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ON CAUCHY’S THEOREM FOR REAL ALGEBRAIC
CURVES WITH BOUNDARY

NORMAN L. ALLING

On a real algebraic curve with a nonempty boundary,
one must orient the several boundary components in order
to pose the question considered in Cauchy’s theorem for
analytic differentials. It is proved that the conclusion of
Cauchy’s theorem is true, in this context, if and only if the
orientation in question is induced by an orientation of the
interior of the curve.

Let 9 be a real algebraic curve (i.e., a compact Klein surface
[3, 4]), whose boundary Y has r components, where r > 0. Let g
be the algebraic genus of 9: i.e., the genus of the field E of mero-
morphic “functions” on 9 that are real valued on dY; then g is the
first Betti number of Y, the underlying space of ¥, and the Euler
characteristic ¥ of Y is 1 — g [4, 2]. Y is—of course—characterised
topologically by knowing g, » and whether or not Y is orientable.
In [2] the author investigated some sheaves that arise from analytic
problems on ¥), whose cohomology groups reflect the orientability of
Y; however these sheaves and groups seemed rather remote from
analytic function theory on ¥). This paper is an outgrowth of the
search for a simple analytic question which could be posed on 9,
whose answer would reflect the orientability of Y. What analytic
question on 9 is, after all, more basic than Cauchy’s theorem?

In order to pose the question considered in Cauchy’s Theorem on
9, we must orientate the r-components of 9Y; there are 2" ways to
do this. If Y is orientable, then two of these 2" orientations are
engendered by the two possible orientations of Y; these will be called
indigenous orientations of 0Y. If Y is nonorientable, then oY has
no indigenous orientations. Let < be an orientation of 07Y.

Next we must have a space of analytic differentials on 9 to
integrate along 0Y, as orieted by ¢». A space 2, of analytic “different-
ials” on 9 was defined in [4] which is the natural generalization of
the space of Schottky differentials on a bordered Riemann surface,
in that they are real on 0Y. (The space of meromorphic differentials
on 9 [4, 1.10] is also very natural from the point of view of the
algebraic geometry of E.) Even though w € 2, is called a “differential”
its integral along an oriented Jordan curve, or arc I”, need not have

an invariant meaning! If I"cdY then it does, andS we R. The real
r
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part of Sra) always has an invariant meaning. If I" is contained in
an orientable tubular neighborhood, then S ® is always invariantly

r
defined, up to complex conjugation. The real dimension of 2, is g
[2]. (The reason it is so small is that the condition that w be real
on 0Y allows it to be extended to the complex double.)

Aot @E 2y — g weR is a well defined R-linear functional on

2y whose image is elther of dimension 0 or 1. Accordingly we will
say that the conclusion of Cauchy’s theorem holds on 9 for &, or
does not hold on 9 for .

THEOREM 1. The conclusion of Cauchy’s theorem holds on 9
Jor an orientation & of 0Y(# @) if and only if & is an indigenous
orientation of 0Y (i.e., one induced by an orientation of Y). Thus
Y s orientable (resp. nonorientable) if and only if there exists 2
(resp. 0) orientations & of 0Y for which the conclusion of Cauchy’s
theorem holds on 9.

Proof. Assume first that ~” is an indigenous orientation of 0Y;
then, by definition, #” is induced by an orientation of Y. In the
dianalytic structure on Y that gives ¥ we may choose an analytic
structure and thus consider the bordered Riemann surface structure
9, on Y that engenders < on dY [4]. Then 2, becomes the space
of Schottky differentials on 9,. In this context the Cauchy theorem
is known to hold. (This can be shown directly by triangulating Y
and using the Cauchy theorem in C.) Assume, henceforth that &
18 nonindigenous.

It is well known (see e.g., [6]), that a topological model of Y
can be built up from a closed unit disc D, by adjoining various
strips and handles to it. Adopting a different construction suited to
our purposes, first adjoin to D » — 1 untwisted strips—glued to the
boundary of D—to form D’ so that 0D’ has r components. Let D’
be imbedded in C (in some way), let I",, .-+, I",_, be the components
of 0D’ that bound bounded components of C — D', and let them be
positively oriented relative to D’ (as oriented by C). The Euler
characteristic of D', x(D'), is 2 — r, which is—necessarily—not
smaller than %(Y). Next choose the largest integer % such that
2 —1r—2h = x(Y), in the orientable case or 2 — r — 2k = (YY) + 1
in the nonorientable. Adjoin » handles to D'—by removing 2% open
discs from D’, whose boundaries do not meet D', and attaching %
handles (each on the same side of D’), to some choice of h-pairs
of these circular boundaries—to form D,. If Y is orientable, then
Y and D, are homeomorphic. In this event let Y and D, be
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identified. If Y is nonorientable, let D, be formed by adjoining
a half twisted strip to D,; then (D) =2 — r — 2h — 1, which is
either x(Y) or is x(Y) + 1. In the first case Y and D, are homeo-
morphic, and are to be identified. In the second let one more
half twisted strip be adjoined to D, to form D, a space that is
homeomorphic to Y; then let D, and Y be identified. In general,
2wWY)=2—1r—2h — m, where m =0,1, or 2, and Y and D, are
identified. Let I', be 0Y — (I",U .-+ U I",_,), and let it be oriented
in such a way that I"; and I', have opposing orientations on the
untwisted strip adjoined to D to form D’, which gives rise to I'j,
for eace 1 < 5 < 7.

The main analytic technique we will use, that of doubling 9,
goes back—essentially to Schottky and Schwarz—and explicitly, in
this context, to Klein. Let (%, 7, p) be the complex double of 9 [4,
1.6]: i.e., X is a compact Riemann surface (without boundary), = is
an anti-analytic involution of X, and p is an analytic map of ¥ onto
9 (i.e., a morphism [4, 1.4]). »7'(y) has one (resp. two) points
in it, for ye Y, if and only if ye€dY (resp. y¢ Y —0Y). For
1=j7=7r let 4; be the pullback of I'; to X, endowed with the
orientation induced on it by the orientation of I";; thus 4; is an
oriented Jordan curve in X. For 1 =7 <7, let a; = 4;. It is easy
to see that these, regarded as elements in H/(X, Z), are part of the
usual a-paths (see e.g., [7, Chapt. 10] for details), which arise from
doubling the » — 1 untwisted strips that were adjoined to D to form
D’'. 7 induces an involution o on 2., the C-space of analytic differen-
tials on ¥, which is R-linear, such that o(iw) = —io(w), for each
weR,. 2.1is then the direct sum of the R-space, 2; ., of symmetric
elements of 2., and the R-space £2,. of anti-symmetric elements of
2,. Further 2,, = 12, , thus the real dimensions of 2., and 2.,
are the same, namely g, the genus of X—which is also the algebraic
genus of 9. Given we2;, let w = p + { where p is symmetric and
{ is anti-symmetric. This convention will hold throughout the paper.
Further 2, can be naturally identified with 2., (see [4], [1], and [2]
for more details).

LEMMA. Let a be an oriented Jordan curve (arc) in X such that
7(a) = a, and assume that S w =t is real; then S o =1t and S =0.

a a

Proof. Using [1, 3.1], we see that g o= /:og_( o= EOS P, SO

p eR. {=1n for some ne€ 2, ,, so g =1 7] € 1R, proving the lemma.

Returning now to the proof of Theorem 1, first let us treat the
(trivial) case in which Y is orientable, or equivalently in which m =
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0. Then Y and D, are identified, and I", + --- + I, = 0 in H(Y, Z).
The orientation 7, of Y, can be given by choosing ¢;e{*1},1 =
j < r, and by assigning each ¢; to I';. Since £ is nonindigenous,
not all the e;’s are alike. {a,, :--, a,_,} is contained in a basis B, =
{a, b, ---, a,, b} of H(X, Z) such that

a) aobieart bt ooe vy b0t 0 =1, in T (X)

Let {w,, -+, w,} be a basis of 2, over C such ‘that W, =0j,1=

J,k=<g. (See e.g., [7, Chapt. 10] for details.) As notéd above there
exists k,1 <k <r, such that ¢, # ¢,. Using, among other things,
the lemma, we find that

Say,c‘o" - é e"SAj‘Ok = G Sdkpk + érLT‘Ok .

Since I', + «+- +I',=01in H(Y, Z),4, = —4,— +++. — 4,_, in H(X,
Z); thus e,S O, = —eTS 0 by Cauchy’s theorem, and thus is —e,,
and so o p,, =e, — e, # 0, disposing of the proof, if Y is orientable.

Before gomg on to the nonorientable cases, let us consider a useful
example.

ExAmMpPLE. Let a = 1/2 + bt, where b > 0, and consider G = Z
aZ in C. Let G act as a set of conformal maps of C, by translation.
Note that G is invariant under &£, where £ is complex conjugation.
Let X = C/G, and let = be the anti-analytic involution on %X induced
by #. The parallelogram whose vertices are 0, & 1, and a can be
taken as a fundamental domain for X. The interval [0, 1] is the set
of fixed points of this domain under the action of k. Let 9=
%/{1, 7}; then 9 is a Mobius strip, the image of [0, 1] in Y being its
boundary. The isosceles triangle, whose vertices are 0, 1 and «, may
be taken as the fundamental domain for §. Given B in the straight
line segment [0, @], it will be identified—when passing to $—with
B8 + a in [@, 1]. dz induces a basis {dz} of 2, over R. Since Sldz =

1, we see that the conclusion of Cauchy’s theorem is never truoe for
9. (It is also not hard to show that all dianalytic Mobius strips
occur in this way.)

Returning again to the proof of Theorem 1, note that the triangle,
described in the above example and identified as indicated, is a Mobius
strip. Assume now that Y is nonorientable: i.e., m > 0. We can
modify the construction of D, from D, as follows. Let one end of
a strip be glued to [1/3, 2/3] in the Mobius strip above. The resulting
space will be referred to as a Christmas tree. Glue the other end
of the strip that forms the trunk of the Christmas tree to the edge
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of D, to form D,. Repeat the procedure on D, to form D,. Let 4,
and 4,,,_, be the boundaries of the Mobius strip—in the form given
in the example—before the trunk is glued on, and then glued to
D,, and D,_,. Let them be oriented to agree with the orientation
of I',. In doubling 9 to form %, the Christmas tree doubles to a
torus with a tube running from a hole in it, back to the rest of X.
A4; lifts to a (nonunique) path 4;in X, r» < j <r + m — 1. Let these
paths be oriented by the paths onto which they map. Let a, = 4.
and let @y = drypy. {Q, +++, @, Gpim_i} IS contained in a Dbasis
B, ={a,b, ---,a, b} of H(X, Z) that satisfies condition a) above.

Thus there exists a basis {®,, - - -, ®,} of 2; over C such that S W, = 0z,

1<j,k=<g. (Seee.g.,[7, Chapt. 10] again.) Let o, be the symmetric
component of w,, and let o = >, 0,,,-,; then peQ,. There exist

e;€{*+1},1 =< 5 < r, such that Sayﬁp = >l e; Srjp. Since—for1=j5<
r —7(a;) = a;, and since \ @,.,_, =0,k =1 or 2, for such 7’s, we
may apply the lemma and conclude thats o0 = 0; thus > ¢e; S 0=
e, Spr,o. Assume now that m = 1. Sinceﬂlwe may invoke Caupcihy’s
theorem on an orientable sub-domain of ¥, we find that S ==
Sa 0. Let a, be re-oriented so that positive sign above holdsr.r Since

r

w, =1, we may reason as we did above. Since g W, = S w,=1,
a, r, ay

and since 7(I",) = I",, we may apply the lemma and conclude that
Sr o =1. Thus S o =e, # 0. Assume lastly that m = 2. Reasoning

Y,

as above EF w,+ w,,, = ®, + ®,,,, the signs being independent,

” Si‘17-i‘17'+1
one of the other. If necessary, re-orient a, or a,., so that the plus sign

holds twice above; thus|\ o, + ®,,, = 2. Since z(I",) = I",, we may
Ty
apply the lemma and conclude that Sa 0= 6r§ 0 = 2e, # 0, prov-
Y, r

r

ing the theorem.

Greenleaf and Read considered a related question in [5]. Given
an orientation ¢ of 0Y they defined the notion of an analytic differ-
ential p as being positive at y (in 0Y), relative to ~ as follows: if
given f € EF—a local uniformizer at y — that is increasing near y,
relative to ¢ then 0 < h(y), where p = hdf for a (unique) hec E.
(This definition is independent of the choice of f, as may easily be
seen.) o is said to be positive relative to < if it is positive at y,
relative to ¢, for each y€0Y. Greenleaf and Read proved that if
¢ is indigenous, then no positive analytic differentials exist in 2,
that if £ is non-indigenous and 9 is elliptic or hyperelliptic then
positive analytic differentials always exist; and then they went on to
conjecture that the condition that ¥) be elliptic or hyperelliptic can
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be dropped while preserving the conclusion above. If the Greenleaf-
Read conjecture is correct, then it would imply our theorem; thus
our theorem may lend additional credence to their conjecture.

Having set up this machinery, let us use it to draw some addi-
tional conclusions. As noted before, the real dimension of 2, is g
andg=7r—1+ m + 2h. Given pc @2, let

@1([0) = S[‘ ‘0, ct g’r—l(lo) = S p .
1 r—1
Clearly these maps are real valued. If m =1, let @.(0) = S p. If
d'r

m =2, let @,.,(0) = R Let r=k=r+m—1. By [1, 3.1],
WP = £(¢4(0)). Since +2k and 7(4,) are homologous, S L= #1(0),

4y 7(
proving that ¢,(0) is real. ¢,(0) can also be computed by ikntegrating
allong 4,. Note that 4, lifts to 4, and to 7(4,), and that the integral
of o allong each of these paths is the same. Let O; be an oriented
a-path about the j** handle adjoined to D’ to form D, for1 < j < k.
For each such path we may choose an analytic structure in a
tubular neighborhood; then integration of o along each such is well
defined. As remarked before the real parts of these integrals are
a priori well defined, whereas the imaginary parts are a priori well

defined only up to sign If >0, let p,(0) = S 0, Py_1(0) =
ImS 0y s Po-mia(0) = S 0, and Py_y,4,(0) = = ImS ©, the signs
above being independent of one another.

I

THEOREM 2. Given pe 2y, 0 =0 if and only if @.(0) =
Py(0) = 0.

Proof. Since each of the ®;’s is an R-linear functional, o =0
implies that each ®;(0) = 0. Conversely, let o€ 2, such that p;(0) =
0, for each 7,1 <7 <g¢g. As noted in the proof of Theorem 1, I;
lifts to ;e H(X, Z) for 1 <j<r—1. If m >0, 4, lifts to a,, and
if m = 2, 4,,, lifts to a,.,. For 1 = j =< h, 0; lifts to two oriented
a-paths on X, @,_,;,, and a,_,;.,, which are permuted by z. Finally,
{a,, +--, a,} is contained in a basis B= {a, b, ---, a,, b,} of H(X, Z)
such that condition a) holds. By [1, 3.1], the integral of o about
@,_s;.; and about a,_,;,, are complex conjugates of each other. Because
of this symmetry, to know that o is zero it suffices to know that
its periods with respect to @, <<+, @,_y, = o+, Qrsim) Agy Cgosy = **y Bysiisy
and a,_;., are all zero: i.e., the periods of p with respect to
ry, ...y eeoydp im0, 6y -+, 0,_0, are all zero; but this is
implied by the condition that @,(0) = ... = @,(0) = 0, proving the
theorem.
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COROLLARY. There exists a unique basis {0, ---, 0,} in 2y of 2y
over R (resp. in 2y of Q2. over C), such that ®;(0;) = 0;;, for all 1 <
i k=g.

Bibliographic note. See also [8, 9] for related results on the
period matrix of a symmetric Riemann surface.
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