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SETS OF UNIQUENESS AND MULTIPLICITY FOR L?

ANNA MARIA MANTERO

In the first part of this paper, it is proved that: if
1< qg< p=2and G is a nondiscrete, locally compact abelian
(LCA) group with character group I', there exists a subset of
positive measure £ G which is a set of uniqueness for L")
and, at the same time, a set of multiplicity for L?(I").

This is followed by some results of the same type concern-
ing the spaces L?*(I"),« + 0, when G is the Cantor group.

I. I. Hirschman, Jr., and Y. Katznelson prove all the results of
this paper in the case when G = T (the circle group) and I" = Z (the
integer) (see [5]). They also prove results concerning the spaces L**(Z).
The core of the present work consists in proving our theorem for the
case in which G is a compact group the elements of which have
bounded order. To obtain the theorem for a general LCA group, we
use the latter result, the theorem of Hirschman and Katznelson,
and the structure theory for LCA groups. The existence of sets of
uniqueness for L?(I"),1 < p < 2, which are of positive measure (and
therefore are sets of multiplicity for L*(I")) was proved by Y. Katznelson
(I6]; [7], p. 101), for the case G = T, and by A. Figa-Talamanca
and G. I. Gaudry for the general case (see [2]). The results contained
in this paper appeared in part in our thesis for the “laurea” in
Mathematics at the University of Genova. This thesis was prepared
under the guidance of Prof. A. Figa-Talamanca, to whom we are
grateful for advice and assistance.

1. Preliminaries. Let G be a nondiscrete LCA group and 7" its
character group. If f is an integrable function on G,

7oy = SGf(w)-“/(~ 2)do for any ve I

denotes the Fourier transform of f.
Let us define now a uniqueness set and a multiplicity set for
L*(I') as follows:

DEFINITION. Let E be a measurable subset of G; then E is called
a set of umiqueness for L?(I") (or set of p-uniqueness), if no non-
zero integrable function f, carried by E, satisfies the condition
SfeLxD).

A subset which is not a set of uniqueness is called a set of
multiplicity for L*(I") (or set of p-multiplicity).
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Throughout this paper we indicate the Haar measure of a set S,
by m(S).

2. The main result., We can now state the first result of
this paper.

THEOREM 1. For every real numbers p, q such that 1 < q < p < 2
there exists a subset EC G, of positive measure, which is a set of
q-uniqueness and p-multiplicity.

Proof. From a theorem of structure [8, p. 40] we know that
every LCA group has an open subgroup which is the direct sum of
a compact group K and a Euclidean space R"(n = 0). Thus it is
sufficient to prove the theorem for groups of the form

G=K@R" for n=0.

We must distinguish several cases:

Case (1). G is a compact group with Haar measure normalized
(n = 0). In this case the proof of the theorem can be obtained from
the following two lemmas:

LEMMA 1. Given a real mumbers ¢,0< e<1, and p,qe(d, 2]
such that ¢ < p, we can find a measurable set E C G and two functions
F and ¢, defined on G, satisfying the following properties:

(@ mE)z=1-—c¢

(b) F(gc) =1 - for any xc E

() [[Fllose if /g +1/¢' =1

d) o) =0 for any xe G

) m{reG:ig(x) =1} =1— 2

(f) log [l =e

(g) {reG:é(x) = 0}C E.

Proof of the Lemma 1. We consider three cases according to the
order of the elements of I".

Case 1 (a). I is a torsion group of bounded order. Let 4 be an
independent set of generators for I'. Let {I",}7., be a sequence of
subgroups of 7", all having the same finite order » and which are
generated by elements of 4 in such a way that, if (I, I,, --+) denotes
the group generated by I, I, -+, then

rooN@y, Ly oo, I,)y=1{0} for =12 «...

Now, for any (large) positive integer N, we can define—on the group
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G—two sets of N functions, F,, F,, «-+, Fy and ¢,, &, +++, ¢, in the
following way:

Fi(w)zl—zl‘,’y(w) fort=1,..-, N;
1el’;

¢i(93):1—-ij27(a}) for i =1+, N.

)GI',L

Since F; and ¢; (1 <1< N) are trigonometric polynomials, we can
trivially deduce that:

(I) ([ Fully <77 for any ¢ =1, -+-, N.
(D) loglld; |, =r? for any ¢ =1, -+, N.
Moreover:

D) m{zeG:Fy(x)=1=1—-1/r fori=1,..-, N.
IV) mixeGigx)=1=1—1/r fori=1,-.+, N.
Now, let us define, for every integer N:

E:é{xeG:Fi(a;):l},

F(x)ZliFi(w) for ze@G
Ni=1
8@) = 11 #:@) for weG .

It follows that:

(i) mE) =mixeG: Fx) =1} =1 — N/r.
Because the F', are supported by disjoint subgroups and ﬁi(O) =0
1t = N), then (I) yields:

(i) ([Fll, = QN)SL | Fllgye = N7,
Since ' ¢;|l, = |6;]|, for any 4,je{l,2, -+, N}, and by the definition
of I', there exists at most one way to write veI" as the sum of
elements v, e 1", v, %, +++, Yy €1y, then

(i) log ¢!, = log (TIL, /I 4ll,) = N+
Since p >¢q, it is possible to choose a positive integer N and a large
positive integer » such that the conditions

NF |, < N1opie < ¢

log [|¢ll, < Ner? <e,

are simultaneously satisfied.

Since 7" is of bounded order (and therefore it has infinitely many

elements of the same order) we can choose r arbitrarily large so that

it is the common order of infinitely many disjoint subgroups 77, I, - - -.
To complete the proof of the lemma in Case 1 (a), we note that:
(1) ¢@) =ML A -2 )@) =0 for xeG

where—for every 1=1,2 -+, N— M, ={xeG:v(x) =1,vel} and
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Xy, is the characteristic function of M;.

(ii) m(E)Y=Z1—-N/r=z1—-N«r?=1-—c¢
bceause r >1 and (p — 1) < 1.

(ii) m{xeG:é®) =1} =m(E)=1—¢.

Case 1 (b). I" contains an element of infinite order. Let ¥ be
an element of I” such that n-v % 0, for every ne N. We call I’ the
subgroup of I" generated by ¥'. Thus /" is isomorphic to Z and its
character group I is a compact group isomorphic to G/M, where

M={xeG:¥(x) =1}

is the annihilator of I” [8, p. 35]. But I is also isomorphic to 7.
Thus we can consider—given a positive real number é—the construction
of the functions which satisfy the Lemma 1 in the case G = T, given
by Hirschman and Katznelson in [5, p. 226]. We call these functions
f and @. Since f and ® belong to L*T), we can write:

f@® = gz’akve’“ for any <€ (0, 27]
P@) = 3 biee™ for any &€ (0, 27] .
Now we define:
F(x) = k;; @Y (%)* for ze@
and
$@) = 3, b7 (@)* for xeG.

From the definition of M it follows that such functions are constant
on the sets x + M, where ¢ ¢ @, and therefore we can consider F and
¢ as defined on G/M. Hence for every ze G/M we have

F@) = 3, F()-2(1) = 5, /#0)e* = f(9) ,

where ¢ € (0, 2] is such that ¢’ e T is the image of xe G/M under
the isomorphism mapping G/M onto T.
Similarly:

#(@) = P .
It follows that [4, p. 91, vol. II]:
m{x € G: F(x) = 1} = m{d € (0, 2x]: f(&¥) = 1}

and
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m{z € G: ¢(x) = 1} = m{? € (0, 27]: (&) = 1} .
Thus, by observing that:
1Flle =117l 118l =118

and recalling [5], the proof of the lemma is easily completed in this
case.

Case 1 (¢). [ is a torsion group of infinite order. Suppose that
Y eI has order n. We call I the cyclic subgroup of I" generated
by ¥. The discrete group I” is isomorphic to Z(n). Its character
group [ is a cyclic compact subgroup of 7 which is also isomorphic
to G/M, if M is the annihilator of 7.

Similarly to the Case 1 (b), if

f&® =kz A,-e? for #¢(0, 27]
€eZ
and
P = 3, B,-et? for &€ (0, 2]
keZz

are the functions satisfying the Lemma 1 when G = T and ¢/2 replaces
&, we pose:

[n/2] o
F@ = 3 (5 Avu) 7@ for weG,
kE=—[(n—1)/2] \2=—00
[n/2] +oo
6@ = 5 (3 Buuw)- 7@ for zeG.
k=—[(n—1)]2] \i=—oo

Since these functions are constant on ¢ + M c G(x € G), we can con-
sider them as defined on G/M. Thus, for every x<c G/M, if ¥ is the
image of 2 under the isomorphism mapping G/M onto T,

F@) = 3, F0)a() = 3, fme™? = 7).

Using the same reasoning we get, for any ze G/M and for any &
defined as above,

$(x) = P(I) -

In order that the functions F' and ¢ satisfy the Lemma 1, they must
verify tilese non-obvious conditions:
(1) |I1F), <+,
(2) log|igll,<e
(3) mxeG:F(x) =1} =1 —¢,
(4) mizeG:o®) =1} =1 — 2e.
We will show that these conditions are satisfied if the order of
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the element ¥ is large enough. Indeed, given fe LYZ) and ¢ >0
there exists n’ so large that for n = %’ we have:

A < ¢/2.

1EI>[(n—1)/2]

Consequently, by Minkowski’s inequality and recalling that if 1 <s
then L'(Z) < L*(Z) we have:
A~ '\ 1/a’
1 = (3 )

(S14)" + (S] S e

150
<1l + 3| S Aers
S 1 lle + 3 A

ki
10

< |Iflle +e2=¢.

Similarly, given & € L'(Z) and & >0, there exists »” so large that
for n = n"”" we have

Ak + Z« Ak+ni
170

IA

Q')I/Q'

>, Bl = |@ll,¢/2 .

[ki>[(n—1)/2]

Thus if v has order n = n',

lg 181l, = 1g (S

Bi 4+ 3 Biiw
1550

P>1/P
<1 ((S1B.1)" + (S| S B

<1lg (|9l + 3 [Buewl)
ik

)

slg(Ill,-@ +e/2) =e.

Finally, if 7 is the measure of the subset of (0, 2z] where f(#) #=1
and the order n of ' satisfies

n > (/e)'*
we have:

m{reG:Flx)y=1}=1-¢,
m{zeG:é(x) =1} =1 — 2¢.

Therefore, to fulfill conditions (1) to (4) and to prove the lemma it is
enough to choose 7' € I" with order % satisfying

n > max (w', n”, (7/¢)"") .
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LEMMA 2. Given a sequence of positive real numbers {e,)5, such

that 23, 6. < 1, it is possible—for every ke N to find E®, ¢""
satisfying Lemma 1 with ¢ = ¢, such that for all Ne N

<,:!1:I1 ¢(k) )A

Proof. Inequality (1) can be proved easily enough by induction.
Suppose that (1) holds for N=1,2,.-., R — 1. We want to show

that:
(ﬁ ¢(k}>A

(1)

’p =< exp [:Ez—:,:ek:l. lfi ”Sz(k)”p <e.

(2) IT

A (me=) [ g,

We must distinguish two cases:
(1°) G is as in the Case 1(a) of Lemma 1. Then we must choose ¢
such that

supp ¢ N (supp ¢, - -, supp ¢*) = {0} .

(2°) G is as the Cases 1 (b) and 1 (c) of Lemma 1. Then we define
¢ starting from the function ¢, which satisfy the analogous inequality
in [5]. Using condition (f) of Lemma 1, we see that (1) is true in
both cases.

Conclusion of the proof of Theorem 1 in Case (1). Choose a
sequence of real numbers ¢, >0,k =1, 2 ..., such that 23}, ¢, < 1.
We define

- AE".
E ’DIE
Since we assume that 2>, ¢, < 1, then clearly:
mE)=1—3¢e>0.
k=1

We assert now that E is a set of uniqueness for L%I"). Let
g be an integrable function with support included in E for which
[1g]l¢ < 4+ oo. Since F*(x) = 1 for x ¢ E, ke N we have, for 7 fixed:
i) = | g@rr(-apde = | Fo@g@r(—a)ds
G
= F®x§(7) ,

and, from Holder’s inequality:

G = 1§11 F% [l < |G loves -

Letting k¥ — « we have that §(v) = 0 for all ve I" and thus that g = 0.
We also assert that E is a set of multiplicity for L?(I"). Let
#(N, 2) = I, ¥ () for zeG. Since L?(I") is weakly boundedly
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compact for pe (1, 2], it follows from (1) that there exists \(v) € L?(I")
which is a weak limit point of $(N,7), N=1,2,.... By (e) of
Lemma 1,

mweGig(N, ) =1} 21— 236 >0,

and since, for every 2 € G, ¢(N, ) = 0, by (d) of Lemma 1, we see that:
AN, 0)0=1—-23¢,, N=12 ...,
and hence
M0)=1—-23¢,>0.

Therefore \(7) # 0.

Let & be a function defined on G such that A(v) = M7). Moreover,
h e LY(G) since it has support of finite measure and, by the Hausdorft-
Young theorem, ke L?(G). Then % is a nonzero function supported
in the intersection of the supports of ¢(N, x),x€G and Ne N, and
therefore (supp k) C E.

Case (2). G is a Euclidean space R™ for some n > 0. We can
identify T with the real interval [—1/2,1/2) and therefore we can
identify T" to be the vector product [—1/2,1/2)". Choose now a
sequence of real numbers {¢,};-, such that 43, ¢, < 1.

For every ¢, we consider the corresponding function f, which
satisfies Lemmas 1 and 2 in the case of the torus. Thus we can
extend periodically the function f, to all the real line and we call
fi also this (periodic) extension. Now we extend the domain of definition
of f, from R to R" as follows:

f{(xly °tty xn) = fk(xl)

and we choose a positive, continuous function P defined on R™ which
satisfies:

(1) 0= P@®, ++-,x,)=1  for any (,---,x,)cR"
(2) P@®,---,2)=1 on[—-1/2+ 1/8,1/2 — 1/8]"
(3) P, ++-,2,)=0 outof [—1/2 1/2]"

(4) PeC (R .

By defining F', as

Fk(xl, cee, xn) = {(xl’ ces, xn).P(ay” coe, x,)

we have a function which is obtained from f; by dropping to zero
its value outside of [—1/2,1/2]" and which equals f{ on a smaller
cube.

Now we show that the range of the operator T,
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T:— (g*P)"

where we define g7 (x,, -+, ,) = g(%,) is contained in L'(R"), 1<s< oo,
for all continuous g on 7' with §e L(Z), that is for all ge A(T).
Moreover, we show that 7T is continuous from L'(Z)-equipped with
L*(Z)-norm into L*(R"),1 < s < oo.

To keep the notation simple we only prove the case when n = 1.
We also make use of the following formula for a e R:

@P@ = 3, gmba— n) .

N==—

By the Riesz-Thorin theorem, it is sufficient to prove that 7T is

continuous for p =1 and p = oo.
If p=1,

179l = | 10P @ lda = 35 150w (sup | | P@ - w)da)
=< 11811l Plsacis -

If p= oo,

e A~
1 Tglle = sup [(¢P)"@)| = sup 3 [§(n)|-|P(@ — m)]|
< 1§ |l-sup 3 | P& — m);
the sum 3, |P(@ — n)| is bounded independently of @ and therefore
[Tglle = Ciollgllw »

where C, depends only on P.
Therefore,

NE# |0 p < Cool| Fuller

where C, depends only on P.
We claim that

Il
s

E {xre R™ Fy(z) = 1)

k

1

is a set of positive measure, of g-uniqueness and p-multiplicity.
It is easy to check that

m(E) =z (1 — e — 1/4HE/M4)" > 0.

The proof for E that is a set of g-uniqueness is the same as for

Theorem 1, Case (1).
To prove the p-multiplicity of E, let h* denote the periodic
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extension to R"—defined in the same.way as for f{ in Case (2)—of the
function 4 found in Case (1), where G = 7.
Let P be defined on R"™ as above. It remains only to show that

the function
H(wl’ ** .) x‘"r) = h*(xl’ b .) x‘n)P(xl’ b .’ x’ﬂ)

is a nonzero function supported by E (obvious), and satisfying
He L*(R".
This last fact follows from the boundness of the operator
T:G— (g*P)" from LYZ) to L*(R", which we have proved above.
Thus the theorem is completed also in Case (2).

Case (3). G is a direct sum of a compact group K and a Euclidean
space R" for K = {0} and n > 0. We can consider the set Ec R”
found in Case (2) and, by choosing the Haar measure on K such that
m(K) = 1, it is easy to check that

EDK

is a set which resolves our theorem. We simply recall that the dual
group of a direct sum is a sum of the corresponding dual groups
[8, p. 36].

3. A variant. We consider the case when G is the Cantor group.

DEFINITION. We call Cantor group D, the complete direct sum
of Z(2), for ne N where each Z(2), is the group of order two. Thus
D is the group of all sequences {£,}, &, = 0 or &, =1 with coordina-
tewise addition modulo 2, and with the topology that makes the
mapping

(&}~ 2 2” £,-37

a homeomorphism of the group onto the classical Cantor set of the
real line. It will be convenient to identify D with the interval [0, 1].
This is done by considering the mapping

t:D—1|0, 1]
{En}::l > Z.lfn'Z‘”
which is continuous, invertible a.e. and Haar measure preserving.
Because the dual of a group of order two is again the group of order

two, the dual of the group D is the direct sum of a sequence of
groups of order two. In other words, the generators of I" (the dual
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of .D), are the functions
7,(@) = (= 1),

and every element of I" has the form
k
W(x) = II ’I',,,.(w) = (.__ 1)5n1+...+enk ,
. i=1

If #(x) is not a dyadic rational number, we can identify & with #(x)
and then we can identify the », functions with the classical Rademacher
functions on [0, 1]. It is clear that the harmonic analysis on L?(D) is
the same as on L?([0, 1]), if we identify D with the real interval [0, 1],
its Haar measure with the Lebesgue measure, and its characters with
the Walsh functions (finite products of Rademacher functions).

We recall now the Paley order for the Walsh functions and hence
for the characters of D:

’w0=7'oEl,
Wan—1 = 1, » for n=1,

Wy = Tyy» oo+ o7, Where n =2"7" 4 co0 4 2%,

k

Let us set, for f defined on D:
- A ifp
17 llne = ( S 17w P(L+ 1)
nenN

where 1 < p< o and 0 <a<1—1/p.

If we make the obvious generalization of a set of uniqueness and a
set of multiplicity for L*(I")—given in §1—to the case L>*(I"), a = 0,
we can prove:

THEOREM 2. For every real numbers p, q such that 1 < p, ¢ < oo,
if p'a< Bq’, where a, Be R, 0 < a< 1/p" and 0 < B < 1/q', there exists
a subset EC D of positive measure which is a set of uniqueness for
L&) and a set of multiplicity for L**(I).

Proof. Given a real number ¢ > 0 we must find a function ¥ such
that
(1) [[Fllp-p=e  where 1/g + 1/¢ = 1,
(2) m{geD:Fx)=1}=1—c¢,
and a function ¢ such that
(3) é(@ =0, for any ze D,
(4) mixeD:g(x) =1} =1 —c¢,
(5) log|[llpe=c¢.
To this end we define a sequence {F,}5., of functions:



478 ANNA MARIA MANTERO
F,x)=1->w, for m=10,1,2, ...,

where the sum is taken over the finite set
{0, 1.2F™ 2.2km 3.2km oo. (2F — 1)2¢m}

and k is a positive integer to be specified later.
We can give the following equivalent definition for F,:

1—-2  xe(0,1/29

Fo(z) =
(@) 1 elsewhere .

If we extend F, to a periodic function Fi of period one, defined on
all of R and equal to F, on [0,1] we can also define:

F,(x) = FF@2"x) for 021,
It is clear that:

SFm(w)dx —0 and m{zeD: Fox) =1} =1 — 1/2*.

Moreover, from the following relation:

1 if m=0,1.2t" 2.2%m 3.2%m ... (2 — 1)2tm

Fo(w,) =
n(104) {0 otherwise ,

we deduce:
A 1/q’
1 Pulles = (5@ + myor)™ < Aprosmio.gimes
Analogously we define a sequence {¢,}n-, of functions such that
¢0(x) =1 ’

¢m(x)=1—31,;2wn(x), for m=1,2 +--,

where the sum is taken over the set
{0, 1.2k(m—1), 2,2k(m—1)’ oo, (2k _ 1)2k(m—-1)} .
Since the ¢, are trigonometric polynomials, it is trivial that:

1 — 1/2% if =0
ém(wn) = {1/2* if m=2tmD ... (2F — 1)2km-1)
0 otherwise ,

and so, an easy calculation yields:
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10g [[$p lly,a < B-2+079 25mire)
Moreover, we have
m{x: g.(x) = 1} = 1 — 1/2% .
Indeed we can give the following equivalent definition for ¢,:

0 for x e (0, 1/2%)

é.(x) =
A(®) 1 elsewhere

and notice that, if ¢ is a periodic extension of ¢, on all the real line,
the following relation holds:

() = @F(2F™ V) for any z,0<x<1.
Now, if we choose k¥ and m such that are solutions of the system:

Azk(l/q’—‘ﬁ) 2km(—ﬁ) é e

(2) B2k(1—p) 2km(pa) é &

(we observe that A and B are constants depending on p,q, a, B), F,
and ¢, satisfy properties (1), (2), (3), (4), and (5).

These solutions exist because p'a < B¢’, by hypothesis.
Let us define:

E={xeD:F,(x) =1}.

Choose a sequence of real numbers e; >0,¢=1, 2, --., such that
23,¢e < 1, and repeat the preceding construction for every ¢ = ¢,. If
we also choose the solutions k& and m of (2) in such a way that:

ki > kiym;_,
we can show, by induction, that, for every Ne N:
[N
(1r#)

We assert now that our set of (p, @)-multiplicity and (g, 8)-uniqueness is

N
=1

~
”¢i”pya .

=

D v

E:—.ﬁEi.

The proof of the theorem is now the same as that for Theorem 1,
Case (1).
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