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ENDOMORPHISM RINGS OF SELF-GENERATORS

BIRGE ZIMMERMANN-HUISGEN

The group of R-homomorphisms Homp (M, A), where M, A
are modules over a ring R, is, in a natural way, a module
over the endomorphism ring S of M. Under certain weak
assumptions on J, the following is true: Homj (}, —) carries
injective envelopes of R-modules into injective envelopes of
S-modules iff M/ generates all its submodules. Modules of
the latter type are called self-generators. For M a seif-
generator, Homy (M, —) has additional properties concerning
chain conditions and the socle. Many of the known results
in this area, in particular those for M projective, are special
cases of our main theorems.

Introduction. The question of how properties of a unitary right
R-module M = M, are related to properties of its endomorphism ring
S has been answered completely by the Morita theorems in case M
is a progenerator. Then the functors F = Homj (M, —): M — D
and H= MQ@Q; —: ;2D — I are equivalences and hence preserve and
reflect all categorical properties of objects (I, denotes the category
of unitary right R-modules).

Anderson [1] determined the finitely generated and projective
modules M, for which H preserves injective envelopes and called them
perfect injectors. Inspired by his paper, we investigate the analogous
problem for F' and introduce the notion of a “perfect coinjector”
along the model of [1] (without restrictions on M). When R is a
Dedekind domain, we have a structure theorem for perfect coinjectors
(2.1). It yields a characterization of torsion modules flat over their
endomorphism ring which generalizes that for R = Z in [13, Th. 2].
In particular, the perfect coinjectors coincide with those modules
generating all their submodules (self-generators) fors for the special
choice of R. This is false for arbitrary R, but it is true (2.4) if
certain assumptions, weaker than either “projective” or “generator”,
are made on'M (e.g., M = MT where T is the trace ideal of M).

Large classes of self-generators (§3) justify a closer look: The
lattices of R-submodules of Ae M, and S-submodules of Hom (M, A)
are intimately related, and so, as a consequence, are the chain con-
ditions and Goldie dimension of A and Hom (M, A). These corre-
spondences arise as a natural continuation of Sandomierski’s results
in [15]. Moreover, the self-generators M = MT are exactly those
modules, for which F' preserves the properties “simple” and “essential”
just as in the optimal case, i.e. M a vector space (resulting socle-
formula: 4.5).
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Another application of §2 clarifies Anderson’s characterization of
perfect injectors by means of an equivalence of categories (§5). At
one and the same time, the main result extends results of [1] and
supplies additional information about the functor H.

This paper is part of the author’s doctoral dissertation which
was written under the direction of Professor Fr. Kasch at the Ludwig-
Maximilians Universitdat of Munich. The author wishes to express
her gratitude to Professor Fr. Kasch and Professor B. J. Mueller for
stimulating conversations and to the referee for his helpful suggestions.

1. The full subcategory .# of M-generated objects of M. A
reference for standard notions and results is [2]. The following
notation is observed: R is an associative (not necessarily commutative)
ring with 1, 9, the category of unitary right R-modules, M = M,
an object of M, S = Hom, (M, M) the ring of R-endomorphisms of
M, M* = Homg (M, R). Naturally, M is a left, M* a right S-module.

The homomorphisms (,): M* @ M — R with (f, m) = f(m) resp.
[, M@rM*— S with [m, f] = mf(—) are R-R-resp. S-S-linear, their
images are denoted by T resp. 4. As is well-known, T = R(4 = S)
means that M, is a generator (finitely generated and projective).
T,(A) = X{Im (f), f € Hom, (M, A)} is called the trace of M on A,
TR)= T is called simply the trace.®: GF —1;, represents the
natural transformation corresponding to the adjoined pair (G, F),
where

F E);RR —_—> gIRS With F(A) = HomR (M, A)
GMg— M, with G(B)=BRs:M

One observes Im (@(4)) = Ty(4).

It is known that F' preserves injective envelopes in case F'is full
and faithful and G is exact, the latter being true iff M; is a generator
[5] (In this statement I, may be replaced by any Grothendieck
category). Noting that Hom (M, 4) = Hom (M, T,(4)), we focus
attention on the full subcategory .#Z of M-generated objects of My,
i.e. Ae .7 iff Ty(A) = A (compare [4]), with the restricted functors
F'i # — N, G: Mg— #(@": GF'—1_, belongs to the adjoined pair
(G', F")). As is easily checked, an injective envelope A— B of R-
modules goes down to an injective envelope T,(4)— T.(B) in _#,
hence F preserves injective envelopes if F” does. A sufficient condition
for the latter: F” full and faithful, G’ exact. We will interpret this
in terms of equivalent conditions on M, and we will see that, in many
cases, it is also necessary.

DerFINITION 1.1. 1. M is called a self-generator iff T,(K) = K,
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for all R-submodules K of M.
2. M is called a X-self-generator iff T,(U)=U, for all R-sub-
modules U of M", ne N. (compare with related concepts in [4] and

[10]).

ExamprLE 1.2. (F. Dischinger): Let

a 0 b O
jO a 0 ¢
R = :a,b,ce Kt ,
0 0 a O
0 0 O aJ

where K is a noncommutative field. Choose ), pt€ K such that A == pn
and let

0 b 07
0 0 b
0 00
0 00

be K

(=T e R e 2 =

Clearly, I is a right ideal of R, and the cyclic right R-module M =
R/I is a selfgenerator, but not a generator. Denoting the product
of ¢ with the unity matrix by xz, we obtain IN&%l =0 and R/I=
R/xzI. Thus R is embedded into M* and consequently M is not a
Y-self-generator.

Over a commutative ring, clearly, every cyclic module is a X-self-
generator; for further examples see §8§2, 3. In view of the following
two lemmas, Definition 1.1 appears as the natural choice. (Note that
F’ is full and faithful iff @' is an isomorphism.)

LEMMA 1.8. 1. Let Ae M. The map 9'(4): Hom (M, A) Qs M—
T..(4) is an tsomorphism if M generates all kernels of homomorphisms
M*— A, ne N.

2. [17] The left S-module M is flat iff M generates all kernels
of homomorphisms M"— M, ne N.

Proof. 1. Let v, f.(m,;) =0, where f,eHom, (M, A), m,c M.
By hypothesis (m.),<iza = Si5=1, 95(n;) for some g, ¢ Hom, (M, Ke(D 12)),
n;€ M. Denoting the canonical projections M* — M by pr,, we conclude
that 2ufi®@my = 2L f, ® or, (Za ga’('n’j)) = D fibrig; ®mn; =0, since
> fiprg; = 0 for all j.

Assertion 2 is simply Lemma 19.19 of [2].
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LEMMA 1.4. The following statements are equivalent.

(1) M is a X-self-generator,

(2) A 1is closed with respect to R-submodules (hence is a
Grothendieck category),

(8) F' is full and faithful, and G is exact.

Proof. (1) = (2): One direction is clear. Conversely, let M be
a Y-self-generator, 4e _# (i.e. there is a set I and an epimorphism
f:M?P — A) and A’ an R-submodule of A. Because A’ may be assumed
finitely generated, we can choose a finite subset I’ of I such that
A’ C f(MY). By hypothesis, M generates f~(4’) N M and hence A’.

(2)= (3): This is a special case of [5] since M is a generator
for _#. It also follows directly from Lemma 1.3.

(8)=(1): Assume that G’ is exact (i.e., M is flat). We claim
that if @'(4) is an isomorphism, then M generates all kernels of
homomorphisms M"*— A for ne N. Let f:M"— A, let f, = fin,
where inm; is the natural injection, and let (m,) € Ke(f). Assuming
that @’(4) is an isomorphism, Xf;(m,;) = 0 forces the element 3f; ® m,
of Hom (M, A) @s M to be zero. Consequently, since s¥ is flat, the
element 3f; @ m; of 3f,S® M is zero. Thus, [3, Lemma 10] there
are g;;€S,n;e M, 1 <1=<mn,1<j<m such that

m; = 3 g:(n;) , for all ¢
J
> fi9::=10, for all 5.

For g; = Yin,9,;, this means g; € Hom, (M, Ke (f)) and (m,) = >3; gi(n;).

REMARKS. 1. The implications (8) = (2) and (3)= (1) are inde-
pendent of [5] where only Grothendieck categories are considered.

2. In our proof of (8) = (1) we have shown that if (M is flat,
then the converse of Lemma 1.3.1 is true.

In part (1) of the following corollary we rediscover a theorem
of Pahl [12] as the special case A = M a generator.

COROLLARY 1.5. Let M be o 3-self-generator, f: A— B a homo-
morphism of R-modules. Then

1. Hom (M, A) is an injective (quasi-injective, see [2]) S-module
wff Ty(A) is an M-injective (quasi-injective) R-module.

2. Hom (M, f): Hom (M, A) — Hom (M, B) is an essential mono-
morphism in Mg IF floyw: Tu(A) — Tyw(B) is an essential mono-
morphism in M.

In particular, F preserves injective enwvelopes.

3. If Hom (M, A) is artinian (noetherian) in Ms, then so is



ENDOMORPHISM RINGS OF SELF-GENERATORS 591

T,(A) in My (e.g. if Ss is artinian, then so is My).

Proof. 1.2. From 1.4. (G', F') is an adjoint pair of functors
between abelian categories, G’ exact, F’ full and faithful. As is
well-known, F” then preserves and reflects injectivity and essential
extensions. Along the same line, one checks that F’ (hence F') pre-
serves and reflects quasi-injectivity.

3. A’'+— Homj (M, A’) defines an injective map from the lattice of
R-submodules of T,(A) into the lattice of S-submodules of Hom(}, A4).

2. DPerfect coinjectors. We call M a (perfect) coinjector iff
F = Hom, (M, —): M, — M preserves injective modules (injective
envelopes). It is well-known that M is a coinjector iff M is flat as
a left S-module. As we have seen, all Y-self-generators are perfect
coinjectors. We will study cases, in which this is reversible and
“J-gelf-generator” may be replaced by “self-generator”. First of all,
the special case of R a Dedekind domain yields a structure theorem
for perfect coinjectors. A resulting description of the torsion modules
that are coinjectors generalizes [13, Th.2]. For 0 s Pec Spec R, let
M, = {xe M: P*x = 0 for some n € N}.

THEOREM 2.1. For @ Dedekind domain R, the following are
equivalent:

(1) M is a perfect coinjector,

(2) F:Mp— M preserves essential extensions,

(3) M is a Z-self-generator,

(4) M is a self-generator,

(5) 4f M is not a torsion module, then M is a generator. If
M is a torsion module, then the following holds for each primary
component My, 0 = Pec Spec R: M, is reduced (i.e. does not contain
a nonzero divisible submodule), or the direct complements of the
largest divisible submodule are unbounded.

Furthermore, o torsion module is a perfect coinjector iff it is
a coinjector.

Proof. (1)=(2) and (8) = (4) are trivial, (3) = (1) holds for an
arbitrary ring R. So does (4)=(2): Let AC B be an essential
extension and 0 = f ¢ Hom, (M, B). Pick me M with f(m)=+ 0 and
use the fact that mR is generated by M to find g € Hom (M, mR)C S
with 0 = fge Hom; (M, A).

(2)= (5): First, let M be non-torsion, i.e. R, a submodule of
M;. The field K of quotients of R being an injective envelope of E
(as an R-module), K is a direct summand of an injective envelope
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of M. This forces Hom, (M, K) # 0 and hence Hom, (M, R) = 0 by
hypothesis. But for a Dedekind integral domain R, T = 0 means
T = R.

For M a torsion module, we may assume M P-primary and not
reduced. Since MN..v P"M contains the largest divisible submodule
of M, it is enough to prove M/MN..x P"M to be unbounded. Assume
the contrary, P*(M/(),.x P"M) = 0 for some ke N. For rec P¥\P*",
let I,: M— M be multiplication with ». By applying (2) to the essential
extension NC M, where N = {m e M: Pm = 0}, one obtains g € S such
that 0+ l.9 € Homy (M, N)(, = 0, since M is not reduced and hence
unbounded). In particular, this means P*"g(M) = 0. Consequently,
9(Nwen P"M) = 0, that is, g factors through M/ N P"M. From our
assumption we conclude P*g(M) = 0, contradicting rg(M) == 0.

(5) = (8): We limit our attention to a primary torsion module
M = M, and a cyclic R-submodule A = R/P* of M*,ne N. If M is
bounded, then M is known to be a direct sum of cyclic R-submodules,
and so AC M" implies the existence of a direct summand R/P",
where n = k.

If M is unbounded with M, its largest divisible submodule, then
M/M, is also unbounded (in the case M, = 0 apply the hypothesis).
There is no loss of generality in assuming M, = 0, since M, is a direct
summand of M. We claim M/ ..~ P"M is unbounded. If not, then
P"M C Nuen P"M for some m which would imply P"M = P™**M, for
all . This means P"M is divisible. ‘But with M unbounded, P™M = 0
contradicts M, = 0. In particular, we have that P*(M/P™M) = 0 for
some m, and hence the bounded module M/P™M contains a direct
summand of the form R/P",n =k. Therefore, M/P"M resp. M
generates A. This completes the proof of the equivalences.

Now suppose a torsion module M to be a coinjector. Lemma
1.3 justifies the restriction M = M,. In order to verify (5), let M =
M, P M, with 0 = M, divisible and M, reduced, n e N arbitrary. For
r€ P", consider the multiplication I,: M — M with . From 1.3 ker ({,)
is generated by M and thus by M, because Hom (M, ker (I,)) = 0.
Moreover, ker (I,) contains a submodule R/P*, since M, does, which
forces P"M, + 0. This shows the unboundedness of M,.

REMARKS. 1. The last statement is false for nontorsion modules:
Consider the Z-module Q.

2. A different reading of (4) < (5) for the special case R =2
and M a torsion module is [8, th 2.5].

3. Our proof actually establishes the implication (4) = (2) for
all rings R.

THEOREM 2.2. Let R=Z.



ENDOMORPHISM RINGS OF SELF-GENERATORS 593

1. Direct sums of Prifer groups Z(p~), p prime, are not coin-
jectors.

2. Direct sums of cyclic groups, especially all finitely generated
or bounded groups, are perfect coinjectors.

3. A direct product of cyclic groups 1is a perfect coinjector iff
it is either bounded or one of the cyclic factors is infinite.

Proof. 1., 2. are clear, 3. is left as an exercise.

Let R be arbitrary. Example 1.2 shows that, in general, neither
(2) implies (1) nor (4) implies (3). In the following we point out
classes of modules M, for which the equivalence of the first four
statements of 2.1 is maintained.

For an ideal I of R, Sandomierski calls an R-module A I-accessible
in case AI = A. With this definition, M is T-accessible (“trace-
accessible”) if, for instance, M is a projective module, a generator
or an idempotent ideal (for further examples see §3).

LemMA 2.3. () MT =M iff AM = M iff T,(A) = AT, for ali
Aec Dy

(o) If MT = M, then T and 4 are idempotent (i.e. T* = T, 4* = 4),
and 4 is the trace of the left S-module M (i.e. 4 = Z{Im(g): g€
Hom, (M, S)}).

Proof. In view of m(f, n) = [m, fln, a) and the first part of b)
are straightforward. 4c X{Im (9): g € Homg (M, S)} is always true,
because [—, f]e Homg (M, S) for f € M*. The other inclusion follows
from 4M = M.

THEOREM 2.4. For a module M = MT or a quasi-projective
module M (see [2]), the following are equivalent:

(1) M is a perfect coinjector,

(2) F:IMp— Mg preserves essential extensions,

(3) M is a X-self-generator,

(4) M is a self-generator,

(5) If A’ is a simple essential submodule of an R-module A,
then Hom (M, A’) = 0 vmplies Hom (M, A) = 0,

In the case M = MT, we may add:

(6) Tx is a self-generator,

(7) R-submodules of T-accessible modules are T-accessible,

(8) R(R/T) is flat.

REMARKS. 1. For M projective, (7) = (8) was proved inde-
pendently in [10, Th. 2.1].
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2. The proof of (5)= (3) was inspired by [1, Th.2.4] which is
contained in the above as a special case of (1) = (2) = (8). (Note that
M@; — =Homj, (M*, —), and pM* is finitely generated projective
in case Mj is finitely generated projective.)

8. M quasi-projective and M = MT are special cases of the
following situation: There exists an M-projective module P such
that M = X{Im (f): f € S, f can be factored through P}. Modules of
this type (as well as Y-self-generator) are easily checked to satisfy
the following two conditions, for all submodules 4, B of M", nc N:

(a) Tw(A + B) = TM(A) + TM(B)'

(b) Ac Band Ty(B)c T,(A) implies T,(B/A) = 0. More general
than 2.4, we prove the equivalence of (1)-(5) for all modules M with
conditions (a), (b). (Note that they do not, in general, hold for abelian
groups.)

4. For M, = Q, the statements (6)-(8) are true, whereas (1)-(5)
are not.

Proof of 2.4. Without restrictions on M, we have established
(8)= (1) in 1.5 and (4) = (2) in the proof of 2.1. Also for all M the
implications (1) = (2) = (5) are trivially true. We show (5)= (3):
Assume 2 ¢ T, (xR) for some v M", ne N. Choose ACM" maximal
with respect to T,(xR)C A,x¢ A. Then A + xR/A is simple and
essential in M"/A. From T,(A + zR) = T,(A) + Ty(zR)C T\(A) we
conclude T, (4 + 2R/A) = 0 (compare Remark 3), hence 0 = T,(M"/A) =
M"/A by (5). This contradicts M"/A + 0.

Now specialize to M = MT. In view of 1.4 and T\W(A) = AT,
for all Ae M, conditions (3) and (7) are identical. By replacing M
by T = T? in (1) = (2), we obtain (6) = (7). (6) = (8) is easily derived
from [3, p. 33].

M being a perfect coinjector as described in 2.1 and 2.4, Hom (M, —)
also reflects injectivity and injective envelopes in the sense of 1.5.
For example, if M = MT is a self-generator, then S is right injective
iff M, is quasi-injective iff M, is T-injective.

3. Examples of JI-self-generators M = MT. Trivially, every
generator is a trace-accessible Y-self-generator. Examples that arise
for special classes of rings are listed in.

THEOREM 3.1. Let M = MT (in particular true for M, projec-
tive). Then My, Ty and T are trace-accessible X-self-generators if
either.

1. R is regular,

2. R is commutative, and M is projective or finitely generated.
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Proof. 1. is clear (2.4). 2. If M is projective, then M is a
self-generator from [6]. The assertion follows from 2.4. Let M be
finitely generated. In order to verify (5) of 2.4, we regard an essential
extension of R-modules A’ A and 0 = f € Hom, (M, A). Since f(M)
is finitely generated, there exists re R with 0= f(M)rc A’. This
means 0 == [.f € Hom, (M, A’), where I, € S denotes the multiplication
with ».

Not every T-accessible module M over a commutative ring is a
self-generator. For example, let R be the ring of all Cauchy-sequences
in @ with componentwise multiplication and M the ideal of zero
sequences. We observe M = T = T? whereas M is not a self-
generator: Pick ¢ = (a;)€ T with @, # 0, for infinitely many <€ N.
Clearly a ¢ aT, which means a ¢ T,(aR). For R arbitrary, not even

the finitely generated and projective modules are self-generators.

Choose R = (Ig [Ig)' where K is a field, M = (Ig {f),A = <8 IO{>CM

and check Homj (M, A)=0. (Consequently M is not a perfect coinjector.
However, M is a coinjector, since S is a field; compare [1]).

On the other hand, looking at M as a left S-module, we make
the following simple observation that will turn out to be very useful
in §5.

THEOREM 3.2. For M a projective R-module, the left S-modules
M and 4 are trace-accessible X-self-generators.

Proof. The trace of (M coincides with 4, and we have 4M = M
(2.8). In view of 2.4 it is enough to show me 4m, for all me M,
which is an immediate consequence of the dual basis lemma.

Examples of modules having the considered properties on both
sides simultaneously are provided by the Zelmanowitz regular modules
[18] (i.e. for every m e M, there is an f € M* satisfying m = m(f, m)).
Part 1 of the following theorem contains [10, Cor. 2.2].

THEOREM 3.3. If M is (Zelmanowitz) regular, then the following
modules are trace-accessible X-self-generators:

1. the R-modules My, T4,

2. the S-modules M, 4.

Proof. For me M, m = m(f, m) is a stronger version of me mT,
which means M = MT is a self-generator. So 1 clearly follows from
2.4. Moreover, m(f, m) = [m, f]m, where [—, f]1e Homg (M, S), shows
that ¢M is again regular, and the above argument may be reflected
to the other side.
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For examples of (Zelmanowitz) regular modules, especially non-
projective ones, see [18].

4. Submodules of A and Homg (M, A)s. The following remarks
on modules M = MT form the basis for more specialized results for
(finitely generated) projective modules on one hand and (7-accessible
self-) generators on the other. Lemma 4.1 and the symmetry of 4.2
with respect to T and 4 show the condition M = MT to be natural.

LeEMMA 4.1. M = MT 1is true iff for every Aec M, and every
S-submodule B of Homy(M, A), the S-submodule B4 of B is essential.

Proof. Let M = MT, A, B as above, and 0 = f € B. Pick me M
with f(m) # 0. By hypothesis, m = Im,(f;, »;), Wwhich means
0 = f(m) = 2 f(mf, n)) = Zflm, f]n;, whence 0= f[m, f]e B4
for some <.

Conversely, we conclude Homg (M, M/MT) =0 from Homg, (M,
M/MT)4 = 0.

NotaTiON. For Ae M, the lattice of R-submodules resp. T-
accessible R-submodules of A will be denoted by Z/z(4) resp. Z(4).
For Be My, Z/(B) and Z/,(B) are defined similarly.

THEOREM 4.2. Let M = MT.

1. For every Ac My, the following are imverse lattice tsomor-
phisms:

Vi 7 (A) 2 X —— Hom (M, X)4 e Z/(Hom (M, A))
p: Z(Hom (M, A)) 2 Y —— Z{Im (f): f e Y}e Z+(A)

2. Statements (1)-(8) resp. (1')-(8') are equivalent:
(1) Zo(4) = Zo(AT), (1) Z«B)= #s(Bd),

for all Ae My, for all Be M

(2) Ti (or M) is a (2) 4 is a self-generator
self-generator

(3) w(B/T) is flat (3) s(S/4) is fat

Proof. 2. follows immediately from 2.4.

1. In view of T® = T and 4*> = 4, the maps v and @ are well-
defined lattice homomorphisms. Moreover, 4M = M implies Im (f) =
3{Im (9): ge f4}, for all feHomy (M, A). For Xe Z(A), py(X) =
S{Im (f): f € Hom (M, X)4} = ¥{Im (f): f € Hom (M, X)} = XT = X.
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Now let Ye Z,(Hom (M, A)). We claim Homj (M, X)4 =Y, where
X =2{Im (f): fe Y}. One inclusion is obvious. Conversely, let ke
Homj (M, X), [m, gle 4. From h(m)= 3f,(m,), fie€Y, m,c M, we
conclude h[m, g] = Zfi[m,;, gle Y4 =Y, since h[m, gle = h(m(g, ®)) =
(m)(g, ©) = Zfi(m)(g, ®) = Zfi(mg, x)) = Zf[m;, gz, for all xe M.

REMARKS AND COROLLARIES 4.3.

1. The lattice isomorphism in 4.2 may also be deduced from
[11, Prop. 6]. (This is more complicated but reveals a more general
aspect.) For 4 = S it coincides with the one established by Sand-
omierski [15]. The symmetric extremes T = R and 4 = S even have
a converse in the following sense:

T =R iff Zx(A)> X+ Hom (M, X)4e Z ,(Hom (M, A))) is an iso-
morphism for all A IM,.

4 = Sifft Z1(A)> X+— Hom (M, X) € Zs(Hom (M, A)) is an isomor-
phism for all Ae M.

2. Let M = MT. We illustrate with a few examples, how chain
conditions of Ap and Hom (M, A)s are related (for 4 = S, see [15]):

(a) AT is finitely generated iff Hom (M, A)4sis finitely generated.
In particular, Mj is finitely generated iff 44 is finitely generated.

(b) If Mj is a self-generator and Hom (M, A)s is artinian (noe-
therian), then AT, is artinian (noetherian). If 4, is a self-generator
and A is artinian (noetherian), then Hom (M, A)4; is artinian (noe-
therian). (An interesting case being A = AT = M.)

Proof. (a) Let AT, be finitely generated, (B,);.; a chain of
proper S-submodules of Hom (M, A)4 and consider the chain (B;4);;.
According to 4.2, there is a chain (X,);.; of proper R-submodules of
AT with (X;) = B4. U X, & AT (by hypotheses) and {J X, € Z1(4)
yields U (B:4) = Uv(X;) =+ (U X,;) & Hom (M, A)4, hence U B, &
Hom (M, A)4. The converse is' proved similarly,

(b) is obvious.

3. Examples of modules M such that 45 is a selfgenerator
(different from 4 = S) are easily deduced from [16, Th. 3.5]. In fact,
the following are equivalent:

(1) R is right noetherian,

(2) 45 is a (2-)self-generator, for all projective modules Mg,

(8) M: = M+*4yis a (¥-)self-generator, for all projective modules
M.

For R commutative noetherian, combine with 3.1 and 3.2: If
M, is projective, then all of the following modules are X-self-genera-
tors: My, Tw, M%, <M, M%, 4, 4s. Consequently, Z/x(My) = Z/s(4s),
Zw(Tr) = Zs(M3).
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Sandmierski [15] called an R-module X T-faithful iff 27 == 0,
for all 0 = xe X, and proved that, in case M, is finitely generated
projective, X T-faithful, then finite Goldie dimension of X is inherited
by Hom (M, X);. The latter remains true for reduced hypothesis on
M and is even reversible.

COROLLARY 4.4. Let M = MT, ne N.

1. If X is T-faithful, then X, has finite Goldie dimension n
if Hom (M, X)s has finite Goldie dimension n.

2. If M is a self-generator, then, for all X e M, XTy has finite
Goldie dimension n iff the same is true for Hom (M, X)s.

Proof. 1. Let @;.; X, be a direct sum of non-trivial R-submodules
X, of X. We conclude X;T =+ 0 by hypothesis and apply : v(ZX;T) =
Iy(X;T), where 0= (X;T)sC Hom (M, X)s. The sumIy(X,T) is
direct: X, TN x; X;T =0 implies 0 = (X, TN Duws X;T)T) =
(WX T) N Diwes ¥(X;T))4, whenece (X, T) N s ¥(X;T) = 0 from 4.1,

The same method yields the converse.

2. If M is a self-generator, then XT is T-faithful for all X
(4.2).

The information about the socle of Homy (M, A)s [So(Hom (M, 4))],
given in the next theorem, characterizes self-generators. In the case
of vector spaces, we rediscover standard results (4 being the ideal
of M-endomorphisms of finite rank). For non-trivial examples see
§3. Even the computation of So (Ss) for M a generator (e.g. R = Z,
M = Z D Z(p~)) may be considerably simplified by 4.5. “C’”’ means
“essential R-(resp. S-) submodule”.

THEOREM 4.5. Let M = MT, Ac My, X an R-submodule of AT,
B an S-submodule of Hom (M, A). Then the following are equivalent
(condition (2)-(4) are understood to hold for all A, X, B).

(1) M; is a self-generator,

(2) Homg (M, X)4s is simple off X5 is simple,

(2") Bdg is simple off Z{Im (f): f € B}y s simple,

(8) Hom (M, X)c'Hom (M, A) wff X' AT,

(8) BC'Hom (M, A) iff X{Im (f): fe By’ AT,

(4) SoHom (M, 4)) = Hom (M, So (4))4, and one of the follow-
mg 1s true:

(a) So (Hom (M, A)) ' Hom (M, A) iff So(AT)c' AT,

(b) So(Hom (M, A)) is simple iff So(AT) is simple,

(¢) So(Hom (M, A)) =0 iff So(AT) = 0.

Moreover, if (1) holds, then S is semisimple artinian iff M, is
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finitely generated, projective and semisimple (this generalizes [18,
Th. 4.8.]).

Proof. (1)=(2): Let X, be simple. From X = XT (4.2) we
deduce Z;(X) = {0, X}, which means ZZ,(Hom (M, X)4) = {0, Hom (M,
X)4}. Moreover, for any S-submodule B = 0 of Hom (M, A)4, we
obtain B4 = 0 (4.1); that is B = B4 = Hom (M, X)4. Analogously
check the other implication of (2) with the aid of 4.2.

(2) = (1): We verify condition (5) of 2.4. Let A’ be a simple
essential R-submodule of 4 and Hom (M, A) + 0, i.e. AT # 0. Hence
A'c AT. By (2), Hom (M, A)4 is a simple S-module; in particular
Hom (M, A’) == 0.

(1) = (4): Let (B,);c; be the simple S-submodules of Hom (M, A4).
We observe B,4 = B; and choose X, e Zr(4) with +(X,) = B, ac-
cording to 4.2. By (1)=(2) the X, are the simple R-submodules of AT,
and we obtain: So (Hom (M, A4)) = Zn‘el B, = >%ie; "/’(Xa.) = "f’f(Zz X;) =
(S0 (AT)) = ¥(So (4)-T) = Hom (M, So (4))4.

(2), (b), (¢) follow immediately from 4.2.

@=@Q): A4, 4" as in “@2)=(1)". From A = So(4) =So(AT)
we deduce So (Hom (M, A)) = Hom (M, A’)4. So(AT) being a simple,
essential submodule of AT, we conclude So (Hom (M, A)) # 0 from
each of (a), (b), (c). Consequently, Hom (M, A’) = 0.

The remaining implications are proved along the same pattern.
Moreover, we note: S is semisimple artinian iff S = So (S) = (Hom (#,
So (M)))4 iff S = 4 and So (M) = M.

5. Perfect injectors (compare [1]). In [1, Th. 2.4] Anderson
established the equivalence of the following statements for a finitely
generated projective module Mj:

(1) M@ —: M — (I preserves injective envelopes (M is a
“perfect injector”),

(ii) M@y —: zP — ;I preserves essential extensions,

(iii) (R/T) is flat,

From 2.4 we may add one more equivalent condition:

(iv) T is a self-generator.

As we will see, the background of this result is a category
equivalence between the full subcategories of ;% resp. (I consisting
of all T- resp. 4-accessible objects (these will be denoted by ,.# resp.
+#). This observation will enable us to discuss the validity of either
(1) or (i) (which are not necessarily equivalent when “finitely gen-
erated” is dropped) and other properties of the functor M ®; —.

Throughout this section we let M = MT; consequently, M@ A c
14, for all Ac M, and M@,TA=MQ@:A in case M, is flat. The
following theorem contains a variant of the Morita theorems.
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THEOREM 5.1. The following statements are equivalent:

(1) #Z and , # are closed with respect to R- resp. S-sub-
modules, and M @Qr— induces an equivalence ;.4 — ,# with inverse
M* @5 — (especially My is flat),

(2) T ond 4 are self-generators,

(8) (R/T)r and (S/4)s are flat.

Before proving 5.1, we notice that, for a projective or a regular
module My, the left S-module ;4 is always a self-generator (3.2 and
3.3), hence in both of these cases (1) is true iff ;T is a self-generator.

The following technical device contains [16, p. 358, cor.].

LemMmA 5.2. 1. If ;T (or Ty) is a self-gemerator, then T =
M* Qs M as R-bimodules,

2. If ¢4 (or 45) is a self-generator, them 4 = M @  M* as S-
bimodules.

Proof. 1. Let T be a self-generator. We show that
G): M*@s M— T is an isomorphism. First, since TM* = M*4 and
AM = M, we have TM*Q@s M= M*QsMec , #. Since . # 1is
closed with respect to R-submodules (2.4), it is sufficient to show
T-ke(,) =0. Let 3(f;,, m;) =0 and (g, n)e T; then (g, n)2f, @ m, =
2(gln, D @m; = 29 & ([n, film:) = g ®nI(f,, m;) = 0. The rest fol-
lows by symmetry.

Proof of 5.1. All of 5.1 is covered by 2.4 except the fact that
(2) forces the restricted functors M @y —: ,.# — ,.# and M* Qs —:
w2 — p A to be inverse equivalences. Since the inclusions T, =—— R,
and 4;=— S are pure by (2), we know TA = T@®:A4 and 4B =
4@ B, for all Ae IR, Be ;M. Now let Ae, # Be, # By com-
bining the above with 5.2, we obtain:

A=TA=TQA=M"Q@MRA
R S R

B=IAB=AQB=MQM*®B.
S R N

From properties of the restriced functor M@, —: 7. #Z — . #,
we easily derive information about the functor M@, —: I — (M.

COROLLARY 5.8. Ome of the conditions of 5.1 being satisfied (e.g
My, projective and (R/T); flat), the statements of each of the following
pairs are equivalent, for all A, Be M, f € Hom, (4, B):

1. ) MRS MQzA— MQ@yB is an (essential) monomorphism
in ¢IM.
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(ii) f|zs: TA— TB is an (essential) momomorphism in IR
(In case f is an essential monomorphism, (i) is true.)
2. (i) sM @A is d-injective (quasi-injective).
(ii) R4 is T-imjective (quasi-injective).
3. ) MRS M@rA— M@, B is a projective cover in M.
(ii) flra: TA— TB 1is a projective cover in I (In contrast
to injective envelopes, T'A — TB is not necessarily a projective cover
in ,.# if A— B is a projective cover in ;IN.)
4. (i) M@®: A is artinian (noetherian, finitely generated) in ¢IN.
(i) TA is artinian (noetherian, finitely generated) in I%.

5.4. Connection with Anderson’s results. If (4 is a self-generator,
as is the case when M; is projective or regular, then the statements
(ii), (iii), (iv) of the beginning of this section are equivalent (for (ii) =
(iii) Anderson’s proof may be adopted). However, (ii) does not imply
(i): Let M be a vector-space over a field R, dim M, = <, then (M =
sM®: R is not injective (see [14]).

For the special case 4 = S, the equivalence (ii) < (i) follows from
5.3.

ExampLE 5.5. The following classes of modules M, have the
properties listed in 5.1 and 5.8, e.g. M @ — preserves essential
extensions:

1. All projective modules over a commutative ring R. In par-
ticular, all finitely generated projective modules over a commutative
ring are perfect injectors in the sense of [1].

2. The maximal regular ideal [7] of an arbitrary ring R, con-
sidered as a right (resp. left) R-module.

Proof. 1. According to 8.1 T and 4 are self-generators.

2. The maximal regular ideal is Zelmanowitz regular as a right
and left R-module. Hence, all the modules 7T, T, s4, 45 are self-
generators by 3.3.
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