MULTIPLIERS ON A BANACH ALGEBRA WITH A BOUNDED APPROXIMATE IDENTITY

JOHN W. DAVENPORT

Let A be a Banach algebra with a bounded approximate identity $\{e_{\alpha} \mid \alpha \in A\}$, and M(A) the multiplier algebra on A. In this paper, we obtain a representation for M(A) such that each multiplier operator appears as a multiplicative operator. The proof makes use of the weak-* compactness of the net $\{Te_{\alpha} \mid \alpha \in A\}$ and the algebraic properties of a multiplier.

1. Introduction. In 1951, J. G. Wendel showed that the left centralizers on $L_1(G)$, G a locally compact group, was equivalent to $C_0(G)^*$, the space of regular Borel measures on G. Thus, if T is a centralizer and x is any element in $L_1(G)$ then $Tx = \xi * x$ for some Borel measure ξ . It is also well known that if A is a Banach algebra with an identity element then any multiplier on A is determined by its action on the identity element. In this paper, we show that if A is a Banach algebra with a bounded approximate identity then there exist a continuous isomorphism of A such that each multiplier defined on A is given by point-wise multiplication. In the case that the approximate identity is uniformly bounded by one, the representation is norm preserving. Thus we obtain an isometric isomorphism for all multipliers on $L_1(G)$ and for all multipliers on any B^* -algebra such that the action of a multiplier is given by point-wise multiplication by a fixed element in A.

2. The representation space for M(A).

DEFINITION 2.1. Let A be a Banach algebra and T a mapping from A into A. The map T is a multiplier provided

$$x(Ty) = (Tx)y (x, y \in A).$$

Every multiplier turns out to be a continuous function and the set of all multipliers on A under pointwise operations is a commutative subalgebra of B(A), the set of all bounded linear operators on A([5]).

NOTATION 2.2. In this paper, a Banach algebra with a bounded approximate identity will be denoted by A and the multiplier algebra on A will be denoted by M(A). For any Banach algebra X, we denote the weak-* convergence of a net in X^* , the dual space of X, indexed by $\alpha \in \Lambda$, by " $\lim_{\alpha}^{w^{k-*}}(\cdot)$ ". Unless otherwise stated, we denote the bound on the approximate identity by M.

DEFINITION 2.3. Let X be a Banach algebra. The algebra X is said to have a bounded approximate identity provided there exists a net $\{e_{\alpha} \mid \alpha \in \Lambda\}$ in X and a M > 0 such that

2.3.1
$$||e_{\alpha}|| < M$$
 $(\alpha \in \Lambda)$
2.3.2 $\lim_{\alpha} e_{\alpha} x = \lim_{\alpha} x e_{\alpha} = x$ $(x \in X)$.

DEFINITION 2.4. Let $\{e_{\alpha} \mid \alpha \in A\}$ denote the approximate identity on A, and $B_* = \{f \in A^* \mid f \cdot e_{\alpha} \to f\}$ where $f \cdot a(x) = f(ax)$ for each $a, x \in A$ and $f \in A^*$. The set B_* is a closed subspace of A^* and $B_* = \{f \cdot a \mid f \in A^*, a \in A\}$ ([3]). By defining

2.4.1
$$[G, f] = G(f \cdot a)$$
 $(a \in A, f \in B_*, G \in B_*^*)$
2.4.2 $F \cdot G(f) = F[G, f]$ $(f \in B_*, F, G \in B_*^*)$

the dual space, B_*^* , becomes a Banach algebra. This follows since the above definitions are the restrictions to B_* of the Arens product on A^{**} which makes A^{**} into a Banach algebra such that if π is the canonical embeding of A into A^{**} then π is an isometric isomorphism ([5]).

LEMMA 2.5. There exists a norm reducing isomorphism of A into B_*^* .

Proof. We define
$$\tau: A \to B_*^*$$
 by $\tau a(f) = f(a) = \pi a \mid_{B^*}$.

Clearly τ is linear and since $B_* = \{f \cdot a \mid f \in A^*, a \in A\}$, it follows that τ is one-to-one. From $|\tau a(f)| = |f(a)| < ||f|| \cdot ||a||$, we see that $||\tau a|| < ||a||$, for all $a \in A$.

LEMMA 2.6. Let $\{F_{\alpha} \mid a \in A\}$ be a net in B_{*}^{*} ; $a \in A$; and $F, G \in B_{*}^{*}$, then the following properties are satisfied:

- 2.6.1 if $\lim_{\alpha}^{w \, k \star} F_{\alpha} = F$ then $\lim_{\alpha}^{w \, k \star} F_{\alpha} \cdot G = F \cdot G$
- 2.6.2 if $\lim_{\alpha}^{wk-*} F_{\alpha} = F$ then $\lim_{\alpha}^{wk-*} \tau a \cdot F_{\alpha} = \tau a \cdot F$
- 2.6.3 if $F \cdot \tau a = 0$ for all $a \in A$ or $\tau a \cdot F = 0$ for all $a \in A$ then F = 0.

Proof. These properties follow from a straightforward application of the definitions of the operations involved.

Lemma 2.7. The Banach algebra B_*^* has an identity element which we denote by J.

Proof. From $||\tau e_{\alpha}|| < ||e_{\alpha}|| < M$, it follows that the net $\{\tau e_{\alpha}\}$ has a weak-* convergent subnet. Let $J = \lim_{\alpha} v^{k-*} \tau e_{\alpha}$. Since

$$[J,f](x)=J(f\cdot x)=\lim_a au e_a(f\cdot x)=\lim_a f(xe_a)=f(x)$$
 ,

for all $x \in A$, we have that [J, f] = f for all $f \in B_*$. Thus $F \cdot J = F$, for all $F \in B_*^*$. Since $\tau a \cdot F$ is weak-* continuous in F, it also follows that $J \cdot F(f) = \lim_{\alpha} \tau e_{\alpha} \cdot F(f) = \lim_{\alpha} F(f \cdot e_{\alpha}) = F(f)$ for all $f \in B_*$ and $F \in B_*^*$. Thus $J \cdot F = F$ for all $F \in B_*^*$.

THEOREM 2.8. Let A be a Banach algebra with a bounded approximate identity $\{e_{\alpha} \mid \alpha \in \Lambda\}$. Then there exists a map μ from M(A) into B_*^* such that μ is a continuous, algebraic isomorphism of M(A) into B_*^* . Furthermore

$$\tau(Ta) = (\mu T) \cdot \tau a = \tau a \cdot (\mu T) \quad (a \in A, T \in M(A)).$$

Proof. Let $T \in M(A)$. Since $||Te_{\alpha}|| < ||T|| \cdot M$, the net $\{\tau(Te_{\alpha}) \mid \alpha \in A\}$ has a weak-* convergent subnet in B_{*}^{*} . If $\{\tau(Te_{\delta}) \mid \beta \in \Gamma\}$ converges to G and $\{\tau(Te_{\alpha}) \mid \alpha \in A\}$ converges to F, each in the weak-* topology; then, for each $f \in B_{*}$, we have that

$$egin{aligned} F(f) &= \lim_{lpha} au(Te_lpha)(f) = \lim_lpha au(Te_lpha) \cdot J(f) \ &= \lim_lpha \lim_eta au Te_lpha \cdot au e_eta(f) = \lim_lpha \lim_eta au Te_lpha(e_eta))(f) \ &= \lim_lpha \lim_eta au e_lpha \cdot au Te_eta(f) = \lim_lpha au e_lpha \cdot G(f) = G(f) \;. \end{aligned}$$

Now we define the mapping μ from M(A) to B_*^* by

$$\mu(T) = F = \lim_{\alpha \to \infty}^{w_{k+*}} \tau(Te_{\alpha})$$
 $(T \in M(A))$.

The previous remarks show that μ is well defined. We first observe that if $F = \mu(T)$, then

$$au a \cdot F(f) = \lim_{\alpha} au a \cdot au T e_{lpha}(f) = \lim_{\alpha} au T a \cdot au e_{lpha}(f) = au(Ta)(f)$$
 .

Thus

2.8.1.
$$\tau a \cdot \mu(T) = \tau(Ta)$$
 $(a \in A, T \in M(A))$.

By Lemma 2.7, the identity element of B_*^* is the weak-* limit of a subnet of $\{\tau e_{\alpha} \mid \alpha \in \Lambda\}$. Let $\{\tau e_{\beta}\}$ denote this subnet. Hence we have

$$\mu(T) \cdot \tau a(f) = \lim_{\beta} \tau e_{\beta} \cdot \mu(T) \cdot \tau a(f) = \lim_{\beta} \tau e_{\beta} \cdot \mu(T) \cdot \tau a(f)$$
$$= \lim_{\beta} \tau e_{\beta} \cdot \tau T a(f) = \tau T a(f) .$$

Therefore,

2.8.2.
$$\mu T \cdot \tau a = \tau T a$$
 $(a \in A, T \in M(A))$.

Let $x, y \in A$ and $T \in M(A)$. Then

$$\tau x \cdot \mu(TS) \cdot \tau y = \tau(TSx)y = \tau Sx \cdot \tau Ty = \mu S \cdot \tau x \cdot \mu T \cdot \tau y$$

$$= \tau x \cdot \mu S \cdot \mu T \cdot \tau y$$

and thus by Lemma 2.6, it follows that $\mu(TS) = \mu(S) \cdot \mu(T)$. But C. N. Kellogg [4] proved that M(A) is a closed commutative subalgebra of B(A), the set of all bounded linear operators on A. Thus $\mu(TS) = \mu(ST) = \mu(T) \cdot \mu(S)$ and therefore μ is homomorphic.

If $\mu(T) = \mu(S)$ for some $T, S \in M(A)$ where $\mu(T) = \lim_{\alpha}^{w k - *} \tau T e_{\alpha}$ and $\mu(S) = \lim_{\beta}^{w k - *} \tau S e_{\beta}$ then for each $f \in B_*$, and $\alpha \in A$, we have

$$egin{aligned} au(Ta)(f) &= \lim_lpha au(Ta) \cdot au e_lpha(f) = \lim_lpha au a \cdot au T e_lpha(f) \ &= au a \cdot \mu(T)(f) = au \cdot \mu(S)(f) = au a \cdot \lim_eta au(Se_eta)(f) \ &= \lim_eta au a \cdot au(Se_eta)(f) = \lim_eta au(Sa) \cdot e_eta(f) = au(Sa)(f) \;. \end{aligned}$$

Since τ is one-to-one, it follows that Ta = Sa for each $a \in A$. Thus μ is one-to-one.

From $\mu(T) = \lim_{\alpha} \tau T e_{\alpha}$ and $||\tau T e_{\alpha}|| < ||T e_{\alpha}|| < ||T || \cdot ||e_{\alpha}|| < ||T || \cdot M$, it follows that μ is continuous.

COROLLARY 2.9. If M=1, then M(A) is isometrically *-isomorphic to a subspace of B_*^* .

Proof. This follows from Theorem 2.8 and the fact that $|| \tau a || = || a ||$.

For $A = L_1(G)$, G a nondiscrete locally compact abelian group, the space B_* is the space of uniformly continuous bounded functions on G and B_*^* is the space M(G) of bounded measures of the maximal ideal space of B_* . If G is compact then M(A) = M(G). In the case that A is a B^* -algebra, we have the following result.

COROLLARY 2.10. If A is a B*-algebra then M(A) is isometrically *-ismorphic to a subspace of A^{**} . Furthermore, if $\mu(T) = F$ for $T \in M(A)$ and $F \in A^{**}$, then

$$\pi a \cdot F = F \cdot \pi a = \pi T a \qquad (a \in A)$$

where the above operation is the Arens product on A^{**} .

Proof. D. C. Taylor [7] has shown that $A^* = \{f \cdot a \mid f \in A^*, a \in A\} = \{a \cdot f \mid f \in A^*, a \in A\}$. Thus $B_* = A^*$ and $B_*^* = A^{**}$. In this case the product operation on $B_*^* = A^{**}$ becomes the Arens product and the involution on A^{**} is given by $F^*(f) = \overline{F(\overline{f})}$ where $\overline{\overline{f}(x^*)}$ [2]. Since a B^* -algebra possesses an approximate identity uniformly bounded by one, the result follows from Corollary 2.9.

COROLLARY 2.11. Let A be a B*-algebra. Then $F \in A^{**}$ belongs to $\mu(M(A))$ if and only if the operator F commutes with πA and $F \cdot \pi a$ is continuous in the weak-* topology on A^* for each $a \in A$.

The author wishes to thank Professor C. N. Kellogg for his encouragement and guidance.

REFERENCES

- 1. R. Arens, Operations induced in function classes, Monat. fur Math., 55 (1951), 1-19.
- 2. F. F. Bonsall, and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Notes, Series II, London, 1971.
- 3. P. Curtis and Figa-Talamanca, Factorization theorems for Banach algebras in Function Algebras, edited by F. T. Birtel, Scott, Foresman and Co., Chicago, Ill., 1966, 169-185.
- 4. C. N. Kellogg, Centralizers and H*-algebras, Pacific J. Math., 17 (1966), 121-129.
- 5. R. Larson, An Introduction to the Theory of Multipliers, Springer, New York, 1971.
- 6. C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
- 7. D. C. Taylor, The strict topology for double centralizer algebras, Trans. Amer. Soc., 150 (1970), 633-643.
- 8. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261.

Received March 18, 1975 and in revised form December 8, 1975.

MADISON COLLEGE, HARRISONBURG, VA