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NIELSEN NUMBERS AS A HOMOTOPY
TYPE INVARIANT

EDWARD FADELL

Let f:X-* X denote a self map of a compact ANR and
let N(f) denote the Nielsen number of / which measures the
number of essential fixed points of /. Then it is well-known
that / ~ g: X-^> X implies N(f) = N(g). Suppose Y is another
ANR and g: Y —> Y is a map such that for a homotopy equi-
valence h:X-+Y9 we have hf~ gh. Then Jiang (1964) proved
that in these more general circumstances, Nf= N(g), in the
special case when πx{X) is finite. This paper contains a proof
of the result without this restriction and applies it to give
a technique for extending results in the Nielsen theory of
fiber-preserving maps from locally trivial fiber bundles in
the category of polyhedra to Hurewicz fibrations in the ANR
category.

1* Introduction* As usual in dealing with the Nielsen number
N(f) of a map f:X—+X, we restrict our spaces to the category
of ANR's (compact metric)(see [1]). Since it is well-known that
f ~ g: X—+ X (f homotopic to g) implies that N(f) = N(g) a word
of explanation of the title is in order. Jiang Bo-Ju in [6] considered
the following situation. Given the homotopy commutative diagram

X-^X

(1) h\ \h

Y-^Y

where h is a homotopy equivalence, Jiang called / and g maps of
the same homotopy type. The main theorem of the last section of
his paper stated that if / and g have the same homotopy type and
if TU^X) is finite, then N(f) — N(g). The proof consisted of employing
the approach to Nielsen theory using lifts in the universal cover.
Then, h was used to establish a correspondence between the fixed
point classes of / to these of g. However, in order to establish that
essential classes corresponded to essential classes it was necessary to
compute local indices. This was done using Lefschetz numbers in the
universal cover, which is compact when the space has finite funda-
mental group. This technique has its limitations and about as far
as one can go with it is to relax the finiteness condition on TΓ^X)
to a finiteness condition on the kernel of ff πx(X) —• πL(X).

Fortunately, there is a very simple proof of the general result
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which is quite useful in the study of Nielsen numbers in fiber spaces.

2* Homotopy type invariance*

THEOREM 2.1. Given the homotopy commutative diagram maps

( 2 ) h\

where h is a homotopy equivalence. Then, N(f) = N(g).

The basic idea is to use mapping cylinder C(h) of the homotopy
equivalence h and the following basic properties of the local index [1]:

(a) (Homotopy Invariance) f~g:X~+X implies N(f) = N(g)
(b) (Commutativity) Given φ: X-»Y, ψ:Y~+X, then

( 3 ) i(X9 ψφ, U) = i(Y, φψ, ψ~\U)) , (i - index)

provided ψφ is fixed point free on the boundary of U.
We use (b) to prove the following lemma.

LEMMA 2.2. Let X denote a retract of Z and let i: X—+Z, r: Z—>
X denote inclusion and retraction, respectively. Given f:X—+X,
set f = ifr: Z-+ Z, the natural extension of f. Then N(f) — N(f).

Proof. The fixed point set Φ(f) of / is the fixed point set of
/. We next show that the Nielsen classes of / and / are identical.
Let x and y denote two fixed points. If x and y are Nielsen equivalent
wrt /, then there is a path a in Z joining x and y such that a ~ fa
(rel endpoints). This forces ra — rfa in X. But rfa — rifra — fra,
so that ra ~ fra, where ra is a path in X joining x and y. Thus,
x and y are Nielsen equivalent wrt f. See equivalence wrt f implies
directly equivalence wrt f, we see that the Nielsen classes of / and
/ are identical. We are left with checking local indices to insure that
the number of essential classes is the same for / and /. Let {t/*} be
a finite open cover of Φ(f) with mutually disjoint open sets, each
covering a Nielsen class Et. We apply the commutativity paoperty
to the maps <? = if: X-+ Z, ψ = r: Z-> X. Then,

(4 ) i(X, f, Ut) = i(X, ΨΨ, Ut) = i(Z, φψ, ψ~\ Ut)) = i(Z, f, ψ~\ Ut))

and the local indices of each Et wrt f and / are the same. Thus,
N(f) = N(f).
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Proof of Theorem 2.1. Starting with the diagram (2) let C(h)
denote the mapping cylinder of the homotopy equivalence h. Then,
we have inclusion maps i: X-+ C(h), j: Y—+C(h) and retractions p: C(h) —•
X, r: C(h)—>F, which are also homotopy equivalences, i.e., in addition
to pi = 1 and rj = 1, we also have ip ~ 1 and jr ~ 1. Now, let

(5 ) / : C(h) > C(h\ g: C(h) > C(h)

be defined by / = ifp and g = jgr. Then, according to Lemma 2.2,
N(f) = N(f) and N(g) = N(g). On the other hand

( 6 ) f=ifp~ jhfp ~ jghp = jgrip = gip - g

and by the homotopy property (a), N(f) = N(g). Consequently, we
have N(f) = N(g) and the Nielsen number is invariant of homotopy
type.

3. Applications. We give now an application which indicates
how to extend results on Nielsen numbers in locally trivial fiber
spaces to more general fibrations, e.g., Hurewicz fibrations. Let J^* —
(E, p, B) denote a fiber space and

777 J jp
ΓJ T Jjj

( 7 ) p |

7

a fiber-preserving map, with B O-connected. When ^ is locally
trivial it is possible to find a lifting function [5] λ for J^~ so that
the translations τa\ ^(^(O)) —* p " 1 ^ ! ) ) given by

( 8 ) τa(x) = X(x, a

are all homeomorphisms. This fact is used crucially in [2] in showing
that the Nielsen number of / along the fiber, NF(f), is well-defined
when ^ is orientable. Recall [2]:

DEFINITION 3.1. NF(f) is defined to be the Nielsen number N(fb)
of the map

( 9 ) fh = τj: Fb > Fb

where a is a path from b = f(b) back to b e B, and Fb is the fiber
over b.

We sketch now a proof that NF(f) is well-defined i.e., independent
of a and b e B, whenever J?" is a Hurewicz fibration which is orien-
table in the sense that every loop in B induces translations which
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are homo topic to the identity.

REMARK. Before we begin, let us emphasize that this is a rather
strong orientability condition compared with the condition that the
fundamental group of the base act trivially on the homology of the
fiber. However, fiber bundles with o-connected structure group are
orientable in this sense since, in this case, one can find a lifting
function λ such that every loop in B induces translations which
belong to the group of the bundle.

( i ) Independence of a. Let β denote another path from b to
b and β* the reverse of β. Then,

(10) τj ~ τaτβ*τβf ~ τβf

and N(τJ) = N(τβf).
(ii) Independence of beB. Let ceB denote another choice,

b — f{b), c = f(c), a a path from 6 to b, 7 a path from c to 6, and
7 — /OO Then, we have a homotopy commutative diagram

(ii)

JP Taf, JP
•frb * *b

where φ = τr*/rαrr, Fb = v~l(b)y Fc = p"1^). According to Theorem
2.1, N(τaf) — N(φ). Now, since 7 = f(Ύ) a simple argument shows
that fτr ~ τγf. Thus,

(12) φ = τr*τjτr - τr*raτrf - τβf

where β = 7^7* is a path from c back to c. Thus, N(τaf) = N(τβf)
and we have independence of beB.

REMARK 3.2. The fact that NF(f) is well-defined for orientable
^ ' s , requires only the Covering Homotopy Theorem for a class of
spaces containing all the fibers. Thus, for example, NF(f) is well-
defined for Serre fibrations provided all the fibers are compact poly-
hedra.

The fact that the Nielsen number along the fiber NF(f) is well-
defined for Hurewicz fibrations can now be employed in conjunction
with the Closed Fiber Smoothing Theorem of Casson and Gottlieb
[4] to provide the following tool for extending results on Nielsen
numbers valid in the category of fiber bundles to the category of
Hurewicz fiber spaces. We first consider some lemmas.

LEMMA 3.3. Given f:X-+X and g:Y-+Y such that N(g) = 1,
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then N(f) = N(f x g).

Proof. The result for X and Y polyhedral is a special case of
the main theorem in [3]. To extend the result to the case where
X and Y are ANR's compact metric we make use recent result (West
[8], Miller [7]) that there exist finite polyhedra A and B and homotopy
equivalences φ: X—• A, ψ: Y—+ B. If we let φ and ψ denote homotopy
inverses of φ and ψ, respectively and set / ' = φfφ, g' = fgψ, then
we have a homotopy commutative diagram

X x Y f X g > X x Y

(13) φ Xφ

AxB-^ϊ-

ψ X φ

and Theorem 2.1 implies that N(f x g) = N(f x g'), N(f) = N(f')
and N(g) = N(g'). Therefore

(14) N(f χg) = N(f x g') = N(f')N(9') = Wf)N(g) = N(f) .

LEMMA 3.4. Given α fiber homotopy equivalence

E h—>E'

(15) \ . /

of orientable Hurewicz fibrations and a fiber preserving map f (7).
Then h induces a fiber-preserving map f = hfh,

(16)

where h is a fiber homotopy inverse for h, with N(f) = N(f') and

NF(f) = NF{f).

Proof. This is immediate from the two homotopy commutative
diagrams below using the Theorem 2.1:

E'

A
B

f

_J_
V

*B

Fb

h\ \h h\ \
+ ft * * ' ft ^' ft

τp τpt rjir <*J

 v ηmt
£j , jij ji b > ji b

where τa and τ'a are, respectively, translations along a path a from
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b = f(b) to 6, in the fiber spaces (E, p, B) and (£", p',

E-

•1ψ

B-

f

J_

>E

J ,
>B

THEOREM 3.5. Let ά^ = (E, p, B) denote an orientable Hurewicz
fiber space where the spaces involved are ANR's (compact metric)
and let

(17)

denote a give fiber-preserving map. Then, there exists a locally trivial
fiber space ̂ ' — (E'f p\ B'), with both fiber and base finite polyhedra,
and a fiber-preserving map

jjj > jjj

(18) .

jy > ±j

such that N(f) = N(f'), N(f) - N{f') and NF(f) = NF(f), where the
latter are Nielsen numbers along the fibers for j^~ and «̂ ~', re-
spectively.

Proof. We assume first that B is a finite polyhedron. Then,
using [4], for some integer n > 0, ^ x Tn = (E x Tn, B, pp,), where
p1 — projection on first factor and Tn is an -^-dimensional torus, is
fiber homotopy equivalent to a locally trivial fiber space ^~' — (E'9
p\ B) with compact fiber F' which is a compact smooth manifold
with boundary. The fiber-preserving map (17) induces

Ex Tn —^-?—> Ex Tn

(19) PPl pPl

f
B J >B

where g: Tn —* Tn is any map such that N(g) — 1. For example, g
may be taken as the product of self maps of the circle of degree
2. Applying Lemma 3.3, we obtain N(f) = N(f x g), NF{f) = NF(f x g).
Now, applying Lemma 3.4, we have a fiber-preserving map / ' : Ef —>E'
induced on Sr' by (19), with

(20) N(f') - N(f xg) = N(f) and NF{Γ) = NF(f x g) = NF(f)

and the theorem follows for B a finite polyhedron.
In order to handle the case when B is an ANR (compact metric)

we again make use of the recent result [7, 8] that B is the same
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homotopy type as a finite polyhedron, induced fibrations as well
as the techniques already empolyed. We omit these details.

COROLLARY 3.6 (for example). Let &~ = (E, p, B) denote an
orientable Hurewicz fibration with E and B compact metric ANR's,
and let (f9f)ι&~—+^~ denote a fiber-preserving map (see (7)). If
one of the following conditions is satisfied:

(a) π^B) = πlB) = 0.
(b) πt(F) = 0, F a fiber of ^ .
(c) ά?~ is fiber homotopίcally trivial and nt(B) = 0.
(d) Letting F denote a typical fiber for J*", there is a homotopy

commutative diagram

I lA
where φ | p~ι (b) is a homotopy equivalence for each beB, then

(21) N(f) = N(f)NF(f)

Proof. We apply the main theorem of [3] in conjunction with
Theorem 3.5, observing that the proof of the main theorem in [3]
requires only that the base and fiber are finite polyhedra. (a) and
(c) require no special attention since the fibration J^' yielded by
Theorem 3.5 has a base of the same homotopy type and in case (c)
^ ' may be taken to be trivial. Case (d) requires the observation
that under the given hypotheses <^~ is fiber homotopic to the trivial
fiber space B x F and / has the same homotopy type as / x g.
Finally case (b) requires a little attention because, the new fiber F'
in the replacement bunnle given by Theorem 3.5 is no longer simply
connected. However, F' has the form F' — W x Tn (see [4]) and
the self map of F' used to compute the Nielsen number NF(f) along
the fiber is homotopic to one of the form φ x g, φ:W-+W, g: Tn —>
Tn,N(g) = l. Since, πλ{W) = 0, NF(f) = 0 or 1. In the case NF(Γ) =
1, the proof of the main theorem in [3] shows that N(f') = N(f')
and hence

(22) N(f) = N(f') = N(f').NF(Γ) = N(f).NF(f) .

If NF(f) = 0, again the same proof shows that N(f') = 0, and
hence since N(f) = JV(/') = 0 and NF(f) = NF(f) = 0 our conclusion
follows.
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