PACIFIC JOURNAL OF MATHEMATICS
Vol, 63, No. 2, 1976

ON THE ASSOCIATIVITY AND COMMUTATIVITY
OF ALGEBRAS OVER COMMUTATIVE RINGS

KwaNGIiL KoH, JiANG Lua AND MoHAN S. PurcHA

Let A be an algebra (not necessarily associative) over a
commutative ring R. A is left scalar associative if for
each a,b, cec A there exists ac R depending on a, b, ¢ such
that (ab)c=aa(bc). A right scalar associativity is defined
similarly. A is scalar commutative if for each a,b in A,
there exists ac€ R depending on a, b such that aadb = ba. In
this paper, it is shown that if A is right and left scalar
associative and scalar commutative then (ab)c — a(bc) and
ab — ba are nilpotent for every a,b and ¢ in A. If 1€ A,
then [(ab)c — a(bc)]?=0. If R is a principal ideal domain
then A is associative and commutative.

Introduction. Coughlin and Rich [1] and Coughlin, Kleinfeld
and Rich [2] have studied algebras A over a field F’ with the property
that for any =z, ¥, z € A there exists a € F' depending on z, ¥, z such
that (zy)z = ax(yz). They show that if A has a nonzero idempotent
then this condition implies associativity. Rich [4] has shown that
if for each z, y € A there exists @ e F depending on =z, ¥ such that
xy = ayx, then A is either commutative or anti-commutative. In
this paper we study related conditions for an algebra A over a com-
utative ring R. If either A has no zero divisors or if A has identity
element and R is a principal ideal domain, then we can still prove
associativity and commutativity under the respective conditions. In
general with some additional minor constraints we are able to prove
the nilpotency of associators and commutators in A.

1. Preliminaries. Throughout this paper N will denote the set
of natural numbers and Z* will denote the set of positive integers.
R will denote a commutative, associative ring which may or may
not have an identity element. A will denote a mnot necessarily
associative ring which may or may not have an identity element.
We assume that A is an algebra over R in the sense that for all
a,becAand o, Be R, (@ + B)a = aa + Ba, ala + b) = aa + ab, (aB)e =
a(Ba), and a(ab) = (aa)b = a(ab). As usual if @, b, ¢ € A, the associator
(a, b, ¢) = (ab)e — a(bc) and the commutator [a, b] = ab — ba. We will
be concerned with the following generalizations of concepts introduced
in [1], [4].

DerFINITION 1. A is left scalar associative if for each a, b, cc A
there exists @ e R depending on a, b, ¢ such that (ab)c = aa(be).
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2. A is right scalar associative if for each a, b, ¢c € A there exists
a € R depending on a, b, ¢ such that a(bec) = a(ab)c.

3. A is scalar associative if it is both right and left scalar
associative.

4. A is scalar commutative if for each a,be A there exists
a € R depending on «, b such that ab = aba.

LEMMA 1.1. (i) If A is scalar associative, then for all a, b, cc
A, acR, ag(bc) =0 if and only if a(ab)e =0. Also, (ab)e =0 if
and only if a(be) = 0.

(ii) If A is scalar commutative, then for all a,bc A, acR,
aab =0 if and only if aba =0. Also, ab=0 if and only if
ba = 0.

LEMMA 1.2. (i) Suppose A is scalar associative. Let x, y, z, u €
A o, BeR such that (x,y, u) =0, (xy)z = ax(yz) and x(y(z + u)) =
Bxy)z + w). Then xyu — arvyu — Bxyu + aBxyu = 0.

(ii) Suppose A is scalar commutative. Letx,y, wuecd, o BeR
such that yu = wy, ¥& = oxy and (& + u)y = ByY(x + u). Then yu —
ayu — Byw + aByu = 0.

Proof. (i) We have 2(y(z + v — aBz — Bu)) = 0 and hence by
Lemma 1.1, (2y)(z + v — afz — Bu) = 0. Also aB(zy)z + u) = (zy)z +
aryuw. Combining these we have the result.

(ii) We have (x + v — afx — Bu)y = 0. Hence by Lemma 1.1,
Y@ + u — apxr — Bu) = 0. Also aBy(x + u) = yx + ayu. Combining
these we have the result.

2. Associators and commutators. The main purpose of this
section is to study nilpotency of associators and commutators.

THEOREM 2.1. Let A be scalar commutative. If either A has
an identity element or is scalar associative, then the square of every
commutator in A 1is zero.

Proof. Let z,ye A. There exists e R such that yx = axy.
First assume A has an identity element 1. Then there exists 8e R
such that (x + 1)y = By(x + 1). By Lemma 1.2 we sety — ay — By +
By =0. Hence y(x +1)—ay(x+1)=pLy(x +1) —afyx + 1) =
(x + 1)y — a(x + 1)y. This implies that (zy — yz) = (vy — azy)* = 0.

Next assume A is scalar associative. There exists 7€ R such
that (x + y)y = 7Yy(x + y). By Lemma 1.2, 9*— ay’® ="y’ — avy’.
Multiplying the first equation by a and then subtracting from
itself, we get 2y — azy = Yyx — aYyx. Now there exists d € R such
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that y(yx) = oy’x. So y(xy — axy) = TyY(yx) — aVy(yx) =o0(Vy*—avy*)x =
o(y?: — ay®)x = y(yx) + ay(yr) = ay(7y) — ¢*y(xy). Hence y(xy —2axy +
a’ry) = 0. By Lemma 1.1, (xy — yx) = (2y — axy) = 0.

THEOREM 2.2. Suppose A has an identity element 1 and s
scalar associative. Then the square of every associator in A is zero.

Proof. Let z,y, z€ A. There exist o, € R such that (xy)z =
ax(yz) and x(y(z + 1)) = B(xy)z + 1). By Lemma 1.2, zy — avy =
Bry — aBy. So

(xy)z + 1) — a(zy)z + 1) = Bl@y)z + 1) — aB(xy)z + 1)
= 2(y(z + 1)) — ax(y(z + 1)) .

Thus (z, y, 2)* = 0.

THEOREM 2.3. Suppose A has no zero divisors.
(i) If A is scalar commutative then A is commutative.
(ii) If A is scalar associative them A is associative.

Proof. (i) Let z, ye A. There exist o, S R such that yx =
axy and (¢ + y)y = By(x + y). By Lemma 1.2, (y — ay)(y — By) = 0.
So y = ay or y = By. In either case xy = yx.

(ii) Let u, v, we A be nonzero. Let ac R be such that uwv =
aw(vw). Let w' e A. We make the following claim.

(1) If [w, w']+0, then (wv)w' = au(vw’).

There exists 7Y€ R such that (uv)w’ = 7Yu(vw’). Suppose (1) is not
true. Then au # Yu. There exists g€ R such that (uv)w + w') =
Bu(v(w + w")). So au(vw) + Yu(vw') = Bu(vw) + Bu(vw’). Since A
has no zero divisors we get aw + Yw' = fw + Bw’'. Hence (@ — B)w =
(B —7)w'. Thus w' commutes with (¢ — B)w and w commutes with
(B —7w'. So,

(a — B)w, w'] =[(a — B)w, w'] =0;
(8 = Nw', w] =[(8 — Nw', w] =0.
Hence
(@ = Bufw, w'] = 0= (B — Mu[w, w] .

Since [w, w'] = 0 we get (¢ — B)u = 0= (8 — Y)u. Hence au = Yu,
a contradiction. So (1) is true. Similarly, it can be seen that if
u', v'e A, then
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[u, w'] # 0 implies (w'v)w = au'(vw) ;
[v, '] # 0 implies (wv)w = au(v'w) .

(2)

Next we show that for all x € 4, x-2* = 2*-x. Suppose not. Then
there exists x € A such that [z, 2] = 0. So xz # 0 and there exists
0 € R such that (z-x)x = dx(x-x). By (1), (2) we get (2*-x)x = dx*(x-x),
(x-2)x = dx(a?-x) and (x-2)2* = dx(x-2°). So (2*-2)x = 0x*(x-2) =
o(x-x)x* = 0*x(x-x*) = dx(dx-2*) = dx(x*-x) = (x-2*)x. This contradiction
shows that #*-x = x-2* for all x€ A. Now let a,b,c€4,a,bc+#0
such that (a,b,¢) =0. Let ¢’€A. There exist g, ve R such that
(ad)c’ = pa(be’), a(b(c’ + ¢)) = v(ab)(¢' + ¢). By Lemma 1.2 and the
fact that A is a domain we get (¢ — tta)a —va)=0. So a = pa
or @ = va. In either case (a, b, ¢) = 0. By duality we can therefore
conclude that for a, b, ¢£0, (a, b, ¢)=0 implies that (a’, b, ¢)=(a, V", ¢)=
(a, b, ¢') =0 for all o', b, ¢’ € A. Starting with the fact that x-2* =
x?-x for all x € A, we can use the above repeatedly to conclude that
A is associative.

If I is an ideal of A which is also a subalgebra, then A/I is
also an algebra over R. If A is scalar associative (resp. scalar
commutative) then so is A/I. If A is scalar associative and xe€ 4,
then by Lemma 1.1, the nth power of x is zero in one association
if and only if it is zero in every association. Hence it makes sense
to talk about nilpotent elements in A.

THEOREM 2.4. Let A be scalar associative and scalar commuta-
tive. Then every associator and every commutator in A is nilpotent.

Proof. The hypothesis implies that the nilpotents of A form an
ideal and a subalgebra. So without loss of generality, let A have
no nilpotent elements. By Theorem 2.1, A is commutative. Call an
ideal I of A prime if abel implies acl or bel. We now follow
some well known ideas (cf. [3; Chapter 4]). Let ze A, x = 0. Let
T be the groupoid generated by xz. Then 0¢ 7. By Zorn’s lemma
there exists a maximal ideal P of A not intersecting 7. We claim
that P is prime. Suppose there exist a, b€ A such that a, b¢ P but
abe P. Let P,={na + ra +u|neN, rec A, uecP}. Then by commu-
tativity and scalar associativity, P, is an ideal of A containing P
and a. Hence PN T = @. So there exists d, =na + raecT for
some n, e N, r,€ A. Similarly there exists d, = n,b + r,be T for some
n,e€N, r,¢ A. So dd,eT. By commutativity, scalar associativity
and the fact that abe P, we get d,d, € P. This contradiction shows
that P is a prime ideal. Hence the intersection of all prime ideals
is zero. We claim that each prime ideal P is a subalgebra. For
let e P. Then for any ac R, (ax)ax) = (a*x)-x€ P. Hence axc P.
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Thus A is a subdirect sum of algebras without zero divisors, each
of which scalar associative. By Theorem 2.3, A is associative.

3. Algebras with identity elements. Throughout this section
we will assume that R has an identity element 1 satisfying 1-¢ = @
for all ¢ € A and that A itself has an identity element which will
also be denoted by 1.

LEMMA 8.1. A is right scalar associative if and only if A is
left scalar associative if and only tf A is scalar associative.

Proof. By the dual nature of the conditions we may assume A
is left scalar associative and prove that A is right scalar associative.
Since A is left scalar associative we have that for any z, y, z€ A,
2(yz) = 0 implies (xy)z = 0. Now let @, b, c€ A. There exist a, B¢
R such that (ab)c = aa(bc), and ((@ + 1)b)c = B(a + 1)(b¢). Hence
aa(be) + be = Ba(be) + Bbe. Thus (aa + (1 — B)-1 — Ba)be) =0. So
((aa+ @1 —B)-1 — Ba))e =0. It follows that (o — B)(ab)e =(8—1)bc =
(@ — B)a(be). So (B — 1)a(be) = (a — B)aa(be) = (a — B)ab)e = (B — 1)be.
Hence (8 — 1)@ + 1)bc) = a[(8 — 1)be] + (8 — 1)be = al(8 — L)abde] +
(B —1bc = (8 — Daa(be) + (B — 1)bc = (8 — 1)(ab)e + (B — 1)bec =
(B — D((e + b)e. Consequently, ((a@ + 1)b)ec = B(a + 1)(be) = (8 — 1)-
(@ + 1)(be) + (@ + 1)(be) = (B — V)((e + 1)b)ec + (@ + 1)(be). Thus
(a + 1)bc) = (2 — B)(@ + 1)b)c. Since @, b, ¢ are arbitrary we obtain
that A is right scalar associative.

Suppose R is a P.I.D. (Principal Ideal Domain) and @ € A. Then
we define order of a, o(a), to be the generator of the ideal I =
{alae R, aa = 0} of B. Thus o(a) is unique up to associates in R.
o(e) =1 if and only if ¢ = 0.

LEMMA 3.2. Suppose R is ¢ P.I.D.

(i) If A is scalar associative, a,be R and o(ab) =0 then
(a, b, ¢) =0 for all ce A.

(ii) If A is scalar commutative, be B and o(b) = 0 then b is
in the center of A.

Proof. (i) Let ce€A. There exist «, 8¢ R such that (ab)c =
aa(be) and a(d(c + 1)) = B(ab)(c +1). By Lemma 1.2, (1 — a)(1 — B)ab =
0. Soa=1o0r 8=1 and thus (a, b, ¢) = 0.

(ii) Let beA. There exist a, 8e€ R such that ba = asb and
(@ + 1)b = Bb(a + 1). So by Lemma 1.2, (1 — a)1 — B8)b = 0. Hence
a=1or b =1 and thus ab = ba.

LemMmA 38.3. Suppose R is o P.I.D. and A is scalar associative.
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Assume further that there exists a prime pe R, meZ* such that
p™A =0. Then A is associative.

Proof. Let . = {(x, y)|x, ye A and (x, y, z) =0 for all z¢ A},
% = {(z, y)|a, ye A and (u, x, y) = 0 for all ue A} and .&7 = &[N
. Let x, ye€ A. Let o(xy) = p*, ke N. We prove by induction on
k that (x, y)e % If k¥ =0 then 2y = 0 and by Lemma 1.1, (x, y) €
&7 So we assume k> 0 and that the statement is true for [ < k.
We first show that for any ze€ A, (2, ¥, 2) # 0 implies (x, y2, w) =0
for all we A. So let (x, ¥, 2) # 0. There exist @ e R such that
(vy)z = ax(yz) and ((x + L)y)z = B(x+ 1)(yz). So ax(yz)+ yz = Bx(yz) +
Byz. Hence (a — B)x(yz) = (8 — V)yz. If (o — B)x(yz) =0, then
Byz = yz whence (2, ¥, z) = 0, a contradiction. So (a — B)x(yz) #= 0.
In particular &« — 8% 0 and a — 8 = 6p’ for some te N,0€ R, (6, p)=1.
If ¢t = k then since o(xy) = p* we would get (& — B)xy = 0. But then
(¢ — B)xy)z = 0 which by Lemma 1.1 implies (@ — B)x(yz) =0, a
contradiction. Hence ¢t < k. Now since p“(xy)z = 0 we get p*x(yz) =
0. So p* 4B — l)yz = p*éx(yz) = 0. Let o(yz) = p'. We claim that
© = k. For suppose ¢ < k. Then by induction hypothesis (y, 2)e
& < 4. In particular (z, y, 2) = 0, a contradiction. So 7 = k.
Hence p*|p¢|p* (8 — 1). Thus p*|8—1 and 8 — 1 = p*v for some .
7eR. So pi[ox(yz) — Yyz] = 0. Therefore p‘[(dx — 7-1)(yz)] =0. By
induction hypothesis (6x — 7-1, y2)e &% < 4. Hence for all we A,
(0 — -1, yz, w)y=0. Since (7-1, y2, w) =0 we get o(x, ¥z, w)=
(0x, yz, w) = 0. Since (6, p) = 1, there exist g, ve R such that pp™ +
vo =1. So (=, yz, w) = vi(x, yz, w) = 0. Thus we have shown that

(3) (x, ¥, 2) = 0 implies (x, yz, w) = 0 for all we A .

Now we proceed to show that (x, y)e.94. For suppose not.
Then (x,y,u)# 0 for some v € A. Then we also have (x, ¥, v +1) = 0.
So by (3) we get (x, yu, w) = 0 = (x, yu + y, w) for all we A, This
implies (x, ¥, w) = 0 for all we A. In particular (z, y, ) = 0, a con-
tradiction. This contradiction shows that (z, y)e .94. A right-left
dual argument can be given to show that (z, y) € 4. Hence (x, ¥) € ¥
This completes the induction step.

LemMmA 3.4. Suppose R is a P.I.D. and A s scalar commutative.
Assume fuyther that there exists a prime pe R, meZ* such that
p"A = 0. Then A is commutative.

Proof. Let C be the center of A. Let € A and o(x) = p*, ke
N. We prove by induction on %k that xeC. If ¥ =0, then 2 =0
and there is nothing to prove. So let >0 and assume the
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statement for [ < k. We first show that for any ye A4, [z, y]+ 0
implies [yx, y] = 0. So let [x, y] # 0. There exist @, Se€R such
that zy = ayx and (x + 1)y = By(x + 1). So ayx + y = Byx + BY.
Hence (@ — R)yx=(B —1)y. If (a — B)yx = 0, then By =y and
[#, y] = 0, a contradiction. So (@ — B)yx = 0. In particular @ — 8+ 0
and @ — B = p?0 for some te N, e R with (0, p) =1. If t =k, then
(¢ — Byx = 0, a contradiction. So t < k. Then p* (g — 1)y =
P Y a — B)yx = p*oyx = 0. Let o(y) = p’, 1€ N. If ¢« < k then by in-
duction hypothesis y € C, a contradiction. So ¢=k. Hence p*|p*|p**X
(B —1). So p'|B—1 and B — 1= p'r for some YeR. So p'(dyx —
7y) = 0 and by induction hypothesis dyx — YyeC. In particular
[0yx — 7y, y] = 0. Since [7y, y] =0 we get d[yz, y] = [dyz, y] = 0.
Since (0, p) = 1 there exist g, ve R such that po + vp™ =1. So we
get [yzx, y] = polyx, y] = 0. Thus we have shown that for all y€ A,

(4) [, y] # 0 implies [yz, y]=0.

Now we proceed to show that x € C. Suppose not. Then there exists
u € A such that [z, ] = 0. So [z, u + 1] # 0. By (4) we get [ux, u] =
[ux + 2, w + 1] = 0. Hence [z, w] = 0, a contradiction. This proves
x € C completing the induction step.

THEOREM 3.5. Suppose R is a P.I.D.
(i) If A is scalar associative, them A is associative.
(ii) If A s scalar commutative, then A is commutative.

Proof. (i) Suppose A is not associative. We will get a cont-
radiction. There exist z, ¥, z€ A such that (z, ¥, 2)# 0. So(x + 1,
Y,2)# 0. By Lemma 3.2, o(xy) # 0, o(xy + ¥) # 0. Thus o(y) = 0.
Since (z, y + 1, 2) # 0, the above argument shows that o(y + 1) % 0.
Hence o(1) = 0. Let o(1) =d # 0. Then d is not a unit and hence
d=pi ... p;* for some primes p,, -+, p, € A and some positive integers
Ty v+, 1. Let A, ={alac A, pi’ea = 0}. Then each A, is a nonzero
subalgebra of A and A=A, --- P A,. Being subalgebras of A4,
the A/’s are scalar associative. Being homomorphic images of A,
all the A,’s have identity elements. By Lemma 3.3, each A, and
hence A is associative, a contradiction.

(ii) Suppose A is not commutative. We will obtain a con-
tradiction. There exists x € A such that x ¢ C, the center of 4. So
x+1¢C. By Lemma 3.2, o(x)=0 and o(x + 1)~ 0. Hence o(1)+ 0.
By using Lemma 3.4, we obtain as in (i), that A is commutative, a
contradiction.

ExamMPLE 3.6. If R is a field and A is scalar commutative then
even if A does not have an identity element, Rich [4] shows that
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A must be either commutative or anti-commutative. This is not
true for P.I.D.’s. To see this let 4, be the non-commutative, anti-
commutative algebra over Z; given in [4]. As a Z-algebra A, satisfies
2y = 4yx. Now Z, as a Z-algebra satisfies the same identity. So
the Z-algebra A = A, X Z, satisfies xy = 4yx. However A is not
commutative (since A, is not) and A is not anti-commutative (since
Z, is not).
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