroups with identities, and let 7: S X X— X satisfy
(s, 2y) = (s, 2)7(s, ¥), 7(st, x) = (s, 7(t, x)), and 71, x) = z, (x, y € X;
s,teS). Thus s—7(s, -) is a homomorphism from S into Hom (X),
the semigroup of all homomorphisms from X to X. We shall assume
that (s, -) is continuous for each seS and that (s, ) — x7(s, ¥) is
continuous for each ye X. The semidirect product S©X of S and
X is the topological space S x X with multiplication defined by (s,
2)(, y) = (st, x7(s, ¥))s, teS;x, ye X). The above assumptions on 7
imply that S@®X is a semitopological semigroup with identity (1, 1).

Following Landstad [11] we define an action of S@©X on X by
(s, )y = xz(s, y)(x, ye X;se€8). Let A(X) (resp. W(X)) denote the
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almost periodic (resp. weakly almost periodic) functions on X relative
to this action, and let ((S@X)%, X* 0, %) be an almost periodic com-
pactification of (S©X, X)and (S% p) an almost periodic compactification
of S. Both of these compactification exist because S@®X and S have
identities. The map ¢: X — S@X, ¢(x) = (1, z), is a homomorphism
satisfying #(x)y = xy, hence the results of §2 apply. Thus, assuming
A(X) is right translation invariant, X® is a topological semigroup
and 7 a continuous homomorphism.

Define 7: S x X*— X* by n(s, 0) = 0s(s, 1)0. Then s —z(s, -) is
a continuous homomorphism of S into Hom (X*). Furthermore, {n(s,
-): s €S} is equicontinuous hence its closure E in the product space
X+** is a compact topological semigroup contained in Hom (X*). Thus
there exists a continuous homomorphism u — 7(u, -) of S® into E such
that 7(0(s), -) = (s, -)(s€S). Note that

(1) T(0(s), 7(x)) = 7((s, x)) (sef reX).

We may now form the semidirect product S“®X*, where multiplication
is defined by

(2) (u, O) v, ¥) = (uv, 0T (u, v)) (u, v€ 8% 0, yeX").

It follows from (1) that the map g: S©X — S*@X* defined by 3(s, z) =
(o(s), 7(x)) is a homomorphism.

THEOREM 3.1. If S s a topological group and A(X) is right
translation invariant, then (S*@X® L) is an almost periodic com-
pactification of S©X, and

(3) K(S‘©®X*) = S“©K(X") .

Proof. For the first part it suffices to show that given any
continuous homomorphism « from S@X into a compact topological
semigroup 7T, there exists a continuous homomorphism a: S*@X*— T
such that @-p8 = a. Following Landstad we define an action of S©X
on T by

(s, )t = a(s, x)ta(s™, 1) (seS,zeX, teT).

Define a;: S— T by a,(s) = a(s, 1) and a,;: X— T by a(x) = (1, ). Then
«, is a continuous homomorphism, hence there exists a continuous
homomorphism @;:S*— T such that &,o0 = ;. Also, (¢, @) is a
homomorphism of (S@®X, X) into (S©X, T), where ¢: SO X — SOX
is the identity map. Since the action on T is equicontinuous, Remark
1.6 implies the existence of a continuous map &, X*— T such that
&,o7 = &, The required map & is defined by a(u, 0) = a,(0)a,(u),
(ue S*, 0eX).
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To verify (3) note first that 7(u, K(X*)) < K(X*)(u € S°) so that
S*@K(X*) is defined and is an ideal, and K(S"@®X*)c S‘@®K(X").
Now let (u, 6) € §* x K(X*) and choose e ¢ K(X*) such that ¢* = ¢ and
ed = 0 [6; Theorem 2.3]. Since (o(1), e)(u, 6) = (u, 6), it suffices to
show that (0(1), ¢) € K(S*@®X"). Now, S° x eX* is a right ideal in
S*@®X" and hence contains an idempotent d € K(S*®X*") [6; Lemma
2.2, Theorem 2.3]. It is easily seen that d = (0(1), ¢,), where ¢’ =
e, € K(X*). Then S° x ¢X* = d(S"®X*) < S* x eX*, and by the mini-
mality of eX?, ¢, X* = eX®. Therefore (0(1), ¢) € d(S*®X") C K(S*@®X").

The next result shows that the conclusions of Theorem 3.1 are
valid for a large class of semitopological semigroups X. Theorems
3.1 and 3.2 generalize Theorem 4 of [11].

THEOREM 3.2. If S is a topological group then A(X) is right
translation invariant if any one of the following conditions holds:

(i) X is abelian.

(ii) X s a compact topological semigroup.

(iii) X s a topological group.

Proof. Clearly (i) implies that A(X) is right translation invariant.
Suppose (ii) holds and let f e A(X), 2z X and (s,, ,) a net in S x X.
There exists g € A(X), ¥y € X and a subnet (s; ;) such that z, = 7(s;?,
z) — y and f(x,7(ss ®)) — g(x) uniformly in x € X. Then g(xz;) — g(xy)
uniformly in z € X, hence by the triangle inequality f.(xs7(ss, 7)) =
F(xs7(s, x25)) — g(xy) uniformly in x e X. Therefore f, e A(X).

Now suppose (iii) holds. Let % denote the coarsest uniform
structure on X making each f € A(X) uniformly continuous. We shall
show that for each x,€ X, x — xx, is Z-uniformly continuous. Let
<# denote the base for 2 consisting of all symmetric Ue % such
that (x, y) e U implies that ((s, 2)z, (s, 2)y) € U for all (s, z) e SO X (see
Theorem 1.7). If Ue <Z and X = Ui, U[x,], define

[U] =10z, -+, 2] = {(m, 9): (22, yx) e U(1 = i = )} .

Let & be the set of all [U] (Ue<#). Claim that & is a base for
a uniform structure 7~ on X. For it is clear that (z, ®) e [U](z € X)
and [U]™* = [U], and the remaining axioms are easily verified with
the help of the inclusion [U;x, ---, «,’C[U% x, -+, x,] and the
following fact (whose simple proof we omit):

(4) U, Ve and V*C U implies [V;uy,, ---, ¥l C[Us 2y, ---, 2,] .

We shall show that 7 is coarser than % by verifying that (a),
(b), and (c) of Theorem 1.7 hold. Let .7~ denote the given topology
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of Xand 9 (%) and .7 (7") the topologies induced by the uniform struc-
tures 7 and 7" respectively. If Ue.<# then for any ¢ X, [U; %, -- -,
z][x] = MNiw «Ux,]e7" is a F-neighborhood of « since 7 (%) is
coarser than .7~ and .7 is a group topology. Thus .7 (?7) is coarser
than 7, verifying (a). Call a neighborhood N of 1 in (X, .97) left
relatively demse with respect to v, -+, v, e X if X =i, y.N. Let
[lvl=1U;2, -+, x,]e & Foreachj =1, -+, n, Ulx;o;" = «;U[1]z;"
is left relatively dense with respect to z,27'(1 =% =< =n), and since
(x; UlL]e;) " (w; U1]27") = «; U] U)o € 2; UP[1] a5t = U)o, it
follows from Proposition 3 of [1] that M., U[x;]x;" is left relatively
dense with respect to say v, -+, ¥,. Thus X = Ut [U][v.], verifying
(b). To verify (c) let [U]e &« and choose [V]=[V;2, -+, 2,]e &
such that V*cU. Let (z,y)e[V],2eX and se€S. Foreachl=<:<
n there exists j such that (x;, ©(s™, «,))€ V. Then (xx;, xc(s7, ,)),
(yxj, yo(s7, x;)) € V hence (at(s7!, x,), yo(s7, x;)) € V* and so (z7(s, )z,
zt(s, ¥)x,) e V. By (4) then, ((s, 2)z, (s, 2)y) €[U]. Therefore 7 is
coarser than Zr.

Now let #,e X and Ue .=z If X = Ui, Ulz,], then [U] = [U; w,,
x, +-+, %] €%, and (, y) €[ U] implies that (zx,, yx,) € U®. Therefore
x — 22, 18 Z/-uniformly continuous and it follows from Theorem 1.7
that there exists a uniformly continuous function F: X*— X°* such
that F(n(v)) = N(xx,)(x € X). Thusif f e A(X) then fo FeC(X), hence
fo, = T(Fo F)e AX).

Now let (S©X)*, X*, o:, ¥') and (S”, 0') be weakly almost periodic
compactifications of (S@®X, X) and S respectively, and assume that
W(X) is right translation invariant. As in the almost periodic case,
we may form the semidirect product S“@®X", and the analogs of (1)
and (2) are valid. However, S*@X" need not be a weakly almost
periodic compactification of S@X, even in the case of a direct product
[7]. We can, however, express K((S@©X)”) under certain conditions
as a semidirect product.

THEOREM 3.3. Let S be a topological group, A(X) and W(X)
right translation invariant, and assume that K(S©X)") and K(X¥)
are groups. Then K({(S©X)") and K(S*)YDK(X") are canonically
somorphic.

Proof. Note first that since S is a topological group, W(S) has
an invariant mean [12], hence K(S”) is a group [6]. Let 7:S*— S°
be a continuous homomorphism such that vo0" = p, and let (g, &)
be a homomorphism of ((S©X)”, X¥) onto ((S©®X)* X*) such that
oop,=p, and o7 =7. If d denotes the identity of K(X¥), then
by the analog of (1), u(dd) = (ub)d(u ¢ (S®X)*, 0 € X*), hence by
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Lemma 2.3, § = §|K(X”) is an isomorphism of K(X") onto K(X?).
By the same lemma 7, = 7|K(S”) and o0, = 0|K({(S©X)") are iso-
morphisms onto K(S*) = S* and K((S©X)*) respectively. Define o:
K(S*)DK(X")— S‘©K(X*) by d(u, 0) = (7{(u), &(0)). Then ¢ is an
isomorphism, and since K((S®X)*) = S*@K(X*) (Theorem 3.1), p¢ =
0,00 is the required isomorphism of K(S*)®K(X") onto K((SDX)").

REMARK 3.4. Let W(S®@®X), denote the closed subspace of W(S@®X)
spanned by the coefficients of the finite dimensional unitary represen-
tations of S@®X (see [6, p. 85]). Under the conditions of the previous
theorem, W(S@®X), is the completed e-tensor product of A(S) and the
space of all f e W(X) such that f(d0) = f(9) for all § € X*, where d
is the identity of K(X"). This follows from Theorem 3.3 together
with Theorem 5.7 and Lemma 5.10 of [6] and the identity pg(e,0'(s),
dn'(x)) = epi(s, x)(s € S, x € X), where e is the identity of K((S®X)¥),
¢, the identity of K(S"”), and £ the isomorphism obtained in the proof
of Theorem 3.3.
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