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A RATIONAL OCTIC RECIPROCITY LAW

KENNETH S. WILLIAMS

A rational octic reciprocity theorem analogous to the
rational biquadratic reciprocity theorem of Burde is proved.

Let p and ¢ be distinct primes = 1(mod4) such that (p/q) =
(9/p) = 1. For such primes there are integers a, b, 4, B with

(1) {p=a2+bz,azl(mod2), = O0(mod 2) ,

q = A* + B, A = 1(mod 2), B = 0(mod 2) .

Moreover it is well-known than (4/q) =1, (B/g) = (—1)* %, If k is
a quadratic residue (mod g) we set

( k> _ { +1, if k£ is a biquadratic residue (modq),
g/«

—1, otherwise .

In 1969 Burde [2] proved the following

THEOREM (Burde).

(2)(&)- o224

Recently Brown [1] has posed the problem of finding an octic re-
ciprocity law analogous to Burde’s biquadratic law for distinct primes
p» and ¢ with p=¢q = 1(mod8) and (p/q), = (¢/p), =1. It is the
purpose of this paper to give such a law. From this point on we
assume that p and ¢ satisfy these conditions and set for any biquadratic
residue k(mod q)

(k) _ {Jrl, if k& is an octic residue (modgq),
q/s —1, otherwise .

It is a familar result that there are integers ¢, d, C, D with
{p = ¢ + 2d? ¢ = 1(mod 2), d = 0(mod 2) ,

2
(2) g =C*+ 2D% C = 1(mod 2), D = 0(mod 2) .

Moreover we have (D/q) = 1. Also from Burde’s theorem we have
aB — bA\ _

and from the law of biquadratic reciprocity after a little calculation
we find that (B/g), = +1. We prove

563



564 KENNETH S. WILLIAMS

THEOREM. Let p and q be distinct primes = 1(mod 8) such that

(F).= (5= muen (2)(D), = (SBE4)(PTEE).

q

We note that it is easy to show that

<iaBi bA> _ (aB — bA> (icDi dC) _ (cD — dC)
q ‘ qg N q q ’
so that the expression on the right-hand side of the theorem is
independent of the particular choices of a, b, ¢, d, A, B, C, D made in
(1) and (2). In the course of the proof it is convenient to make a
particular choice of a, b, ¢, d (see (9) and (10)).
We begin by proving three lemmas.

LEMMA 1. (¢ + dV/ —2)¢ 2 = ((¢D — dC)/q) (modq) .

Proof. As (p/q) =1 we can define an integer % by » = u*(mod q).
Next we define integers I and m by

lEcD~dg+Du,mz%.cD—df—Du (mod q) ,

so that
i* — 2m? = ¢D(cD — dC) (mod q)

and

2lm = dD(eD — dC) (mod q) ,

giving
D(eD — dC)(c + dv'—=2) = (I + mV —2) (mod q) ,

and so

Duv3(eD — dC)e (e + d1/—2) 2 = (I + m1/=2)""  (modg) .

Now working modulo ¢ we have

vt = G+ mV/=2) _ 1+ m"(1/£§)"
¢+ m 2 = I +mV/ =2 I+ mv -2
I + mai27® _ I +miv 2
l+mv —2 I +m1/ —2

1,

fi

i

also
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D= (B) 1,
q

and

(eD — dCye = (=40 Y )

q

from which the required result follows immediately.
LEMMA 2. (a + bV —1)"* = ((aB — bA)/q), (mod q) .

Proof. As (p/q) =1 we define ar integer uw by p = u’(mod q)
as in Lemma 1. Next we define integers » and s by

aB — bA 4+ Bu A aB—bA — Bu

r= 3 , 8 = 3 > (mod q)

so that
r* — st = aB(aB — bA) (mod q)

and

2rs = bB(aB — bA) (mod q)

giving
B(aB — bA)a + b/ =1) = (r + s1/—1) (mod q) ,

and so

B %qB — bAY Vg + by —1) V" = (r 4+ sV —=1)V2 (modq) .
Thus as (B/g), = ((aB — bA)/q) = 1 we obtain

(@ + b/ —1)e v = (@) (r + s/ =1) 0 (mod q) .

Next we note that 7* + s* = uB(aB — bA)(mod ¢) so that

(252 - (2)(2)252) -1,

Hence we may define an integer w by w? = 7* + s*(mod q). Then we
define integers e and f by

rB—sgl—l—Bw,f

®
I

(mod q)

A rB —sA — Bw
B 2

so that
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¢ — f* = rB(rB — sA) (mod q)
and
2¢f = sB(rB — sA) (mod q)
giving
B(rB — sA)r + sV —1) = (¢ + fV/—1) (mod q) ,
and so

BY2(rB — sA) TV (y 4 51/ 1) = (¢ + f1/ 1)  (modg).

Now working modulo ¢ we have

(e + FVTIY _ &+ fov/ D)

VN = T Y T et AU/
e+ fV—-1_ 1
T e+ fV/—1 ’
and
q-1)/2 — B _ _ (g—1)/2 — rB — sA
B! e (?> =1, (rB — s4) = <—q—> ,
so
Ty = rB — sA ,
(r + sv/=1) <————q )
giving bA B A
-y — [ aB — rB — s
(@ + b1/ =T)ev4 = ( - )( - ) (mod q) .

The required result now follows as modulo ¢ we have

TB_SAEB(aB~gA+Bu)_%(a,B—b;l—Bu)

= g{(aB — bA + Bu) + (aB — bA — Bu))

= B(aB — b4),

that is
(rB;]— sA> _ <§><£B_;@.‘1_) — +1.

Before proving the final lemEa we state some results we shall
need. Let w = exp(27i/8) = (V2 + 1/ —2)/2 and let R be the ring
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of integers of the cyclotomic field Qw) = Q' 2,1V —=1). R is a
unique factorization domain. Let 7 be any prime factor of p in R,
fixed once and for all. For integers x == 0(mod p) we define an octic
character (mod p) by

(i) = w? if 2778 = wi(mod ), 0 SN 7.
T /8

If x = 0(mod p) we set (x/7)y = 0. In terms of this character
we define the corresponding Jacobi and Gauss sums for arbitrary
integers &k and I as follows:

700 =5 (25

G(k) = g (%): exp (2wix/p) .

These sums have the following well-known properties (see for
example [4], Chapter 8):

(4) Je, WITe, D) = p if % 12 0(modS8),

_ G(k)G(1) e 7.
(5) J(k,l)—m, if k1 k-+1%0@mod8),
(6) G)G(—F) = (—1)**%p | if k = O(mod 8) .

We shall also need the evaluation of the familar sum

p—1

(1) 6y = 5 (L) exp 2rin/p) = § (L) exp @riafp) = p”
T/8 =0 \ P

=0

and the result
(8) J(2, 2) = +J({, 2) .

A more precise form of (8) follows from a theorem of Jacobi
(see for Example [3], page 411, equation (99)). Finally we let o,(k =
1, 3,5, 7) be the automorphism of Q(w) defined by o,(w) = w".

Now from (5) and (6) we have

o1, 4) = I3, 12) = J(3, 4) = LOED = ELER) = a1, ),

so that J(1,4) € Z[VV—2]. Moreover from (4) we have J(1,4)J(1,4) = »p
so we may choose the signs of ¢ and d in (2) so that

(9) J1,4) =c+dV-2.
Also from (5) and (6) we have
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2401, 2) = J6,10) = J6, 2 = CEEE = ECEO — 1, 9,

so that J(1, 2) e Z[V'—1]. Moreover from (4) we have J(1, 2)J(1, 2) =
p so we may choose the signs of @ and b in (1) so that

(10) J1,2) =a+ b/ -1,

since it is easy to prove (and well-known) that J(1, 2) = 1(mod 2).
LEMMA 3. G(1)* = p(a + bV —1)c + dV/' —2)*.
Proof. From (5), (9), (10) have

¢+ dV =2 =J(,4) = —G(é)(§§4)

and

a+bl/——_T:J(1,2):—G%%l.

Multiplying these together we obtain

(b =T)e + dv/=7) = SUEAEW __GUED

by (6) and (7). Hence taking the fourth power of both sides we get
(11) GQ)'G2) = p* (@ + bV =D + dV —2)*.
Now from (5) and (7) we have

Jo, 2 = G@F _ GEY

Gy o
so that from (8) and (10) we obtain
(12) G2) = plJ(2, 2)fF = p{J(L, 2))* = pla + bV -1y,

and the required result now follows from (11) and (12).

Proof of theorem. Raising G(1) to the gqth power we obtain
modulo ¢,

Gy = 5,(L) exp @2nivg/p) = 5, (L) exp (@miza/p)

z=0

since ¢ = (mod ¢), giving
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G = (L) 5 (22) exp @ritea)p) = (L) 601,

T /8 =0 T

since (¢, p) = 1 implies that
s <ﬂ> exp (2mizg/p) = 3, <l> exp (2wiy/p) = G(1) .
8 0 7T /8

z=0 \ 7T =

Hence
= i i frmnd i
sy = (£) 60 - ()60,
that is
Gy = <i) (mod q) .
p 8
Hence by Lemmas 1, 2, 3 we have modulo ¢

(£), = Gayy

= pV¥a + b‘l/j)(q_”“(c + d1/——2)“’“”’2

_ <§>g<aB;bA>4(cD; dC>,

from which the theorem follows.

ExAmMPLE. We take p =17 = 1(mod 8) and ¢ = 409 = 1(mod 8)
so that we may choose

a=1b0=4,¢c=38d=2,
A=3B=20,C=11, D =12.

Since ¢ = 1(mod p) we clearly have
()= (8- (5.
As ((aB — bA)/q) = (8/409) = +1 by Burde’s theorem we have (p/q), =
1. Finally
(272~ ()= (o) = 2

<0D—dC>:< 14 ): 1

q 409 ’

80 by the theorem of this paper we have (p/q); = 1, which is easily
verified directly.
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