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MOORE-POSTNIKOV TOWERS FOR FIBRATIONS
IN WHICH TΓ f̂iber) IS NON-ABELIAN

R. O. HILL, JR.

When Moore-Postnikov towers for fibrations p: E->X
were first developed, Moore constructed the tower for arbitrary
maps p and, when all action on πn (fiber) were trivial, showed
that each stage was induced from the loop-path fibration over a
K(π,n) and classified by the corresponding k-invariant.
Barratt-Gugenheim-Moore showed that without restriction
each stage could be induced from suitable universal fibrations.
Subsequent authors, including McClendon, Nussbaum,
Robinson and Siegal, based on the above and work by Olum,
described the classifying map by k -invariant and local coeffic-
ients when π,(X) acts and ττi(fiber) is Abelian, and Bousfield and
Kan described the case when TT, acts nilpotently. This note gives
a method for handling fibrations requiring only that all spaces be
path-connected.

In the previous cases, it is assumed that X is path-connected, F is
(n - l)-connected, n ^ 1, and that we can compute what a certain class in
Hn(F) transgresses to in Hn+ι(X). In particular, local coefficients may
be necessary, and hence it is assumed that we know the action of πi(X),
which is completely determined by the action of ττi(JB). If n = 1 and
τri(F) is non-Abelian, a direct generalization would require computing
with non-Abelian coefficients. We avoid this by showing it is only
necessary to know the action of TΓI(JE) on πi(F) in order to build the
second stage of a tower which naturally replaces p with a map whose
fiber is the universal cover of F. The remaining stages can then be
constructed as in the classical case.

The paper is organized as follows: some basic facts are recalled in §2,
the construction is given in §3 with the proof of one basic lemma put off
until §5, and in §4 we give an example.

2. We recall a few basic facts from algebra and topology. Details
for the following may be found in [3], [16], [6], or [8].

For G a group, let Aut G, In G, Out G = Aut G/In G be the group
of automorphisms, innerautomorphisms, outerautomorphisms, respec-
tively.

Let F-^E-^B be a fibration (all spaces are path-connected).
Suppose, at first, that F is simply-connected (so p * : TΓI(JE) =
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Make p into an inclusion. Then πλ{E) acts on the long exact homotopy
sequence of the pair (B,E). Since τrn_i(F) = πn(B,E), πx(E) acts on
πn(F), all n. This, in turn induces an action of πx(B) on ττn(F), all n
(and is the same as that induced by "dragging" F around loops in
B). Suppose, now, that 7ΓX(F)^ 1. Then it also acts on τrn(F), all n,
and this is the same action as induced by /* and the above action of ττx(E)
(see [16]). Thus, πx(B) only acts now on τrn(F) mod the action of ττi(F)
on πn(F). Letting n = ί and recalling that πx acts on itself by in-
nerautomorphisms, p thus induces a homomorphism φ:πx(E)->
Aut τri(F) and which, in turn, induces a ψ: τri(2?)—»Out ττi(F), which we
will call a semi-action of πx(B) on πx(F).

Let G be a non-Abelian group and let K(G, 1) be an Eilenberg-
MacLane space of type (G, 1). Recall, even though K(G, 1) is not an
//-space, there is a universal classifying fibration, hereafter referred to as
K(G,ί)-^EG^>B (where B is, of course, BAK{GΛh with AK{G, 1) the
//-space of homotopy equivalences of K(Gy 1)).

THEOREM 2.1. (a) πx(B) = Out G, π2(J3) = C, tfie center of G,
= 0, otherwise.

(b) £ W a X(Aut G, 1), ί/ie homotopy sequence for p reduces to the
natural 0-» C—> G-> Aut G-^Out G-» 1, and the (above) semi-action
of TT^B) on ττλ(K{G, 1)) is the identity.

Part (a) was proved by Gottlieb [6] and (b) is proved in [8].
Thus B has a single k-invariant in //3(i£(Out G, 1); {C}), which we

briefly describe. Let H and K be groups and let G^>H-^>K be an
extension of G by K. Then the extension induces, by innerautomor-
phisms in //, a semi-action of i£ on G, p: iC —> Out G. (See MacLane
[12].) Given an arbitrary semi-action p: K—>Out G, there may not be
an extension of G by iC which induces it. -By Eilenberg-MacLane [5],
there is an extension inducing p if and only if a certain obstruction
k E H3(K; C) is zero. Restricting to the case K = Out G and p = id.
yields an element U E //3(Out G C). By [8], 1/ is the universal
example for fe, and it corresponds to the k -invariant for B (under the
natural isomorphism between group cohomology and the (singular)
cohomology of a K( , 1)).

3. Statements and proofs of the main results. Let G be a group,
C its center, and In G, Aut G, Out G as in §2. Then C -> G -> In G is a
central extension of C by In G, and it has a characteristic class c E
//2(In G C). Let Φ be the natural isomorphism between group
cohomology and (singular) cohomology of K( , 1). We abuse notation
by denoting also by c the element Φ(c)E H2(K(In G, 1); C) and, as is
standard practice, also denoting by c a map c: K(ln G, 1)-»K(C,2)
(which is unique up to homotopy) such that c * (fundamental class) = c.
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LEMMA 3.1. // c: K(ln G, 1)->K(Q2) is an inclusion, the
homotopy sequence of the pair (K(Q2), K(ln G, 1)) reduces to

0-» ττ2(K(Q 2))-> π2(K(Q 2), K(ln G, 1 ) ) ^ πλ(K(ln G, l))-> 1

and this is 0-»C-»G-*In G-»l .

Proof. The pull-back by c of the loop-path fibration over K(Q 2)
gives a fibration K(Q 1)-* T-^iC(In G, 1). By [7, Theorem 1], T is a
K(G, 1) and the homotopy sequence for q is 0—> C—> G~>In G—> 1.
Since T is the fiber of c, the lemma follows.

We now assume c: K(ln G, l)->K(Q2) is an inclusion.

LEMMA 3.2. Suppose that (X, A) is (of the homotopy type of) a
1-connected CW pair, that X is l-connected, and that T: TΓ^A)-*!!} G
and φ: ττ2(X, A)-> G are homomorphisms such that the diagram

π2(X, A)-
φ i T I

G -> In G commutes.

Then there is a unique homotopy class of maps of pairs
g: (X, A)^(K(C, 2), K(ln G, 1)) such that

T = (g I A) , : 7τ,{A)^7τλ{K(ln G, 1))

τr2(K(Q 2), X(In G, 1)).

The proof of 3.2 is given in §5.
The universal fibration K(G, l)-» EG -^B was described in

§2. Now make p into an inclusion.

LEMMA 3.3. Let (X, A) be (of the homotopy type of) a 1-connected
CWpair, where X is path -connected. Let χ\ πλ(A) -> Aut G and assume
φ: τr2(X, A)-> G is χ-equiυariant. Then there is a unique homotopy class
of maps f: (X, A)-*(£, EG) such that χ = (/ |A)*: <πx(A)-^ πx(E) and

Proof (Compare with the proof of 1.2 in [17].) Note that φ and χ
induce a unique ψ: 7Γ!(X)-^Out G. Assume that (X, A) has no (rela-
tive) cells in dimensions < 2. Let X*, B * be the universal cover of X, B,
respectively, and let A*, EG be the restrictions to A, EG, respectively.
The homotopy classes (X, A )—>(£?, E) which induce ψ correspond
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(exactly) to the based ^-equivariant homotopy classes (X*,.A*)-»
(B*,E%). Now 7r2(X*,A*) = τr2(X, A), TΓ 2 (JB*,ES) = τr2(B,EG) and *
induces r : 7Γi(A *)—>In G = 7Γi(J5£). So we have only to show there is a
unique ψ-equivariant homotopy class which induces τ and φ.

By 3.2, there is a unique homotopy class g: (X*, A * ) - » ( B * , £ S )
inducing τ and φ. The map g | A * is completely determined (up to
homotopy) by the requirement (g | A *)* = r and we can pick g so that
g | A * is i/f-equivariant (and is unique up to ψ-equivariant homotopy).
(Indeed, just take g | A * to cover a map A —> J5G which induces ^.) Now
g is homotopic to a t^-equivariant map. For the facts that τri(X) acts
freely on the cells of X * - A * and that φ is ^-equivariant make it
possible to construct, skeleton by skeleton, a homotopy from g to an
equivariant /. If /, is another equivariant map, it is homotopic to g, by
3.2, and hence to /, and there is no obstruction to deforming the
homotopy into an equivariant one. This completes the proof.

Suppose now that F—> E -^ X is a fibration, with φ: τri(F) = G and
all spaces are path-connected. By §2, q induces a
χ: TΓI(JE)-» Aut G. Then 3.3 and the usual arguments yield:

PROPOSITION 3.4. There is a map of fibrations, unique up to
homotopy,

f \ F

F -+ K(G, 1)

i i
E -4 EG

ϊq ϊp
X -U B

where f* = χ: π,(E)-> irx{EG\ (f\F)* = φ: πx(F)-+ TΓX{K(G, 1)).

Let X(G, l)-> E2—> X be the fibration induced from p by / ;, so that

q factors as E -> E2-+ X. The fiber of q2 is the seme as the fiber of /1F,

which is F*, the universal cover of F. Making q2 into a fibration , we
have thus constructed the first stage of a tower for q by factoring it
through a fibration with a simply-connected fiber. Observe that
πx(E2) = 7Γ!(J5), 7Γ2(E2) = im (j *, and π, (£ 2 ) = TΓ, (X), / > 2, and that the
coefficient system H*(E 2 ; {τr2(F*)}) is completely given by the action of
πλ(E). We can complete the Moore-Postnikov tower in the classical
way for q2.

4. The following simple example illustrates various aspects of the
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theory. Let S3 = the topological group of unit quaternions =
{w + xi + yj -f zk I w, x, y, z E R, ij = /c, / 2 = - l , etc.} and let n be a
product of primes, each primes 1 (4) (so that V - l E Z n ) . Let G =
(e7"7" = #,/) C S3 (where ( ) denotes "subgroup generated by"). Let
F = S3/G, so π,(F) - G. lip: E-^ RP\ k > 1, is a fibration with fiber
F, then πi(F)-> TΓI(JE)—> τri(i?Ffe) is an extension of G by Z2.

There are three possible actions, p, of πx(E) on TΓ^F). For, let
a, β E Aut G be given by α(α) = a\ where (α f c)2= α"1, <*(/) = /, β(a)-
ai β(j)- ~~h a n c* ' e ί α * ' β* be their images in, and which generate,
Out G ^Z2x Z2. It turns out that the universal obstruction in
H3(Out G; Z2), mentioned in §2, is non-zero, and in fact any extension of
G by Z2 inducing p*: Z 2 - * O u t G must have p * (generator) φ α*jS*.
(These facts follow from computations in [9, section 3].) The result
follows from this and the fact p | G must be the natural G —> Aut G.

We now restrict to a case for which ρ * ^ 0 . Let H = (eπι/2n —
bJ)CS\ Then G C f ί , G/H = Z2, and the induced p*: Z 2 -*OutG is
non-zero. For k = 2,3, ,χ, let H act on Sk by b(s)= -s and
/(s) = 5, on S3 naturally, and on S3 x Sk diagonally. Let E = S3 x Sk/H,
so that S3/G->S3xSk/H-^RPk is a fibration F-*E-*>RP\ and
7r1(F)->7r1(F)-^τr1(i?F/<) is G - > H - ^ Z 2 , as above.

Proceeding as in §3, we get a map of p into the universal K(G, 1)
fibration, take the pull-back K(G, l)-fibration over RPk, qk, and obtain a
map of fibrations, p2, and the following diagram:

S3

SVG

i
xSk/H

ip
RPk

> K(GΛ)-

i
Pi

> E, -
iqk

RPk -

* K(G, 1)

4
• K(H, 1)

iq*
* K(Z2,1) = RP'.

As ôc is the case k - <*>, qk can be considered as induced from qx by the
inclusion RPk ~> JRF* = K(Z2i 1). We compute the second k-invariant,
k2.

Considering p2 to be a fibration, the fiber of p2 - the fiber of
p 2 |F = S3. As H acts trivially on ττ*(S3), fc2G H 4(£,; Z) and fc2 is the
Euler class of p2. The Euler class of p2 for arbitrary k restricts from the
class for the case k = oo, so consider that case first. Then, p2 is
equivalent to the fibration S3—> S3/H-> K(H, 1) (up to homotopy type)
where, as a corollary to the usual spectral sequence argument that groups
which act freely on spheres have periodic cohomology, H*(K(H, 1); Z)
is periodic (of degree 4 by Swan [20]), given by cup product with the
Euler class. To compute the Euler class, observe that H is a semi-direct
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product of Z n by Q = </,/} C S\ and using H*(Q;Z) (see Atiyah [1, p.
61]) and the spectral sequence for Zn-+H-+Q we compute
H*(H; Z) = Z 8 n (^)(g)£:Z2(δ, 6) with relations δe = 4nχ, where dim δ =
2 = dim e, dim χ - 4, and £ Z 2 means exterior algebra over Z 2 . Using
Wall [21] we can see H * ( G ; Z ) = Z 4 n(γ)(g) Z 4 (η) with relations η2 = nγ,
dim TJ = 2, dim γ = 4. Using the spectral sequence for px, which is the
spectral sequence for G—>//-» Z 2 (see [9]), and then seeing how it
restricts to pk, k ^ 2, if is then easy to see that the (minimal) generator of
H\E;Z) = Z8n is χ = k2.

5. Proof of 3 .2. Uniqueness. Suppose g, g':(X, A)—>
(K(C,2), X(In G, 1)) both satisfy the hypotheses. Then g | A ~ g' | A,
since they both induce the same homomorphism on TΓI (and the range is a
K( , 1)). This homotopy can be extended first to the 2-skeleton of X,
since they both induce the same homomorphism on 7r2, and then to the
rest of X since all obstructions are zero.

Existence. Let / :A—>X and y:X—>(X,A) be the
inclusions. By exactness and commutivity, φj*π2{X) C C (see diagram
5.2 below) so let σ: π2(X)—» C be the induced homomorphism. Maps
from (n - l)-connected spaces into K( , n)'s are completely determined
(up to homotopy) by their induced homomorphisms on ττn. Let
g: X-*K(C, 2), /: A —> K(In G, 1) be maps which induce σ on ττ2, r on
TΓI, respectively.

LEMMA 5.1. The maps c/, g/: A —> K(C, 2) αr^ homotopic.

This lemma completes the proof of 3.2, since relative CW complexes
have the homotopy extension property so we can actually take g to
extend cf.

Proof of 5.1. The homotopy classes of maps A -> K(Q 2) are in
one-to-one correspondence with H2(A C), so it is sufficient to show
(eg)* (fundamental class) = (//)* (fundamental class). We will do this by
describing their corresponding CW cochains.

Let Π = τri(A) and let K(Π) be the K(H, 1) constructed by geometri-
cally realizing the bar construction on Π. (A proof that K(Π)* is as
described below may be found in [7].) Assume that A =
K(Π)U VλSλU higher dimensional cells, and that (X, A) has no (rela-
tive) cells in dimensions < 2 (the case of an arbitrary (X, A) following by
homotopy equivalence). Thus the 2-skeleton of A is e°U U α e « U
Uβe

2

β{J V A SΛ, where there is a single 1-cell e\ for each I ^ α 6 'ffi(A),
and a single 2-cell e\ for each β = (α, α t ) where 17^ α, aλ E τri(A). The
1-cells ei represent α in ττi(A, e°), the 2-cells e | for β = (α, «i) attach the
relation e\-e\x = e\ax in ττi(A, e°), and all of π 2(A) is generated by
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yλS\. Let A1 = e°U Uae
ι

a be the 1-skeleton of A, so the following
diagram is commutative:

(5.2)

π 2 (A) l-*

y

ττ2(A, A
s

\

k*/

σ I
C ->

')

A

\

77

0

> /
-»ir,(A')

/ \

•2(X,A)4

G If

\
ir,(/l

T N

InG

all five rows and diagonals are exact, and h, /, /, k, m, and n are
inclusions. Since πλ{Aι) is free (generated by {a | 1 ̂  α EΠ}), there is
an (algebraic) splitting s: T Γ ^ A 1 ) - * TΓ2(X, A 1 ).

We first describe the cocycle corresponding to eg. Since
π2(K(ln G, 1)) = 0, its values on the cells S{ are zero. Thus the cocycle
is completely determined by its restriction to K(Π). There, it represents
the characteristic class p in H2(K(U); C) of the extension of C by Π
which is pulled-back from C->G—>In G by r, and is described in
[7]. For each JC E In G, pick υ(x)E G which projects back to x, but pick
v(1) = 1. By exactness, for each JC, JCI E In G, there is a e(x, Xj)E C such
that υ(x)i)(x ])= e(x,xOϋίxX}).

LEMMA 5.3. The cochain in C2(K(Π); C) given by βi α j ->
e(τ(α), τ(a})) is a cocycle, and it represents p.

Proof. This follows immediately from [7, §2, 3].

We will need another cocycle which represents p. For each a E
τri(A), pick a y E π^A 1 ) such that ^ ^ ( y ) ^ α, but pick 1 for 1. Then
m*s(y)E 7T2(X, A) and it projects to a under d. Let w(α) =
φm#s(y)EG, which projects to r(a). Define CW cochains bE
C !(X(Π);C) and d E C2(K(Π); C) by fe(ei) - w(α)(ι;τ(α))-1 and
d{e2

a,aχ)- w(a)w(ax)w(aaxy\ Easily, the cochains d and e differ by 8b,
so we have proven:

LEMMA 5.4. The cochain d is a cocycle and also represents p.

We now describe the cocycle corresponding to //. Observe first that
σi*772(A) = 0, since C~» G is a monomorphism and by commutivity and
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exactness. Thus we can take a representative cocycle to be zero on the
cells SA We can consider the cells e\aχ to represent elements of
τr2(A, A 1 ). By commutivity, n*(e«,α) = (fc*z, s(r)), for some z G ττ2(X)
and r = de;;^ = the relation eι

ae
ι

aιe
ι

aax = I. Thus / * ( - z ) = m*s(r) in
π2(X, A) and - z is the element in τr2(X) determined by e\ax. But, by
commutivity, φm*s(r) is exactly d(e2

aaι) as described above, so by 5.4 we
are done.
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