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COUNTABLE PRODUCTS OF GENERALIZED
COUNTABLY COMPACT SPACES'

V. DwiGHT HOUSE

In this paper two ways of generalizing compactness are
studied. We may consider various types of refinements of
open covers, such as countable open refinements, locally
finite open refinements, etc. In another direction, countably
compact spaces may be characterized as having the property
that any sequence has a cluster point. Spaces which require
that certain sequences have cluster points, such as 2-spaces,
wd-spaces, and ¢-spaces, will be referred to as generalized
countably compact spaces.

These more general properties do not behave as well as compact-
ness with respect to products. For example, the product of two
Lindelof spaces need not even be meta-Lindelof, and the product of
two countably compact spaces need not be a g-space. The question
naturally arises as to what conditions must be placed on such spaces
to insure that they are better behaved with respect to products.

Let @ be a class of generalized countably compact spaces, let
X, X,, --- be a sequence of spaces each of which belongs to Q.
Consider the following two questions.

1. When does [[;, X, belong to Q7

2. Suppose that each X, has a covering property P which
generalizes compactness. When does [];, X, have P?

In § 3 we answer the first question where Q is any of the follow-
ing classes: countably compact spaces, X-spaces, w4-spaces, g-spaces,
B-spaces, and wN-spaces. In §4 the second question is answered
for the case where @ is the class of wd-spaces and P is one of the
following: paracompact, metacompact, subparacompact, and meta-
Lindelof.

2. Preliminaries. Unless otherwise stated, no separation axioms
will be assumed. Undefined terms are used as defined in [16], except
that paracompact spaces are always Hausdorff. The set of natural
numbers will be denoted by N, and 4, j, k, and » will denote
elements of N. If &7, ..., .7 are collections of subsets of a set X,
we let A7, .7 denote the collection {Ni-, 4,| 4;e ., 1=1, ---, n}.
A sequence .87, .9, --- of collections is said to be decreasing if .7,
refines &7, (written 7, , < .%7%), for n=1,2, --.. Also, if & is a
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collection of subsets of X, and pec X, then we will denote by
St(p, 7)) theset J{A|pecde v}, by e(p, &) theset {4 |pecde
7'} and by ord(p, .57) the number of elements of A which contain p.
If Zr is a collection of open sets of a space X, and M & X such that
MZ U, for all U in %/, then we call ¥ a base for M, if given an
open set W with Mc W. Then we have M S U S W, for some U
in %.

The following conventions will be used in discussing product
spaces. Recall that in the product space [[,..X,, basic open sets
are of the form N, p;}(U.,), where p;: [1..4 X, — X, is the projec-
tion function onto the Sth coordinate space, and where each U,, is
open in X,,. We will denote N, pz;(U,,) by (U,, :--, U,,>. Also,
given any nonvoid open set U in [[.., X,, we have that p (U) #
X,, for at most finitely many @ in A. We will use R(U) to denote
the set of “restricted coordinates” of U, i.e., R(U) ={a|aec A, and
p(U) # X,}. Since the elements of [[,., X, are functions from A
into U.es Xo., the symbols f, g, and % will be used to denote
elements of an infinite product space.

Let X be a topological space. If every open cover of X has a
locally finite (respectively, point finite; or point countable) open
refinement, then X is paracompact (respectively, metacompact, or
meta-Lindelof). If every open cover of X has a o-discrete closed
refinement, then X is subparacompact [4]. (These spaces were intro-
duced in [21] as F,-screenable spaces.) If for any open cover % of
X there is a sequence ¥, &, --- of open refinements of Z such
that given x in X, there is an % in N such that ord (z, &,) is finite,
then X is #-refinable [30].

Let &, &, --- be a sequence of open covers of a space X having
the property that given z, € St(p, &,), for all » in N and some p in
X, then {(x,> has a cluster point. Such a sequence of open covers
is called a wd-sequence for X, and X is called a wd-space [3]. If a
sequence ¥, &, -+ of open covers of a space has the property that

L Zyy for n=1,2 ---, where &), = {pl(G, L) | GE L)y
then it is called a mormal sequence. A space which has a normal
wd-sequence is called an M-space [22]. A paracompact wd-space is
an M-space. Let &, &, --- be a sequence of locally finite closed
covers of a space X having the property that given z,cc(p, #.),
for all » in N and some p in X, then <{(x,> has a cluster point.
Such a sequence is called a X-net for X, and X is called a Y-space
[23]. Clearly C(p) = N c(p, F,) is countably compact. If C(p) is
compact for all »p in X, X is called a strong 3-space. Thus a 3-
space is a strong Y-space in the presence of a property which when
combined with countable compactness implies compactness. For
example a f-refinable Y-space is a strong X-space by Theorem (i) of
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[30], and by Proposition 3 of [1], a meta-Lindelof X-space is a strong
2-space.

Let (X, .27) be a topological space, and let g: N X X — .7 be a
function such that xe )y, g(n, «), for all ¢ in X. Consider the
following conditions on g¢.

(@) If {=, »}S9n,vy,), for n=1,2, ---, then the sequence
{x,> has a cluster point.

(b) If z,e9(n, p), for n=1,2 --., then the sequence {x,> has
a cluster point.

(¢) If peg(n,x,), for n=1,2, ---, then the sequence {z,) has
a cluster point.

@ If g(n, z,) N g(n, p) #¢, for n=1,2 ---, then the sequence
{x,> has a cluster point.

The class of wd4-spaces can be characterized by (a). X is defined
to be a g¢-space [19] or a g-space [12] if (b) or (c) hold respectively.
A space with a function satisfying (d) is called a wN-space [13].
The relationship between the classes of spaces defined in this section
is summarized in the two diagrams below.

paracompact countably compact metrizable
/ AN AN /
7 N NS
metacompact subparacompact M-space
AN l / l AN
1 N v N
meta-Lindelof  f-refinable wd-space. wN-space ZX-space
AN RN /
NS NS
g-space —[-space

3. Countable products of generalized countably compact spaces.

This section is devoted to the consideration of question (1) of
§1. In [15] Ishiwata gives an example of two countably compact
spaces whose product is not a g-space. This example indicates that
we must restore some sort of compactness to the spaces X, in order
to insure that J]7., X, belongs to Q.

In [24] Noble introduces the clags C* of all T, spaces X satisfying
the property that every infinite subset of X meets some compact
subset of X in an infinite set. We see this property again in [26],
where it is proved that a product of at most X, spaces in C* again
belongs to C*. Next notice that for a Hausdorff space X, XeC*
if and only if X is countably compact and every sequence in X has
a subsequence with compact closure. These remarks and the follow-
ing definition prompt Definition 3.2.
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DEFINITION 3.1. A topological space X is called subsequential if
each sequence in X which has a cluster point has a convergent
subsequence.

DEFINITION 3.2. A topological space X is called weakly sub-
sequential if each sequence in X which has a cluster point has a
subsequence with compact closure.

ReEMARK 3.3. In [14], Ishii, Tsuda, and Kunugi essentially prove
that a countable product of weakly subsequential M-spaces is a
weakly subsequential M-space. In this section the technique of [14]
is abstracted to obtain a general theorem (Theorem 3.10) on countable
products from which follow product theorems for several classes of
generalized countably compact spaces, including M-spaces.

Before proving the main theorem of this section, we will first
study the property of being weakly subsequential and compare it
with other properties which are more familiar.

DEFINITION 3.4. A topological space X is weakly-k if given
F< X, FN C is finite for all compact subsets C of X implies that F
is closed.

DEFINITION 3.5. A topological space X is of point countable type
if X has a cover consisting of compact subsets each of which has a
countable base.

Definition 3.4 was introduced by Rishel [25] as a generalization
of k-spaces [16], and Definition 3.5, which simultaneously generalizes
first countable and locally compact spaces, is due to Arhangel’skil
[2]. Arhangel’skii proved that Hausdorff spaces of point countable
type are k-spaces. It will be shown that weakly-k, Hausdorff spaces
are weakly subsequential. Also notice that since a countably compact
space which is subsequential is sequentially compact, an uncountable
product of closed unit intervals is weakly subsequential, but not
subsequential. We have the following diagram for Hausdorff spaces.
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first countable locally compact
/ N l
g N
sequential [9]\ AN p-space

AN
N //

point countable type

k-space

1
subsequential

\\ We;,kly-k space
AN
N

weakly subsequential

THEOREM 3.6. Let X be a weakly-k, Hausdorff space. Then X
18 weakly subsequential.

Proof. Let <{x,> be a sequence in X with a cluster point p.
Let FF= {x,|neN}. If for each k in N, there is an n, = k such
that x, = », then (x,)> is a subsequence of <(w,) with compact
closure. Otherwise F' — {p} is not closed, so there is a compact sub-
set C of X such that (F — {p})N C is infinite. Set (F— {p})NC =
{x.,| ke N}, where <z, is a subsequence of <(x,>. Then {x, ) has
compact closure.

THEOREM 3.7. Let (X, .77) be a T, g-space which is weakly
subsequential. Then X is weakly-k.

Proof. Let g: N X X— 7 sgatisfy condition (b) in §2. Let
pecF — F. Then we have a sequence (x,> of distinct points such
that z,eg(n, p)NF, for n=12 .... Hence (x,> has a cluster
point, and thus it has a subsequence (x, > with compact closure.
Let C = (x,,>~. Then F'N C is infinite, and X is therefore weakly-%.

ExaMPLE 3.8. A paracompact, weakly subsequential space which
is not weakly-k.

Let X be an uncountable set, and let » ¢ X. Open neighborhoods
of p will be sets whose compliments are countable, and all other
points are open. It is easy to see that X is T,, regular, Lindelof,
and weakly subsequential. Since compact subsets of X are finite, X
is not weakly-k.
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ExampLE 3.9. A strong 2X-space which is neither a g-space nor
a weakly subsequential space.

Let X be the Arens-Fort Space (Example 26 of [28]), i.e., X is
the set of all ordered pairs of nonnegative integers topologized so
that {(m, n)} is open if at least one of m or = is nonzero, and
basic neighborhoods of (0, 0) are sets which contain all but finitely
many points in all but finitely many columns in X. It is well known
that X is a T,, regular, Lindelof space which is not first countable
at (0, 0). One can see that X is a Y-space, hence a strong X-space.
Since {(0, 0)} is a G,-subset of X, according to Lutzer [17], (0, 0) is
not a g-point of X, for otherwise X would be first countable at (0, 0).
Finally, it is not hard to see that X is not weakly subsequential.

THEOREM 3.10. Let {(X;, 75)|je€ N} be a sequence of T,-spaces,
and let {f,y be an infinite sequence tn [I7, X;. Suppose that for
each j in N, and each subsequence {f,) of {f.) with n, = j, there
is a subsequence {f,, ) of {fu such that {f,, (7))~ is compact. Then
{fwy has a subsequence with compact closure.

Proof. Since {(f,> is a subsequence of itself, there is a sub-
sequence (f,,,> of (f,> such that {f, (1))” is compact. We may
assume that 2 <, for all ¢ in N. We thus have a subsequence
{fuyy Of {fa, such that (f, (2))” is compact. We may assume
that 3 <n,, for all ¢ in N. In general, suppose that we have
sequences {f,,>, -+, {fs,, such that:

(1) <{fa;., is a subsequence of {f,,>, for t=1, ... k— 1.

(2) 1+1=my foralltin N, and for ¢+ =1, ---, k.

(3) <{fu; (1)) is compact, for 1 =1, ---, k.

Then {f,,,> is a subsequence of {f,> with £+ 1 <n,. So there
is a subsequence (f,, > of (f,, such that (f,  (k+ 1)) is
compact. We may assume that k + 2 < #n,.,,,, for all t in N. Thus
we obtain a sequence of sequences {f,,>, {f,,>, -++ such that:

(1) {fu;... is a subsequence of {f, >, for all ¢ in N.

(2) 1+ 1=mny,, for all ¢ and 7 in N.

(3) {(f., (@)~ is compact, for all ¢ in N.

It will now be shown that the subsequence (f,, > of {f,> has com-
pact closure. Set C, = {f,,1)|te N}~. For ¢ = 2, set

Ci={fa, () [te N} U{fa, (1) 1 5,8 <7} .

Now let C = [, C;. Clearly C is closed and compact. Since f,, , €C,
for all k in N, we see that {f,,,>~ is compact.

THEOREM 3.11. Let {(X;, 75| je N} be a sequence of weakly
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subsequential, Ti-spaces. Let X = 17 X;, and let .7~ be the product
topology on X.

(1) If each X; is countably compact, then X is weakly sub-
sequential and countably compact.

(2) If each X;is a wd-space, then X is a weakly subsequential,
wd-space.

(8) If each X; is a g-space, then X is a weakly subsequential,
g-space.

(4) If each X; is a wN-space, then X is a weakly subse-
quential, wN-space.

(5) If each X; is a (B-space, then X is a [-space.

(6) If each X; is a X-space, then X is a X-space.

Proof. Only the proofs of (2) and (6) will be included; the others
will be left for the reader.

(2) For each j in N, let g;: N x X— _77; be a function satisfy-
ing condition (a) in §2. We may assume that g;(n + 1, z) & gi(n, 2),
for all z in X; and all » in N. Let g: Nx X—.9 be defined
as follows: g(n, 1) = (gi(n, fQ1)), ---, gu(n, f(n))). Suppose that
{f, LY S 9, h,), for n=12 ---. Let jeN, and let {f,) be a
subsequence of <(f,» with n,=j. Since {f, f,} S 9(n, k,,) and
n, = j, for all k in N, we have {f(J), f.(9)} & 9:(n, b, (7)) S
g,(k, h,(5)). So {f.(5)) has a cluster point in X;, and thus it also
has a subsequence ¢ fﬂkt> such that ¢ fnkt(j)>‘ is compact. By
Theorem 3.10 {f,> must have a subsequence with compact closure,
thus assuring that it also has a cluster point.

To see that X is weakly subsequential, let {f,> be a sequence
with a cluster point f. Then there is an 7, in N such that n, >1
and f, €9(1, f). If for 1 =1, ---, k, we have %, in N such that
Ny < Ny < oo+ <My, N, = 9, and f,. €9(4, f), then choose n,., in N such
that n,., = max{k + 1, n,.,} and f, .  €9(k + 1, f). Then we get a
subsequence {f,> of (f.,> such that {f,, f}<S gk, f), for k=
1,2, ---. As above we see that (f, ) has a subsequence with com-
pact closure, thus assuring that {f,> also has a subsequence with
compact closure.

(6) For each j in N, let &7/, F,7, .- be a Y-net for X; with
the property that &,/ = Ai... %, for all » in N. For each n in
N, set 7, ={I}aF; X ll5n X5 | Fie 70, =1, -+, n}). Let f,¢
o f, 7.), for n =12 .... Let je N, and let {f, ) be a subsequence
of {(f,> with n, = j. Since n, = 7, for all &k in N, we have fa(9) €
o(f(9), F.) sdf(9), F), for k=1,2 ---. Thus (f,(j)) has a
cluster point. So {(f,,> has a subsequence ( f”k5> such that ¢ fnkt(j)>‘
is compact. {f,> therefore has a subsequence with compact closure,
and hence it also has a cluster point.
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REMARK 3.12. Theorem 3.10 should be compared to 4.2.3 in
[11]. As was mentioned earlier, in [26] Saks and Stephenson show
that we may actually take a product of up to yx, factors in (1) of
Theorem 3.11 instead of just countably many. In [13] (Proposition
3.2 and Remark 3.3) it is shown that a wN-space is countably
paracompact, and that a g-space is countably metacompact. So in
(4) and (6) X is respectively countably paracompact and countably
metacompact. Ishiwata’s example [15] shows that weakly subse-
quential can not be dropped from the hypothesis in (1)-(4) of
Theorem 3.11, and the following example (Stone [29]) shows that
we must have a countable product in (2)-(6).

ExaMPLE 3.13. Let X = [J,.. N,, where A is uncountable, and
each N, is a copy of the positive integers with the discrete topology.
Then X is neither a g¢-space nor a g-space.

Proof. We will first show that X is not a g-space. Let g: A— N
be the constant function which maps each a in A to 1. Let
V, Vi «+- be a sequence of open neighborhoods of g. Let gec A —
Uz R(V,). Then Py(V,) = N, for all » in N. For each k in N,

let f,: A— N be defined as follows: fi(a) = {}c’ g : g Then f.e€ V,,

for all £ in N. Suppose f is a cluster point of (f,). Let W=
P ({f(B)}). Then f,¢ W, for n# f(B). This is a contradiction. Thus
{f.> has no cluster point, and so X is not a g-space.

We will now show that X is not a g-space. Suppose that
9: Nx X— 7 is a function which satisfies condition (c) in §2.
Let f; in X be such that fi(a) =1, for all @ in A. Let V, be a
basic open neighborhood of f; such that V, & ¢g(1, f). Set fia)=

{{:(gé %(QV%( Vl). Let V, be a basic open neighborhood of f, such

that V, S g(2, f), and R(V,) & R(V;,). Now suppose that we have
fiy oo, fnand V, ... V, such that:

(1) V., is a basic open neighborhood of f;,, for 1 =1, ..., n;

(2) V.S9@, f), for e =1, ... m;

(3) R(V)S R(V.), for i =1, ..., n—1;

(@), ae R(V,

(4) finl®) = {{& )1 p 1{?(1},.)), for i=1 .-, m—1.

Set f,(a) = {IJ: "gf{)l”czé%((‘{}z), and let V,., be a basic open
neighborhood of f,., such that V,., S g + 1, f,..), and R(V,) S
R(V,.). We continue in this manner to get a sequence {f,> and
open sets V, V,, ... satisfying (1)-(4) above for all ¢ in N. Now,
suppose that {f,> has a cluster point f. Let B8ec A — Uy, B(V,),
and let W= p;'({f(B)). Then f,¢ W, for n =+ f(8). This is a
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contradiction. So (f,> has no cluster point.
To show that X is not a pg-space, it suffices to find an
element 2 in X such that heg(n, f,), for all » in N. Set

N _ (fal@), if acR(V,), for some n in N
h(a) - {1’ if a¢ LJ::):1 R( Vn) . Then he Vn, for all

n in N.

4. Countable products of covering properties. Paracompact-
ness is perhaps the most important covering property which
generalizes compactness. However, the product of two paracompact
spaces is not necessarily paracompact [27]. The question naturally
arises as to what extra conditions can be placed upon paracompact
spaces to insure that products of these spaces will also be para-
compact. In [29], Stone has shown that we may as well concern
ourselves only with products which are at most countable. We know
that a countable product of metric spaces is a metric space, and is
therefore paracompact by [29]. Frolik [10] has shown that a countable
product of paracompact absolute G, (i.e., being G, in its Stone-Cech
compactification) spaces is paracompact. Arhangel’skil [2] and Morita
[22] have improved upon Frolik’s result by showing that a countable
product of paracompact wd-spaces is paracompact. In a different
direction, Ceder [7] has shown that a stratifiable space is paracompact
and that a countable product of stratifiable spaces is stratifiable.
The best result so far is that of Nagami [23] which generalizes all
of the above mentioned results. Nagami’s theorem is that a countable
product of paracompact Y-spaces is paracompact.

in this section we will utilize Nagami’s technique of proof to
obtain countable product theorems for other covering properties
such as metacompactness, subparacompactness, and the meta-Lindelof
property. In this direction Nagami [23] has shown that a countable
product of strong X-spaces is a strong JX-space. Since a regular,
strong X-space is subparacompact, it follows that a countable product
of regular, 6-refinable (or metaLindelof) Y-spaces is subparacompact.
In connection with this problem we introduce the class of strong
wd-spaces whose difinition is suggested by Nagami [23] and Burke
and Stoltenberg [6]. (Also see Michael’s discussion of mod-k networks
[20].)

DEFINITION 4.1. Let X be a topological space. A decreasing
sequence %, &, --- of open covers of X is called a strong wd-
sequence for X if

(1) C(p) = Ny St(p, &,) is compact, for all p in X;

(2) {St(p, z,)|n =12, --.}is a base for C(p), for all p in X.
A space with a strong wd-sequence is called a strong wd-space.
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REMARK 4.2. It is clear that a developable space is a strong
wd-space, and a strong wd-space is a space of point countable type.
Thus a Hausdorff strong wd4-space is weakly subsequential. We also
have the following theorem whose proof is left for the reader.

THEOREM 4.3. Let &, &, --- be a strong wd-sequence for X.
Then it is also a wd-sequence for X.

ExamPLE 4.4. A weakly subsequential, countably compact space
which is neither a strong wd-space nor a strong X-space.

Let W =10, 2), the space of all ordinals less than the first
uncountable ordinal 2 with the order topology. It is well known
that W is countably compact and first countable. We will show
that W is not a strong wd-space first. To do this we will need two
lemmas about W which are based on ideas due to J. H. Roberts.

LEMMA 4.5. Suppose that g: N x W— 7 1is a function which
has as its values open sets in W of the form g(n, @) = (B, «], for
all o m W. Then for fixed m in N, there exists v, in W such
that v, € g(m, @), for uncountably many o« in W.

LEMMA 4.6. Let g be as tn Lemma 4.5. Then there is a v in
W such that for each m in N, veg(n, «), for uncountably many «
n W.

Now suppose that &, &, --- is a strong wd-sequence for W.
Define g: N X W— .9 by g(n, a) = (B, ], where (8, a] =G, for
some G in &, containing «, for all @ in W. Let v be asin Lemma
4.6. Since C(v) is compact, there is a v in W such that C(v) < [0, 7).
Thus there is an » in N such that St(y, &,) &[0, 7). By Lemma
4.6, we have an a > v such that veg(n, ). But veg(n, @) implies
that aeSt(y, &,). Hence @ < 7v; a contradiction. So W is not a
strong wd4d-space.

To show that W is not a strong 2X-space, we need to know that
a regular, strong Y-space is subparacompact [20]. Then it is easy
to see that W is not a strong 2-space. For it is well known that
W is a regular, T,, countably compact space which is not compact.
Thus by Therem (i) of [30], and by the fact that a subparacompact
space is O-refinable, W can not be subparacompact, and hence not a
strong 2X-space.

Before we can prove our theorems on countable products and
covering properties, we must have the following two lemmas which
are based on notes by J. Vaughan.
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LemMma 4.7. If &7 is a collection of subsets of X, pe X, and
[ X— Y is a function, then we have f(St(p, 7)) & St(f(p), f(.¥)),
where () = fl(A)| Ae.o7]).

LEMMA 4.8. Let &, &,", --- be a sequence of covers of X,, for
w=12 -... For each j in N, let

{HG”XHX‘G“G?HW,~1 iy

n>j

(1) =; covers Tly-. X,, for each j§ in N.

(2) P@) ={F}"37%

(3) St(f, i) = I1i=. St(f(n), ;") x [4ss X,

(3,) C(f, ?,) =IIi- C(f(%), gaﬂ) X Iass Xoe

(4) N7 St(f, &) = e (N St (), &), if T3 < &5, for
all n and j§ in N.

(4) N elf, ©) = Tim (Ni= e(F (), 7)), if Z7 = N Z47,
for all j and n in N.

Proof. The proofs of (1), (2), and (3) are straightforward and
are left to the reader.

(4) Let ge Nz St(f, &,). We have

:)8

P84, £)) = A PSUS, 29) = N SHF), P&

<,
If
-

fl
I

 St(70), 27 | N[ 0 S0, (XD |

1138 |IDS

fl

) St(7(), 27) |0 X, = ) SUF@m), 2.

So g(n) e N7 St(f(n), "), and thus g e I (N5 SUSf(w), £5°)).
Now, let geIlx (N St(f(n),Z). Fix j. Then for 1 <n =<7,
we have g(n)eSt(f(n), €;"). For n =1, ..., 7, choose G} in &;* so
that g(n), f(n) €G3 Let G = [1i_,G? X [I.>; X.. Then f, geGeZ,,
and thus we have g e St(f, &;).

We now need a well known generalization of a theorem of
Wallace (5.12 of [16]). The proof of Lemma 4.9 can be obtained by
generalizing the the proof in [16].

LEMMA 4.9. For each a in an index set A, let D, be a compact
subset of a topological space X,. Let D = [lscsD,, and let U be
an open subset of [lues X, with DS U. Then there is an n in N

and open sets B,, -++, B, in X,, ---, X, respectively such that D <
<Ba1, ) Ban> cU
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THEOREM 4.10. A countable product of strong wd-spaces 1is a
strong wd-space.

Proof. For each » in N, let &, &, --- be a strong wi-
sequence for X,. For each j in N, let

Z, = {HG XL X, |GleZ)n=1 g} .
We will show that &, &,, --- is a strong wd-sequence for [];-, X..
Let fe Il X,. Then C(f)=N;= St(f, &) =117= (N5 St(f(n), £)=

o C(f(n)) is compact, since it is the produet of compact sets.
Now, let U be open in [[y, X, such that C(f) & U. Then we have
a k in N, and open sets V, in X,, for n =1, ..., k such that
e CFm) S T Vi X s X, & U. For n=1, ..., k, we have
an N, in N such that C(f(n) & St(f(n), £5)<S V,. Let m=
max {N, .-+, N, k}. Then C(f)=1II:.C(f(n) ESt(f, €.) S U. Thus
{St(f, ) 1i=12 ...} is a base for C(f).

COROLLARY 4.11. A countable product of strict p-spaces is a strict
p-space.

Proof. This follows immediately from Theorem 2.2 of [6].
Before we get to the main theorem of this section, we must
have two lemmas about covers of spaces.

LEMMA 4.12. Let Z7 be an open cover of a space X, and let
7' be the collection of all finite unions of elements of Z.

(1) If Z’ has a point countable open refinement, then so
does Z7.

(2) If Z' has a o-point finite open refinement, then so does Z7.

(8) If Z' has a o-locally finite open refinement, then so
does 7. L

(4) If 77 is an open cover of X such that 7" < %, 77 s the
collection of all finite unions of elements of 7, and 77 has «a
o-locally finite closed refinement, then so does Z/.

LEemMMA 4.13. Let X be a topological space, and let &, &, +--
be a strong wd-sequence for X.

(1) If each &, has a point finite open refinement, then X is
metacompact.

(2) If each &, has a locally finite open refinement, and X is
T, and regular, then X is paracompact.

(3) If each &, has a point countable open refinement, then X
is meta-Lindeldf.
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(4) If each &, has a o-locally finite closed refinement, and X
18 regular, then X is subparacompact.

Proof. Let % be an open cover of X, and let %’ be the
collection of all finite unions of elements in Z.

(1) For each n in N, let &, be a point finite open refinement
of &, and let 7, ={G|GeZ,., and G < U, for some U in #%’}.
Clearly 7~ = Uy-: 7; is a o-point finite open collection, each element
of which is contained in an element of Z’. Now let pe X. Then
C(p) S U, for some U in Z’'. Thus C(p) & St(p, &,) & U, for some
n in N. So 7 covers X. By (2) of Lemma 4.12, Z¥ has a o-point
finite open refinement. Now by Remark 3.12, we see that X is count-
ably metacompact since it is a wd4-space. Hence X is metacompact.

(2) This argument is similar to that in (1). We get a o-
locally finite open refinement of %/. Since X is T, and regular, it
is paracompact by a theorem of Michael [18].

(8) This argument is easy and is left to the reader.

(4) Let 7" be an open cover of X such that 7 < %, and let
7" be the collection of all finite unions of elements of 9. Let &,
be a o-locally finite closed refinement of Z,, for each » in N. Set
&, ={F|Fe #, and FEV, for some V in 7’}. Clearly 5 =
U &7, is a o-locally finite closed collection, each element of which
is contained in an element of 7. 2S£ covers X by an argument
similar to that in (1). By (4) of Lemma 4.12, % has a o-locally
finite closed refinement. So X is subparacompact by Theorem 1.2
of [4].

THEOREM 4.14. Let X, X, --- be a sequence of strong wd-
spaces, and let X = 17, X,.

(1) If each X, is metacompact, then X is metacompact.

(2) If each X, 1s paracompact, then X is paracompact.

(3) If each X, is meta-Lindelof, then X s meta-Lindelof.

(4) If each X, ts subparacompact and regular, then X is
subparacompact.

Proof. Let &, &,", --- be a strong wd-sequence for X,, for
n=12 -... Let &;={I1i. G} X [[.s; X, | GreZ”, for n=1, ..., j}
for each j in N. Then ¥, &, ... is a strong wd-sequence for X.

(1) For each » and j in N, let 7;* be a point finite open
refinement of Z,*. Set %; = {ITi., Vi*" X I1.-; X.] Vi"e 75, for
n=1 ..., 5}, for each 7 in N. Then clearly each 7; is a point
finite open refinement of ;. So by (1) of Lemma 4.13, X is
metacompact.

The arguments for (2) and (3) are similar to (1).
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(4) For each » and j in N, let ;" = U, F ;¢ be a closed
refinement of <, where each v is discrete. For each j and <
in N, set F; = {Ili-. F X [a;i Xo| Frie 7%, for n=1, ... j}
Then each .#;, is a locally finite closed collection, and 7; = U, 77,
refines &;, for 7=1,2 -... By (4) of Lemma 4.13, X is sub-
paracompact.

COROLLARY 4.15. Let X, X,, --- be a sequence of wd-spaces and
let X = ]I X,

(1) If each X, s regular and metacompact, then X s
metacompact.

(2) If each X, is paracompact, then X s paracompact.

(3) If each X, 1is regular and subparacompact, then X is
subparacompact.

Proof. By Remark 1.9 of [5], we see that a regular, f-refinable,
wd-space is a strong wd-space. So each X, in (1)-(3) is actually a
strong wd4-space.

REMARK 4.16. Note that (2) of Corollary 4.15 is the theorem
of Arhangel’skil and Morita. Theorem 5 of [8] is also the same as
(1) of Corollary 4.15. This can be seen by checking that the proof
of Theorem 2.2 of [6] also works for the Wallman compactification.
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