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MULTIPLIERS ON A BANACH ALGEBRA WITH
A BOUNDED APPROXIMATE IDENTITY

JOoHN W. DAVENPORT

Let A be a Banach algebra with a bounded approximate
identity {e, | a€ A}, and M(A) the multiplier algebra on A.
In this paper, we obtain a representation for M(A) such that
each multiplier operator appears as a multiplicative operator.
The proof makes use of the weak-* compactness of the net
{Te, | ac A} and the algebraic properties of a multiplier.

1. Introduction. In 1951, J.G. Wendel showed that the left
centralizers on L,(G), G a locally compact group, was equivalent to
Cy(®)*, the space of regular Borel measures on G. Thus, if T is a
centralizer and x is any element in L,(G) then Tx = &xx for some
Borel measure £. It is also well known that if A is a Banach algebra
with an identity element then any multiplier on A is determined by
its action on the identity element. In this paper, we show that if
A is a Banach algebra with a bounded approximate identity then
there exist a continuous isomorphism of A such that each multiplier
defined on A is given by point-wise multiplication. In the case that
the approximate identity is uniformly bounded by one, the represen-
tation is norm preserving. Thus we obtain an isometric isomorphism
for all multipliers on L,(G) and for all multipliers on any B*-algebra
such that the action of a multiplier is given by point-wise multipli-
cation by a fixed element in A.

2. The representation space for M(A).

DEFINITION 2.1. Let A be a Banach algebra and T a mapping
from A into A. The map T is a multiplier provided

x(Ty) = (Tx)y (x,ycA).

Every multiplier turns out to be a continuous function and the set
of all multipliers on A under pointwise operations is a commutative
subalgebra of B(A), the set of all bounded linear operators on A([5]).

NoTATION 2.2. In this paper, a Banach algebra with a bounded
approximate identity will be denoted by A and the multiplier algebra
on A will be denoted by M(A). For any Banach algebra X, we
denote the weak-* convergence of a net in X*, the dual space of X,
indexed by @ e 4, by “lim?**(-)’. Unless otherwise stated, we denote
the bound on the approximate identity by M.

131



132 J. W. DAVENPORT

DEFINITION 2.3. Let X be a Banach algebra. The algebraX
is said to have a bounded approximate identity provided there exists
a net {¢,|@e4} in X and a M > 0 such that

2.3.1 el <M (e )
2.3.2 lim,ex = lim,xe, = (xeX).

DEFINITION 2.4. Let {e, | @ € 4} denote the approximate identity
on A, and B, ={fcA*|f-e,— f} where f-a(x) = f(ax) for each
a,zrc A and fe A*. The set B, is a closed subspace of A* and B, =
{fra|feA* ac A} (|[3]). By defining

2.4.1 [G,f]=G(f-a) (€A, feB,, GeBY)
2.4.2 F-G(f) = FIG, f] (feBy, F,GeB)),

the dual space, B%, becomes a Banach algebra. This follows since
the above definitions are the restrictions to B, of the Arens product
on A** which makes A** into a Banach algebra such that if 7 is
the canonical embeding of A into A** then =z is an isometric isomor-
phism ([5]).

LEMMA 2.5. There exists a mnorm reducing isomorphism of A
wnto BE.

Proof. We define 7: A— B} by za(f) = f(a) = 7a |p«

Clearly 7 is linear and since B, = {f-a|fec A*, ac A}, it follows
that 7 is one-to-one. From |za(f)| = |fla)| < || f|l - |la]||, we see that
llzall < |l al||, for all a < A.

LEMMA 2.6. Let {F,|acAd} be a net in Bi;acd; and F, G € B,
then the following properties are satisfied:

2.6.1 if limy** F, = F then limy** F,-G = F-G

2.6.2 if lim¥** F, = F then lim?**7ta-F, = ta-F

2.6.3 if F:ta=0 jfor all acA or ta-F =0 for all acA then
F=0.

Proof. These properties follow from a straightforward applica-
tion of the definitions of the operations involved.

LEmMA 2.7. The Banach algebra Bf has an identity element
which we denote by J.

Proof. From ||ze, || < |le.ll < M, it follows that the net {re,}
has a weak-+ convergent subnet. Let J = lim¥**ze¢,. Since

[/, f1(z) = J(f-2) = lim ze,(f -) = lim f(we,) = flx) ,
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for all x € 4, we have that [J, f] = f for all fe B,. Thus F-J = F,
for all F e BX. Since za-F is weak-x= continuous in F), it also follows
that J-F(f) = lim, ze,- F(f) = lim, F(f-¢,) = F(f) for all fe B, and
FeBi. Thus J-F = F for all FeBx.

THEOREM 2.8. Let A be a Banach algebra with a bounded ap-
proximate tdentity {e,| o € A}. Then there exists a map p from M(A)
into BE such that ¢ is a continuous, algebraic isomorphism of M(A)
into BE. Furthermore

o(Ta) = (uT) 70 = ta-(#T) (ac A, T cM(A)).

Proof. Let TeM(A). Since ||Te,||<||T|-M, the net
{z(Te,) | @ € A} has a weak-x convergent subnet in B:. If {z(Te:)| B e}
converges to G and {z(Te,) | @ € A} converges to F, each in the weak-x
topology; then, for each fe B,, we have that

F(f) = lim =(Te,)(f) = lim =(Te,)-J(F)
= lim 1i§n tTe, tes(f) = lim lign (tTefes))(f)
= lim lign e, tTes(f) = lim ze,-G(f) = G(f) .

Now we define the mapping ¢ from M(A) to B by
W(T) = F = {im =(Te,) (T e M(A)) .

The previous remarks show that 2 is well defined. We first observe
that if F = p(T), then
ta-F(f) = limza-tTe(f) = lim tTa-7e,(f) = ©(Ta)(f) .
Thus
2.8.1. 7a-(T) = t(Ta) (ac A, TeMA)).

By Lemma 2.7, the identity element of BX is the weak-*+ limit
of a subnet of {re,|ac4}. Let {re;} denote this subnet. Hence we
have

#(T)-ra(f) = lim ze,- («(T)-7al(f) = 1i§n tes t(T)-7a(f)
= lign tes-tTa(f) = tTa(f) .

Therefore,
2.8.2. puT-ta =7Ta (ac A, TeM()).

Let z,ye A and T € M(A). Then
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- t(TS)-ty = t(TSx)y = tSx-tTy = puS-tx-pT -7y
=zx-uS-pT -ty

and thus by Lemma 2.6, it follows that p(7T'S)= u(S)-x#(T). But
C. N. Kellogg [4] proved that M(A) is a closed commutative sub-
algebra of B(A), the set of all bounded linear operators on A. Thus
t(TS) = u(ST) = t(T)- (S) and therefore g is homomorphie.

If w(T) = (S) for some T, Se M(A) where (T) = limy**zTe,
and #(S) = lim%**zSe; then for each fe B,, and ac A, we have

t(Ta)(f) = lim 7(Ta)-te,(f) = lim 7a-tTe,(f)
= ta-(T)[f) = za-US)(f) = w-liﬂm o(Ses)(f)
= 1iﬁm Ta-7(Ses)(f) = lign (Sa)-ex(f) = t(Sa)(f) .

Since 7 is one-to-one, it follows that Ta = Sa for each a € A. Thus
p is one-to-one.

From (T) = lim,cTe, and ||zTe,|| < ||Te, | < || T]-Ile.ll <
|| T||-M, it follows that g is continuous.

COROLLARY 2.9. If M =1, then M(A) is isometrically =-isomor-
phic to a subspace of BX.

Proof. This follows from Theorem 2.8 and the fact that
lrall = [lall.

For A = L(G), G a nondiscrete locally compact abelian group,
the space B, is the space of uniformily continuous bounded functions
on G and Bf is the space M(G) of bounded measures of the maximal
ideal space of B,. If G is compact then M(A) = M(G). In the case
that A is a B*-algebra, we have the following result.

COROLLARY 2.10. If A is a B*-algebra then M(A) vs isometri-
cally =-ismorphic to a subspace of A**. Furthermore, if ((T)=F
for T e M(A) and F e A**, then

wa-F = F.-wa =nTa (ac 4)
where the above operation s the Arens product on A**.

Proof. D.C. Taylor [7] has shown that A*={f-a|fc 4* ac A}=
{a-flfeA*, ac A}). Thus B, = A* and B = A**. In this case the
product operation on B} = A** becomes the Arens product and the
involution on A** is given by F*(f) = F(f) where f(x*) [2]. Since
a B*-algebra possesses an approximate identity uniformly bounded
by one, the result follows from Corollary 2.9.
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COROLLARY 2.11. Let A be a B*-algebra. Then F e A** belongs
to M(M(A)) if and only if the operator F commutes with tA and
F-rwa is continuous in the weak-+ topology on A* for each a € A.

The author wishes to thank Professor C.N. Kellogg for his
encouragement and guidance.
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