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THE KRULL INTERSECTION THEOREM

D. D. ANDERSON

Let R be a commutative ring, I an ideal in R, and A
an R-module. We alwayshave 0 S 0° S IN3-, I"A S N;-. "4
where S is the multiplicatively closed set {l—%|7€I} and
0=0,NA={acAlaseS3sa =0}. It is of interest to know
when some containment can be replaced by equality. The
Krull intersection theorem states that for R Noetherian and
A finitely generated I N, I" A = N3-. [*A. Since ;- I"A
is finitely generated, N3-, ["A = 0°. Thus if I < rad (R), the
Jacobson radical of R, or R is a domain and A is torsion-
free, we have 7., I"A = 0. In this note we show that for
a Priifer domain R and a torsion-free R-module A4, I N7, ["A =
o I"A. We also consider the condition (x);: N3-.I* = 0 for
every ideal I in the commutative ring R. It is shown that
a polynomial ring in any set of indeterminants over a Noe-
therian domain and the integral closure of a Noetherian
domain satisfy ().

Let R be a ring and A an R-module. If x< R and x¢ Z(4), the
zero divisors of A, then (2) Ny, (@)" 4 = N~ (x)"A. Actually we can
take I to be invertible and A torsion-free. However, the assumption
x ¢ Z(A) is essential. For example, let p € R be neither a unit nor a
zero divisor and let F = Rx @ (3. Ry,)) be the free R-module on
{2, ¥, Y5, ---}. Let A = F/G where G = (x-pY,, -0, ++-); it is not
difficult to see that (p) Ni=. (»)"4 #= Ni-. (p)"A. Using this result,
one can show that the following are equivalent: (1) dim R =0, (2)
for every finitely generated (principal) ideal I and every R-module A4,
IN2. I"A = N;-. I,A. The first theorem gives another affirmative

case.

THEOREM 1. Let R be a reduced ring and let I be a finitely
generated ideal with rank I <1. Then Nio, " =IN7 I*. If Ris
quasi-local or R is a domain, then (Yo, I" = 0.

Proof. First suppose R is a domain. By localization we can
assume VI = M the maximal ideal of R. If B= N7, I+ 0, then
VB = M, so there exists an integer m such that I~ < B. Then I"™ =
I which implies I™ = 0 by Nakayama’s lemma. Next suppose R
is quasi-local, by passing to R/P where P is a minimal prime we get

e, I*< P. Since R is reduced, we have N, I"Snil(R) = 0. The
general case now follows by localization.

Another affirmative case is R a Priifer domain and 4 a torsion-
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free R-module. We first consider the quasi-local case.

LEMMA 1. Let V be a valuation domain, I an ideal in V, and
A a torsion-free V-module. Then ibe B= (oo, I"A where icI and
be A implies 1€ Nz I" or be B. In particular, B = IB.

Proof. Suppose 7 ¢ -, I", then there exists an integer N such
that eI — I”. Now tbeI™A for m > N implies ib = j¥j™ Yq for
some je€l and ac A. Now i ¢ I” gives j¥ = si for some se V. Hence
b = s17™ Vg 80 b = sj™ Ya e I™ VA since A is torsion-free. Therefore
beB.

THEOREM 2. Let R be a Priifer domain, I an ideal in R, A a
torsion-free R-module, and B = (\y-, I"A. Then B = IB.

Proof. Let yeB and J = (IB:y); it suffices to show J = R.
Let M be a fixed maximal ideal; we show that JZ M. Now
yeB< By & M- INAy = I Mo IiAy by Lemma 1, so y = 4*(b/s)
where 1€l, be A, se R— M and b/sey-, [}A,. Let N be any
maximal ideal of R, then *b = sye BS Ny [:Ay so by Lemma 1,
1e N, Ik or ibe M-, I+A. In either case, tbe N, It4y for every
maximal ideal N of R, so tb€ B. Therefore, seJ — M.

We remark that for a Priifer domain, (.. /" need not be a
prime ideal, but is always a radical ideal.

Consider the condition () on a ring. Local rings and Noetherian
domains satisfy this condition. The next two propositions are straight
forward and the proofs are omitted.

PROPOSITION 1. If Rsatisfies (x), then Z(R) < rad (R). Conversely,
if R is Noetherian, then Z(R) < rad (R) implies (*).

PROPOSITION 2. If R satisfies (), then R, satisfies (x) for every
maximal ideal M. If R, satisfies (x) for every maximal ideal M,
then Ny I® = I Ny, I™ for every ideal I in R. If Z(R) S rad (R),
then R satisfies (x).

The next theorem generalizes the Krull intersection theorem to
rings which are locally Noetherian.

THEOREM 3. Let R be o ring and A an R-module such that
Ne- P2A, = 0 for every Pespec(R), then Noo, ["A = 0° for every
wdeal I in R.

Proof. Let T be the saturation of S={1 —iliel}, so T =
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R— Upr,es P, where & = {Pecspec(R)|PNT= }. Then setting
B=Ny.I"A yields B, = Nz, I[tA, = 0 for every Pe.%” Hence
(T7'B);—1, = 0 for every Pec.%, but the T7'Pc &’ are precisely the
prime ideals of T 'R. Therefore T'B =0, hence B, =0 and the
result follows.

The next proposition will be used to prove that a polynomial
ring in any number of indeterminants over a Noetherian domain
satisfies ().

PROPOSITION 3. Let R be a Noetherian ring, I an tdeal in R[X],
and B= Ny I". Then B= (BN R)R[X].

Proof. First suppose I N R =0, we show that B = 0. Suppose
0 # g(x) € B, by the Krull intersection theorem there exists a poly-
nomial f(x) = a2 + --- + a, €I such that g(x)(1 — f(x)) = 0. Since
1 — f(x) e Z(R[X]), there exists 0 = ce R such that ¢(1 — f(x)) = 0.
Hence 0 =ca, = -+ =ca,_, =c(a, — 1) so ¢ = ca,. But ca,=cf(x)e
INR=0 soc¢c=ca, =0, a contradiction. For the general case, let
J = I"N R, passing to (B/J)[X] yields B& JR[X], hence B& N, (I"N
R)X]= (BN RI[X]<E B.

THEOREM 4. Let R be a Noetherian domain and T = R{{X,}] a
polynomial ring over R in any set {X,} of indeterminants. Then
T satisfies ().

Proof. We may assume the set of indeterminants is countable
and hence index it by the positive integers. By Proposition 2 we
may assume that (R, .#) is local and we only need show that My, M" =
0 where M is a maximal ideal in T with MN R= _# Let K be
the algebraic closure of k({z;}) where {z;} is an uncountable set of
indeterminants over k = R/_#. There exists a local ring (B, N) with
B 2 R faithfully flat, N= _# B and B/N = K [1]. Now B> R faith-
fully flat implies MB[{X,}] # B[{X.}] so MB[{X;}]] & M* a maximal
ideal in B[{X,}]. It is sufficient to show ;.. M*" = 0. Since

[BI{X:}]/M*: B/N]

is countable and B/N = K is uncountable and algebraically closed,
B[{X}]/M* = K. Thus M* = (#, X, — r, X, — 1, ---) for suitable
r.€ B. Since a given polynomial involves only finitely many indeter-
minants, it suffices to show Ny, (#Z X, — 7, &, — rx)" = 0 in B[X,,
eee, X,]. Since (#Z X, — 7, -+, X, —r.)"NBX, -, X,.1] = (4
X —7ry,eory Xp1— Tw-)" the result follows from Proposition 3 and
induction.
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The last theorem gives another class of rings where () holds.

THEOREM 5. Let R be Noetherian domain and R’ its integral
closure. Then any ring between R and R’ satisfies (x).

Proof. Let RS T S R’ be a ring, since T & R’ is integral, any
ideal of T is contained in the contraction of an ideal of R’, thus we
may assume 7 = R'. It suffices to prove the result for (R, M) a
local domain. Now RS R/INS R/P.&--- DR/P,S (RIPYD--- D
(I?/P,,)’ where R is the completion of R N=PnNn..-NP~P, and P,
..., P, are the minimal primes of . Now each R/P,- is a complete
local domain, so each (RB/P,) is a Noetherian domain and hence satisfies
(x). Every maximal ideal _# of R’ has the form .# = M*N R
for some maximal ideal M* of (R/P)Y & --- @ (R/P,) [2, p. 119].
Hence M* = (R/PY ® --- ® NP --- @ (B/P,Y where N is a maximal
ideal in (R/P) for some i. Then N, . Z" = Niu (M*NR) =
(Ne_. M*Y)NR = I,NR where I, = (RIPY B --- DD --- D(R/P.).
Suppose I, N R’ # 0, then I, N R+ 0 since RS R’ is integral. But
0 # acI,N R implies ae P, < Z(R), a contradiction.
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