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A RATIONAL OCTIC RECIPROCITY LAW

KENNETH S. WILLIAMS

A rational octic reciprocity theorem analogous to the
rational biquadratic reciprocity theorem of Burde is proved.

Let p and q be distinct primes = I(mod4) such that (p/q) ~
(q/p) — 1. For such primes there are integers α, 6, A, B with

(p = a2 + b2,a = l(mod 2), b = 0(mod 2) ,

\q = A2 + B\ A = l(mod 2), 5 = 0(mod 2) .

Moreover it is well-known than (A/q) = 1, (2?/g) = (-1){?~1)/4. If fc is
a quadratic residue (mod q) we set

AΛ (+1, if k is a biquadratic residue (modg),

q Λ ]—1, otherwise .

In 1969 Burde [2] proved the following

THEOREM (Burde).

2λ(l\ - (-iγ<ι-i)<*( a B — bA\
q JX p Λ V q /

Recently Brown [1] has posed the problem of finding an octic re-
ciprocity law analogous to Burde's biquadratic law for distinct primes
p and q with p = q = I(mod8) and (p/q)i = to/p)4 = 1. It is the
purpose of this paper to give such a law. From this point on we
assume that p and q satisfy these conditions and set for any biquadratic
residue k(moάq)

k\ (+1, if fc is an octic residue (modg) ,

q ' 8 ( — 1, otherwise .

It is a familar result that there are integers c, d, C, D with

[p = c2 + 2d\ c = l(mod 2), d = 0(mod 2) ,
( 2 ) ' - = C2 + 2i)2, C = I(mod2), D = 0(mod2) .

Moreover we have (D/q) = 1. Also from Burde's theorem we have

(3) (aB-bA) = l,
\ q 1

and from the law of biquadratic reciprocity after a little calculation
we find that (B/q)4 — + 1 . We prove

563
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THEOREM. Let p and q be distinct primes = l(mod 8) such that

(£) = ( A) = i. Then (JL) (JL)

We note that it is easy to show that

g /

ί±aB± bA\
V a Λ

aB^-bAΛ ί±cD± dC\ = / cD - ^C\
/ \ a ) \ a )q / 4 \ # / 4 \ q

so that the expression on the right-hand side of the theorem is
independent of the particular choices of a, 6, c, d, A, B> C, D made in
(1) and (2). In the course of the proof it is convenient to make a
particular choice of α, b, c, d (see (9) and (10)).

We begin by proving three lemmas.

LEMMA 1. (c + dV-2){q-1)/2 = ((cD - dC)/q) (moάq) .

Proof. As (p/q) = 1 we can define an integer u by p = w2(mod q).
Next we define integers I and m by

_ cD - dC + Du _ C cD - dC - Du= - , m = - i

V - 2m2 = cD(cD - dC)

so that

and

giving

ί)(cl> - dC)(c -\

and so

D{q~ι)/\cD - ώC)(g~1)/2(c + dV -S

Now working modulo # we have

'1
 ΞΞ (ί +

(mod q) ,

(mod g)

(mod q) ,

(mod <?) ,

(mod q) .

+
Ξ 1 ,

also
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and

(cD - dCYq~l)/2 =

from which the required result follows immediately.

LEMMA 2. (a + &i/=Ί)( f f~1)/4 = ((aB - 6A)/g)4

Proof. As (p/g) = 1 we define αr integer t& by p
as in Lemma 1. Next we define integers r and s by

= aB - bA + Bu A. aB - bA - Bu

so that

and

r2 - s2 = aB(aB - bA)

2rs = bB(aB - bA)

giving

B(aB - bA)(a + bV^Λ.) = (r + sV"11!)2

and so

B{q-1)J\aB - bAyg-1]/i(a + δi/" 1 1 !)^" 1 ^ 4 Ξ (r + sV^'i

Thus as (J?/g)4 = ((aB - bA)/q) = 1 we obtain

(α
(9-1)/4 = (aB~bA)(r + sτ/^Ί)(9"1

( )(
/4

(mod g) .

M2(mod q)

(mod g)

(mod g)

(mod g)

(mod g) ,

(modg) .

(mod g) .

Next we note that r2 + s2 = uB(aB — 6A)(mod <?) so that

(^)=(f ).(fX^^)=1

Hence we may define an integer w by w2 = r2 + s2(mod g).
define integers β and / by

rB - sA + Bw
B

Then we

(mod g)

so that
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e2 _ p Ξ rB(rB - 8A) (mod g)

and

2ef = sB(rB - sA) (mod q)

giving

£(r£ - sA)(r + βV^Ϊ) = (β + fV^lf (mod g) ,

and so

5<«-i)/«(rjB - sA) (9~1)/2(r + β τ / = l ) ( * - 1 ) / 2 Ξ (β

Now working modulo q we have

( e - fτ/31^-1 = (β
1 7 ; ~ (

and

q

so

V q J

(r
v Q

giving

( α + 6v̂ =ϊy - ^ - ( ^ ~ 6 A ) ίrB-sA\

The required result now follows as modulo q we have

rB ~ sA=
B 2

(aB - bA - Bu)}

- δA),

that is

ίrB- sA\ = ίB\ίaB~bA\ = + χ

V g y \q )\ q /

Before proving the final lemma we state some results we shall
need. Let w = exp (2πi/8) = (τ/Y + V/:r2)/2 and let i2 be the ring
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of integers of the cyclotomic field Q(w) = Q{V 2, V — 1). R is a
unique factorization domain. Let π be any prime factor of p in R,
fixed once and for all. For integers x ^ O(modp) we define an octic
character (moάp) by

—) = wλ if x{p~1)/8 = wλ(moά TΓ), 0 ^ λ ^ 7 .

If x = 0 (mod p) we set (x/π)8 — 0. In terms of this character
we define the corresponding Jacobi and Gauss sums for arbitrary
integers k and I as follows:

j(k, i) = Σ ( - ) ( - —
χ=o \ 7C /8 \ 7Γ

G(A) - Σ f —) exp (2πix/p) .

These sums have the following well-known properties (see for
example [4], Chapter 8):

(4) J(k, l)J(k, l) = p, if k, I Φ 0(mod 8) ,

( 5 ) j(k,l) = ^ ψ l if k, I, k + I Φ 0(moά8) ,

( 6) G(k)G(-k) = (-l)*('-ι"8j> , if M 0(mod 8) .

We shall also need the evaluation of the familar sum

( 7 ) G(4) = Σ Ϊ — T exp (2πix/p) = Σ f—) exp (2π^/ί)) = p1/2

x=-0 \ Jζ /8 a;=0 \ p /

and the result

(8) J(2, 2) = ±J( l , 2) .

A more precise form of (8) follows from a theorem of Jacobi
(see for Example [3], page 411, equation (99)). Finally we let σk(k =
1, 3, 5, 7) be the automorphism of Q(w) defined by σk{w) = wk.

Now from (5) and (6) we have

<τ3(J(l, 4)) = J(3, 12) = J(3, 4) = G ( ^ ( 4 ) = G y g 4 > = J(l, 4) ,
G(7) G(o;

so that JΓ(1, 4) G Z[V-2}. Moreover from (4) we have J(l, 4)J(1, 4) = ^
so we may choose the signs of c and d in (2) so that

(9) J(l, 4) = c + dY^Z .

Also from (5) and (6) we have
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l, 2)) = /(5, 10) = J(5, 2) = ^)g(2) = ^ ί M ? ) = / ( 1 , 2) ,

so that J(l, 2) e ZlV^Λ], Moreover from (4) we have J(l, 2)J(1, 2)
ί? so we may choose the signs of a and b in (1) so that

(10) J(l, 2) = a + δ - / " ^ ,

since it is easy to prove (and well-known) that J(l, 2) Ξ= l(mod 2).

LEMMA 3. G(l)8 = p(α + 6τ/^Ί)2(c +

Proo/. From (5), (9), (10) have

and

Multiplying these together we obtain

by (6) and (7). Hence taking the fourth power of both sides we get

(11) G(1)8G(2)4 = p2 (a

Now from (5) and (7) we have

J(2 2) -

so that from (8) and (10) we obtain

(12) G(2f = p{J(2, 2)f = p{J(l, 2)f = p(a + bV^ϊf ,

and the required result now follows from (11) and (12).

Proof of theorem. Raising G(l) to the qth power we obtain
modulo q,

G(1Y = Σ (—V exP (2πixq/p) = Σ (—) exP (2πixq/p) ,

since g = (mod q), giving
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G(l)" = (±) ' Σ (^-) exp (2πi(xq)/p) =
/8 # = 0 \ 7Γ / 8

since (g, #>) = 1 implies that

(2πixq/p) = Σ f ̂ -) exp
*=o \ 7Γ /8 2/=o \ 7Γ

Hence

G(l)« Ξ X

that is

G ( l ) ί - 1 = (-lί-j (mod g) .

Hence by Lemmas 1, 2, 3 we have modulo g

f-SL) = (G(l) 8 ) ( ? - 1 ) / 8

- bA \ ( cD - dC

. g /8\ g /4\ g

from which the theorem follows.

EXAMPLE. We take p = 17 = 1 (mod 8) and q = 409 = l(mod 8)
so that we may choose

a = 1 b — 4 c = 3 d = 2 ,

A = 3, B = 20, C = 11, i) = 12 .

Since g = l(mod p) we clearly have

As ((αJ? - bA)lq) = (8/409) = + 1 by Burde's theorem we have (p/q), =
1. Finally

\ q A V409Λ \409/

(cD-dC\ _ / 14 V _ .

v g - vw; ~
so by the theorem of this paper we have (p/q)8 = 1, which is easily
verified directly.



570 KENNETH S. WILLIAMS

REFERENCES

1. Ezra Brown, Quadratic forms and biquadratic reciprocity, J. fur Math., 253 (1972),
214-220.
2. Klaus Burde, Ein rationales biquadratisches Reziprozitdtsgesetz, J. fur Math., 235
(1969), 175-184.
3. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J.
Math., 57 (1935), 391-424.
4. Kenneth Ireland and Michael I. Rosen, Elements of Number Theory, Bogden and
Quigley, Inc. Publishers, Tarrytown-on-Hudson, New York (1972).

Received August 4, 1975. Research supported under National Research Council of
Canada grant no. A-7233.

CARLETON UNIVERSITY—OTTAWA CANADA




