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RELATIONS AMONG GENERALIZED
MATRIX FUNCTIONS

RUSSELL MERRIS

Let G be a permutation group of degree m. Let Λ be an
irreducible, complex character of G. If A = (atj) is an m by m
matrix, the generalized matrix function of A corresponding to G
and Λ is defined by

We obtain relations among generalized matrix functions arising
from G and those arising from a subgroup H of G. The
methods yield some information about the corresponding sym-
metry classes of tensors.

Generalized matrix functions were invented by I. Schur to
improve E. Fischer's improvement of the Hadamard determinant
theorem. Specifically, Schur proved that

for all positive semidefinite Hermitian matrices A (write A S 0).

1. The main results. In what has become a classic paper on
the subject, S. G. Williamson obtained the following result in [14]: If His
a subgroup of G and if A is a character of G of degree 1, then

(1) d?(A)g[G:H]df(A)

for all A ^ 0. In [6], the present author improved Williamson's result as
follows: Let H be a subgroup of G. Let A be an irreducible character of
G. Suppose the restriction of A to H is λ (id)χ/χ(id) for some irreducible
character χ of H (i.e., suppose A |H is a multiple of χ). Then

(2) λ(id)dUA) ^ [G: H)χ{id)d»{A),

for every A §= 0.
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The inequality (2) has further been improved [7, Corollary 2]: Let H
be a subgroup of G. Let χ be an irreducible character ofH. If A ^ 0 , then

(3) Στ,(id)d?(A) ^ [G: H]χ{id)dH

x(A\

where the summation is over those irreducible characters η of G whose
restriction to H is a multiple of χ. Our first result is an upper bound for
[G: H]χ(id)d?(A) to go along with (3).

THEOREM 1. Let H be a subgroup of G. Let χ be an irreducible
character of H. If A ^ 0, then

(4) [G: H]χ(id)dH

χ{A) g Xτ,(id)d?(A),

where the summation is over those irreducible characters η of G whose
restriction to H contains χ as a component. Moreover, equality holds for all
A ^ 0, if and only ifη \H is a multiple ofχ whenever χ is a component of the
restriction of η to H (i.e., if and only if (17, χ)H^0 implies η \H =
η(id)χ/χ(id)).

Observe that the case of equality in (4) is sufficient for equality to
hold in (3). At the end of this section, we will show that it is also
necessary, i.e., the case of equality for (3) is the same as that for (4). In
[9, Theorem 8] a class of examples is given in which equality holds in

It is worth mentioning that the situation is considerably simpler if H
is assumed to be normal in G. In that case, if A | H is a multiple of χ> then
X is invariant under conjugation by elements of G. By Clifford's
theorems [2, p. 53] if x is invariant under conjugation by G and if
X E 17 \H, then 17 \H = η(id)χ/χ(id). Therefore, if H Δ G then either the
summation on the left of (3) is vacuous, or equality holds in (3)-(4).
Explicitly, if HAG and if x is an irreducible character of H invariant
under conjugation by G, then

where the summation is over those irreducible characters η of G whose
restriction to H contains x as a component. This seems a better result
than [7, Corollary 1].

Our second result is an improvement of (2) in a direction different
from (3).
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T H E O R E M 2. Let H be a subgroup of G. Let A be an irreducible

character of G. Suppose A | H = axχλ + 4- arχr, where au- ,ar are

positive integers and χu - , χr are the distinct irreducible components of the

restriction of A to H. Then

(5)

for all A ^ 0. Equality holds for all A ^ 0, if and only if none of the χt

appears in the restriction to H of an irreducible character of G different from
A (i.e., if and only if (η, χi)H = 0, 1 ̂  / ̂  r, for evey irreducible character
17 of G different from A).

Of course, the case r = 1 is (2).

Before getting involved in the proofs, we illustrate the results with
some examples.

EXAMPLE 1. Let G = S3, the full symmetric group of degree 3. Let
A be the irreducible character of G of degree 2. (Then λ(cr) is one less
than the number of fixed points of σ.) Let H = A3, the alternating
group. Then A \H = χλ + χ2, where *i(123) = exp(2τri/3) = ω, #2(123) =
ω\

Let

2
- 1
- 1

- 1
2

- 1

1

- 1
2

(6) M =

Then d ? ( M ) = 1 8 , and d £ ( M ) = rf£(M) = 9. Plugging into (5), we
obtain 2(18)^2(9 + 9), equality. Indeed, the other irreducible charac-
ters of S3 are the identically 1 character, and the alternating character
e. The restriction of either of these to A3 is the identically 1 character
which, of course, contains neither χλ nor χ2. Of course, (2) is not
applicable at all, and (3) merely reduces to the statement that d"(M) and
d"^(M) are nonnegative. Equation (4) becomes

[G: H]Xl(id)dZ(M) g λ(id)d?(M),

which is precisely the reverse of what one might have expected given only
(2).

If we were to take the same G and H but begin with x identically
one on H, then (3)-(4) become
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(7) 2df(A) = per(A) + det(A)

for all A ^ O . In fact, of course, (7) holds for all 3 by 3 matrices
A. (Indeed, it can be shown, using Lemma 3(a) below, that if equality
holds in (3)-(4) for all A g θ , it holds for all m -square matrices A.)

EXAMPLE 2. Let G = S3. Let λ be the irreducible character of G
of degree 2. Let H = {id, (13)}. Then λ |H = 1 + e. If we use the matrix M
given in (6), we obtain d?(M) = 18, d?(M) = 10, and d?(M) = 6. Equa-
tion (5) yields 2(18) ̂  3(10 + 6). Equation (4) produces

(8) 3(10) ^2(18) + per (M)

(9) 3(6) ^

EXAMPLE 3. Let G = S3. Let λ be the irreducible character of G
of degree 2. Let H - {id}. Then A |H = 1 + 1, i.e., the restriction of A
to H is a multiple of the identically 1 character. In this case, (5)
collapses to (2), and (3)-(4) become equality [8, Corollary 1].

We end this section by determining the case of equality in (3). As
we have observed, if η \H is a multiple of χ whenever χ is a component of
η \H then equality holds in (4), but in this case the right hand side of (4) is
the left hand side of (3). Suppose, then, that equality holds in (3) for all
A ^ 0 . Let χ* be the character of G induced by χ [2]. Let N be the
set of irreducible characters η of G whose restriction to if is a multiple
of χ. Comparing degrees, we have

with equality if and only if (A, ̂ * ) G = 0 for those irreducible characters A
of G which do not belong to N. But, by the Frobenius Reciprocity
Theorem, (A,χ*)G = (A,χ)H for every irreducible character A of G. It
suffices, therefore, to prove that equality holds in (10). Now, we know
that χ*(id) = [G:H]χ(id), and, of course, (η,χ)H = η(id)/χ(id) for
η E TV. Plugging into (10) we have

Σ [η(id)/χ(id)]η(id) g [G: H]χ{id\

and we are attempting to show that equality holds. Letting A = the
identity in (3), and assuming equality, we obtain

Σ η(id)2=[G:H]χ(id)\
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2. Symmetry classes of tensors. Let V be a complex
inner product space of dimension n. Let (g)m V denote the rath tensor
power of V and write v1 (g) 0 vm for the tensor product of υu , vm E
V. The inner product on V induces an inner product on (g)m V which is
determined by the formula

m

(ϋi(g) ® ϋm, W ! 0 ® Wm) = Π (i;,, H>,).
ί = l

For σ E Sm, the symmetric group, let P(σ~*) be the linear operator
on (g)w V whose action is determined by

P{σ~λ)υx (g) <g) υm = ϋ σ ( 1 ) (g) - (g) υσ
(m),

for all t?i, , υw E V. It follows that σ —> P ( σ ) is a representation of Sm.
The adjoint, P ( σ ) * , of P ( σ ) with respect to the induced inner

product is easily seen to be P(σ~ι) = P ( σ ) " 1 .
Let G be a subgroup of Sm. Let ^ ( G ) denote the set of irreducible

(complex) characters of G. If A EJ>(G), define

λ(σ-)P(σ).

It is known ([13], [11] or [3]) that {Γ(G, A): A E #(G)} is a set of pairwise
annihilating (with respect to the induced inner product they are her-
mitian) idempotents which sum to 1®, the identity operator on (g)m V.

LEMMA 1. Let H be a subgroup of G. Let A EίJ>(G) and χ E
Then T(H,χ) and T(G,A) commute.

Proof.

λ(ιd)χ(ιd) AJ

= Σ Σ χ(rr)λ(σ)P(τrσ)
π<EH crGG

= Σ Σ χ(τr)λ(^ίσ)P(σ)
σEG πEH

Σ V \ / -1\ / \D/ \

= Σ Σ A(ff)^(T)p(ffir).
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LEMMA 2. Let H be a subgroup of G. Let λ EJ>(G) and χ
. If m^n, then T(H, χ)T(G,λ) is zero if and only if χ£λ \H.

Proof Let σ —> L{σ) = (^;(σ)) be an irreducible representation of
G which affords λ. Assume the restriction of L to H is fully
reduced. Define

T, = $g\ Σ

Of course, Γ(G, λ) = Σ Tt. Observe

Σ χ
G

λ(id) v

By the orthogonality relations ([10, §9] or [2, Ch. 1, §1]), the term in
curly brackets is zero unless the component of L |H which contains
position /, i affords χ, in which case the bracketed term is διk. In
particular, Γ(//,χ)7:=0 for all i and hence Γ(H,^)Γ(G,λ) = 0, if
(χ, λ)H = 0. If (^ λ)H7^ 0, then since L |H is fully reduced, it contains a
component which affords χ. Suppose such a component lies in rows and
columns t + 1, t + 2, , t + *(/d). Then Γ(H, ̂ )Γf+/ = Tί+;, 1 g / g ^ ( ^ )

It follows from the orthogonality relations that the 7] are annihilat-
ing idempotents, l^i^λ(id). In particular, Γ(G,λ)Γ, = ΊΠ . Could

/ g λ(id). But then Γf+/ =0, 1 S / ^ ΛΌ'^) W e proceed to show that
this is impossible.

Since T{ is idempotent, its rank is equal to its trace;

trace T, =

where p(σ) is the character of the representation σ —> F(σ). Since p is
the restriction to G of a character of Sm, it is real. Again employing the
orthogonality relations, the trace of Γ, becomes (λ, ρ)G. In particular,
each of the 7] has equal rank. A similar calculation shows that rank
Γ(G,λ) = λ(/d)(λ,p)G. But since m g n, it is known ([13], [11], or [3])
that f ( G , λ ) ^ 0 . Therefore, (λ,p) G ^0 and Γ,^0, lS/Sλ(/d) .

As we observed above,

l β = Σ Γ(H,ί)= Σ
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Therefore, if χ<Ξ${H),

T(H,χ)=T(H,χ)l9

(11) =T(H,χ) Σ ΆG,ξ)
(G)

where ΘX = HT{G,ξ)* the sum being over those ξE.J'(G) such that

Similarly, if λ G ${G) and λ |H = axχx + • + arχr, then

T ( G , λ ) = Γ ( G , λ ) l β

( m =T(G,λ) Σ T(H,ζ)

= T(G,λ)θ2=θ2T(G,λ),

where

θ2 = ΣT(H,χ,).

LEMMA 3. (a) The operator θλ-T{H,χ) is an orthogonal
projection. If n g m, 0, = T(H, χ) if and only if ξ \H is a multiple of χ for
all those ξ<ΞJ>(G) which satisfy (χ,ξ)H/0. (b) The operator θ2-
T(G, λ) is an orthogonal projection. If n ̂  m, θ2— T(G, λ) if and only if
(χ» £)H = 0, l g i S r , for every ξ E $(G) different from λ.

Proof. Each of 0,, 02 is a sum of pairwise annihilating orthogonal
projections and is, therefore, an orthogonal projection. That 0, -
T(H,χ) and θ2- Γ(G,λ) are orthogonal projections now follows from
(11) and (12), respectively [4, pp. 148-149].

If T(H9χ)=θu then 0 = T(H, ζ)T{H,χ) = T(H,ζ)θu for every
ζ G ̂ (H) different from χ. But, by Lemma 1, T(H, ζ)θ{ = 0 if and only
if T(H9ζ)T(G,ξ) = 0 for every ξeβ(G) such that fof^O. By
Lemma 2, T(H, f )Γ(G, ξ) = 0 if and only if f £ f |H. Thus, none of the ξ
involved in 0, contains, upon restriction to if, an irreducible character ζ
different from χ, i.e., for every ξ involved in θu ξ\H = ζ(id)χ/χ(id).

If Γ(G,λ)=0 2 , let ξGJ(G) be different from A. Then 0 =
T(G,ξ)T{G,λ)=T(G,ξ)θ2. Again by Lemma 1, it follows that
T(G, ξ)T(H,χι) = 0, l ^ / S r . Appealing to Lemma 2, we find that

We require one more result before we can prove Theorems 1 and 2.
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LEMMA 4. Suppose A - (α ί ; )^0 is m-square. Take n^m. Let
vu , vm E V be such that ai} - (vn v,). Then

Hid)

o(G)
dG

k{A) = (T(G, λ )υi <g> <g> υm, vx <g> <g> υm).

This is a standard result the proof of which is a straightforward
computation relying only on the definitions.

Proof of Theorem 1. Assume aη — (v,, t>, ). From Lemma 3,
θ, - Γ(H, Λ') § 0. Therefore,

(13) ( [ β i - Γ ί H , ^ ) ] ! ; , ® - - - ® ^ , O,<8) (8>IJ 1 1 1 )SO,

(Λ) s (χ{id)lo{H))d»(A)

or

by Lemma 4, where the summation is over those ξ E &(G) such that
(χ, ξ)H^0. If equality holds, for all A ^ 0 , then equality holds in (13)
for all Vι 0 * * * (8) ̂  B u t these tensors span (g)m V. It follows (since
0, - Γ(/f, x) ^ 0) that θ, = T(H,χ). The case of equality in Theorem 1
then follows from the case of equality in Lemma 3a.

The proof of Theorem 2 is analogous.

Our work has also led us to some results involving symmetry classes
of tensors.

DEFINITION. Let G be a subgroup of 5m. Let A EJ>(G). The
range, VK(G) of T(G,λ) is called the symmetry class of tensors arising
from G and A.

THEOREM 3. Let H be a subgroup of G. Let χ E ^(H). Then

Vx(H)CXVξ(G),

where the (direct) sum is over those ξ E #(G) such that x E ξ\H. If in

addition m ^ n, then equality holds if and only if ξ\H is a multiple of x for

all ξEJ(G) such that χEξ\H.

Proof This is an immediate consequence of Lemma 3(a). (That the
sum is direct follows from the Freese-Pierce-Wade result.)
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THEOREM 4. Let H be a subgroup of G. Let λ E $(G). Suppose
A \H - diXi^-' ^ arXr, where au , ar are nonnegative integers and
χu -,Xref(H). Then

VX(H\

where the sum is direct. If m ^ n, then equality holds if and only if
(Xh ξ)n = 0, 1 = i = h for every £ E J?(G) different from A.

Proof. This follows from Lemma 3(b).
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