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HYPONORMAL CONTRACTIONS AND STRONG
POWER CONVERGENCE

C. R. PurNAM

Let T* be a hyponormal contraction on a Hilbert space,
so that T7* — T*T=D=0 and | T'| = 1. It is shown that
if, in addition, T* is completely hyponormal, then the sequence
{T™},1,s,--- converges strongly to 0 as n — co. The result is
obtained as a consequence of properties of the solution w(z)
of (T — zI)w(z) = x, where x is a certain vector in the range
of D.

1. Let T be a bounded operator on a Hilbert space  with
spectrum o(7T) and point spectrum [7,(7T). The range and null space
of T will be denoted by R(T) and N(T) respectively. If A is any
linear manifold in §, its closure will be denoted by [A]. Also, we
shall consider the set of numbers z for which z¢ II,(T*) and which
will be denoted by (I7,(T*))*.

Let T, =T — zI for any complex number z and let D be a
nonnegative self-adjoint operator satisfying

1.1) T.T¥=D=0 forall zin C.

It was shown in Putnam [8] that if D has the spectral reso-
lution

(1.2) D= Sm udF,
Q0

and if x is any vector satisfying
1.3) x=F(s, ©)x, s>0,

then T;'x is bounded and weakly continuous on C — P, where P =
{z:2e II(T) or ze II(T*)}. (Actually, the set P occurring in [8] was
defined differently but should have been defined as above.) This
result will be strengthened below to the following

THEOREM 1. Suppose (1.1), (1.2) and that x€ 9 satisfies
(1.4) k, = Sj wd || Far | < oo .

Then there exists a wvector-valued function w(z) on C satisfying
(1.5) Tw(z) =z and ||wi)|| = k*, zeC,
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and having the following properties. At every point z,¢ II(T),
w(z) is weakly continuous, that is, for every f in 9, (w(z), f) s
continuous at z,. Further, if $ is separable them, for every f in
9, the fumction (w(z), f) is Lebesgue planar measurable on the set
C — (II(T*)*. In addition, if « is any rectifiable curve in C with
arc length measure m, and if ma N (I(T*))* =0 then (w(z), f) is
mq-measurable as well as dz (= dx + idy)-measurable on a.

REmMARKS. Note that if z¢ II(T) then necessarily w(z) = T, 'z,
and that, for any fin 9, (w(2), f) is analytic in C — o(T). Further,
it is clear that all vectors x of (1.3) satisfy (1.4) and hence that the
set of vectors x satisfying (1.4) is dense in R(D).

That the set II,(T*) occurring in the statement of Theorem 1
and, more generally, the point spectrum of any bounded operator
on a separable Hilbert space, is Lebesgue planar measurable follows
from a result of Dixmier and Foias [3] as Nikolskaya [7]. We are
indebted to K. F. Clancey for informing us of these facts.

Recall that a bounded operator S is said to be hyponormal if
S*S — SS* = 0 and completely hyponormal if, in addition, there does
not exist any non-trivial reducing subspace of S on which its re-
striction is normal. If S, = S — zI, then S,*S, — S,S,* = S*S — SS*.
Clearly, if S is hyponormal then I7,(S) < (II,(S*))* and any eigenvector
of S belonging to z is also an eigenvector of S* belonging to z. In
particular, I7,(S) must be empty whenever S is completely hyponormal.
Further, it is easy to see that if 7* is hyponormal then (1.1) holds
with D = TT* — T*T. Consequently, in view of Theorem 1, we have
the following

THEOREM 2. Let T* be completely hyponormal on  and let
D=TT*— T*T(= 0) have the spectral resolution (1.2). If x€$
satisfies (1.4) then there exists a wvector-valued function w(z) on C
satisfying the conditions of Theorem 1. Thus, relation (1.5) holds
and w(z) is weakly continuous at all points z,¢ I(T). If § is
separable, then, simce II(T*) is mow empty, (w(z), f) is Lebesgue
planar measurable in C and s measurable with respect to arc
length measure and to the dz = dx + idy measure on all rectifiable
curves in C.

As a consequence of Theorem 2 there will be proved

THEOREM 3. Let T* be completely hyponormal on H and suppose
that T is a contraction, that is, || T|| = 1. Then {T"},-1s,... cOnVErges
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strongly to 0 as m— o, that is, || T"f||—0 as n— o for every f

m 9.

REMARKS. It follows from Theorem 8 that if T* is any hypo-
normal contraction then T can be written as the direct sum 7T =
T, N, where T is completely hyponormal, Ty-— 0 strongly as

n— o, and N is normal. Clearly, N=\2dK, can be further
decomposed as N = g zdK, + S 2dK, = N, ® N,, where N'—0

lz] <1 lz|=1

strongly as n— « and N, is unitary. Hence, one has the following

COROLLARY 1 oF THEOREM 3. Let T* be any hyponormal con-
traction on a Hilbert space. Then T = T,PD U where Ty — 0 strongly
as n— oo and U is unitary, where it 1s understood that either
component of the direct sum may be missing.

Thus, if T* is any completely nonunitary (cf. Sz.-Nagy and
Foiag [11], p. 72) hyponormal contraction, then 7™ -— 0 strongly as
% — oo, so that T is of class G, (cf.[11], p. 72). In was shown in
[8], p. 167, that if T is a hyponormal contraction for which 7" 40
then T has a nontrivial invariant subspace. The above Corollary
yields the stronger result that T* (hence T') even has a unitary part.
Also, it follows from the Corollary that if 7* is a hyponormal con-
traction for which T"f 40 as n — - whenever f # 0, then T must
be unitary. In case T* is also subnormal, this last result was obtained
by Stampfli [10].

COROLLARY 2 OF THEOREM 3. Let T be a completely hyponormal
contraction on a Hilbert space. Then T* is (unitarily equivalent to)
the restriction of the adjoint of a unilateral shift to an invariant
subspace.

Proof. Actually, every contraction S satisfying S™—0 strongly
as n— oo is unitarily equivalent to the restriction of the adjoint of
a unilateral shift to an invariant subspace (Foias [4], de Branges
and Rovnyak [1, 2]. See also Halmos [5], problem 121, and Sz.-Nagy
and Foias [11] p. 95. Note that the unilateral shift in question is,
in general, not the simple unilateral shift.

2. Proof of Theorem 1. The proof will be an extension and
refinement of the argument given in [8]. Let z be fixed and let
T.TF? have the spectral resolution

@.1) T.T* = rudE,i” .
0
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Then, by an argument like that on pp. 165-166 of [8],
r lim (u + )74 || Qx| < F, ,
0 t—0+

where %, is defined by (1.4). It follows that

2.2) E“{0)s =0 and r wd|| Pz <k, ,

+0
and hence, for any z in C,

2.3) y(z) = Sjo uw P EPx is defined and ||y(R)|? < &k, -

Next, let T, = T — zI have the polar factorization (see Kato [6],
pp. 334-335)

(2.4) T. = U(x)G(?) ,

where G(z) = (T} T,)'* and U(z) is partially isometric with initial set
[R(G(z))] and final set [R(T,)]. Then T,U*(2)y(z)=(U(2)G(z) U*(2))y(z)=
(T.T*)*y(z) = 2. On putting

(2.5) w(z) = U*(2)y(2)

one sees that (1.5) follows from (2.3).

Next, it will be shown that the above defined bounded vector-
valued function w(z) on C is weakly continuous at every point z,
not in I7(T). It must be shown that w(z) converges weakly to
w(z,), that is, for any fin 9, (w(z), f) — (w(z,), f) as z—z,. If this
limit relation did not hold however, then, since w(z) is bounded,
there would exist a 2, and a sequence {z,} such that w(z,) — p (weakly)
as z,— 2, with p = w(z,). It follows from the relation T,w(z) = =,
on letting z = 2, and noting that || T — T,||—0, that T, p =2 and,
since T, w(z,) = @, that

(2.6) T.(» — w(z)) =0 .

Since z,¢ II(T), then »p = w(z,), a contradiction.

There remains then to establish the measurability of w(z) in the
sense described in Theorem 1, at least if § is separable. To this
end, we first shall show that, whether or not & is separable, if T
is any operator with the polar factorization of (2.4), then

2.7 U(z) — U(z,) strongly as z— 2, whenever z,¢ II(T) .

Assume then that z,¢ II(T). Note (cf. [6], pp. 334-335) that



HYPONORMAL CONTRACTIONS AND STRONG POWER CONVERGENCE 535

U(z) is defined for vectors in R(G(z)) by U(z): G(z)u — T,u and that
U(z) is then extended by continuity to be isometric on [R(G(z))].
For y in N(G(z))(=N(T.)), U(z)y =0. Since z,¢ II(T), then N(G(z,)) =0
and so U(z,) is isometric.

Since R(G(z,)) is dense in &, relation (2.7) will follow if it is
shown that

(2.8) U(z)v — Ul(z,)v (strongly) as z — z,, whenever v € R(G(z,)) .

Suppose then that ve R(G(z,)), so that v = G(z,)u for some vector
. In view of U(z)G()u = T,u and U(z)G(z)u = T,u, we have
Uz)v — Uz))v = (T, — T, )u — U(z)(G(2) — G(25))u. Since || T,—T,,||—0,
hence also [|G(z) — G(z,)||— 0, as z-— 2, relation (2.8), hence also
(2.7), follows. By symmetry, we have also

(2.9) U*(z) — U*(z,) strongly as z —— z, whenever 2,¢ I1,(T*) .

Henceforth, it will be supposed that 7T is the operator occurring
in the statement of Theorem 1. By (2.2) and (2.8), y(z) € [R(T,T?)'*] =
[R(T.)], and this set is the initial set of U*(z). Since w(z) = U*(2)y(z),
it follows that U(z)w(z) = U(z) U*(2)y(2) = y(z). We shall show that

(2.10) Y(z) — y(z,) weakly as z — 2, 2,¢ I[(T*) .

If (2.10) did not hold then, since y(z) is (uniformly) bounded in C,
there would exist a sequence {z,} for which z,— 2z, and ¥(z,) —¢q
(weakly) as n — o« with g # y(2,). Since w(z) is also bounded, we
may choose a subsequence of {z,}, which will also be denoted by {z.},
such that w(z,) — » (weakly).

Let f be arbitrary in $. Then (¥(z,)f)—(q, f) and also
W(z.), ) = (UR)w(z,), ) = (w(z,), U*(z,)f). In view of (2.9), we
have (w(z,), U*(z.)f) — (», U*(20).f) = (U(z)p, f), and hence ¢ = U(z,)p.
Since ¥(z,) = U(z)w(z,), we see that ¢ — y(z,) = U(z,)(p — w(z,)). But,
as noted earlier, T, (p» — w(z,)) =0 (cf. (2.6)), so that p — w(z,)¢
N(G(2,)) and hence U(z,)(p — w(z,)) =0. Thus g = y(z,), a contradiction,
and so (2.10) is proved.

In summary, we see that the vector-valued function w(z) on C
is weakly continuous at z,¢ II,(T). The vector-valued function y(z)
is weakly continuous at z, if Z,¢ II,(T*). Also, the operator-valued
function U*(z) on C is strongly continuous and, hence, U(z) is weakly
continuous at z, if z,¢ II(T*).

Suppose now that § is separable. Then, as noted earlier, I7,(T*)
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(hence also (II(T*))*) is Lebesgue planar measurable. It will be
shown that for any f in ©, the function (w(z), f) is Lebesgue planar
measurable on C — (II(T*))*. For, let {¢,}(n =1,2, --.) be any
complete orthonormal system for . Then (w(z), f) = (¥(z), URR)f) =

1 (Y(2), $.)(¢n, U(z)f). But each term of the summation is a
function continuous at all points z for which Z is not in I7,(7*). In
particular, each such term, and hence the sum, is (planar) measurable
on C — II(T*))*. (The argument is similar to that used in [9], p. 384,
in connection with the proof of Stone’s theorem on unitary groups.)

Finally, a similar argument establishes the assertion of the last
part of Theorem 1 and the proof is now complete.

3. Proof of Theorem 3. Without loss of generality it may be
supposed that £ is separable. It follows from Theorem 2 that if
w(z) is defined by (2.5) and if f is arbitrary in 9, then (w(z), f) is
(bounded and) measurable with respect to arc length and to the
measure dz = dx + idy on every circle C, = {z: ]z = 7}, 0 < r < oo.
Let

G yr) = —(2ri) SU w(z)dz<= — r(2rmi) gcw(rt)dt>,

where C = C, and all circles are oriented positively. It is understood,
of course, that y(r) is defined in terms of the relation (y(r), f) =
—(@2re) '\ (w(z), f)dz for any f in § and that the latter integral is
a Lebesgucg integral. A similar remark applies to the other integrals
of this section.

The set I7(T) N {z:|z]| = 1} is empty; otherwise, T would have
a normal part. (In fact, if T is any contraction and if z is an
eigenvalue of T satisfying |z| = 1 with eigenvector f then Z is an
eigenvalue of T* with the same eigenvector f; ef. [11], p. 8.) If z
is fixed and |z| = 1, then, by Theorem 2, w(rz) — w(z) (weakly) as
r—1—0. For any fixed f in §, it follows from (3.1) and the
uniform boundedness convergence theorem that

W), £) =~ | ), i
— ~ iy | @), iz as r—1-0,

Thus, y(r)—y(1) (weakly) as r—1—0. Similarly, y(r)—y(1) (weakly)
as r—1+0. But, if r>1, —(2mi)! T *vdz = v, for arbitrary

Cp
v, so that, if 2 is any vector satisfying (1.4), y(r) =z for r > 1
and hence (1) = «. Hence, we have for such vectors z,
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3.2) y(r) — x (weakly) as r— 1 — 0.
In view of (1.5),
Ty(r) = —(2w5)~ SC Tw(z)dz
— —(2mi) SC (T - 2 + 2)w()dz ,

— —(2mi)™ SC cw(z)dz .

r

Similarly, one sees that T"y(r) = —(2r¢)™* S 2"w(z)dz forn=1,2, ...,
Or

and hence

3.3) T"y(r) — 0 (strongly) as w — oo, for » < 1.

Next, let M = {v: T"v — 0 (strongly) as % — o}. Since T is a
constraction, I is a subspace invariant under 7. Also, by (3.3),
each y(r), » < 1, belongs to M. Hence, by (3.2), if w is any vector
in M+, 0 = (y(r), u)—(x, w) as r—1 — 0, and so xe€ M, where z is
any vector satisfying (1.4). Since such vectors are dense in R(D),
R(D) c IR.

Let now 2 denote the least subspace containing R(D) and reducing
T. It will be shown that

(3.4) LcMm.

To see this, note that if we I then Tuec M. Also, TT* — TT* =D
and hence T"T*u = T"'T*Tu + T 'Du. Since Duec I, then
T"*Du—0 as n— o and hence limsup,..| T"T*ul|l < || Tull.
Repetition of this argument shows that lim sup,_.. || 7" T*u || < || T*u ||
for k=1,2, ..., and hence T"Tu—0 as n— c, so that T*ue M.
Thus, whenever % is in I so also are Tw and T*u. Since R(D)c IN,
the desired relation (3.4) follows.

It is clear that ' also reduces T and that T |&‘ is normal.
Since T* is completely hyponormal then ¥* =0, and so by (3.4),
I = &. This completes the proof of Theorem 3.
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