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CONVEXITY THEOREMS FOR SUBCLASSES OF
UNIVALENT FUNCTIONS

HERB SILVERMAN

We determine the radius of convexity of functions /(z) for
which Re{/'(z)/φ'(z)}> β, where φ(z) is convex of order
α ( 0 ^ a ^ 1). We also find bounds for |arg/'(z)|. AH result are
sharp.

1. Introduction. Let S be the class of normalized univalent
functions analytic in the unit disk. Let K(a) denote the subclass of S
consisting of functions φ(z) for which

This class is called convex of order a. We say that an analytic function
f(z) = z + a2z

2+ is in the class C(α, β) if there exists a function
φ(z)£K(a) such that

This class was defined by Libera [5]. Kaplan [3] showed that C(0,0), the
class of close-to-convex functions, is univalent. Since C(α, β)C C(0, 0),
we see that C(α,/3) is a subclass of S.

Denote by Pβ the functions p(z) that are analytic in \z | < 1 and
satisfy there the conditions

p(0)=l and Rep(z)>/3,

and set Po = P It is well known that a function q(z) is in Pβ if and only
if there exists a function p(z)E P such that

) + β

0) *-ΪV

Thus if /(z)E K{a, β), then we may write

(2) / ' ( z ) = ψ ' ( z ) ^ ^
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where
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where φ(z)EK{a\ p(z)EP, and h is defined by (1). Taking logarith-
mic derivatives in (2), we find that

(3)
zf"(z) = zφ"(z) ,

ί + f'(z) ί + φ'(z) + p(z)
zp'(z)

It is our purpose in this paper to determine the radius of convexity for the
class C(a, β). Note, for | z | = r, that (3) yields

(4) min
fec(a,β

= min

+ min Re
pGP

ί ZP'(*) 1
\p(z)+hί

In [5], Libera found a disk \z\<r in which / ( z ) G C ( α , β ) is

convex. His method essentially consisted of utilizing the inequaltiy

min Re ί 1 + ̂ ζj^Ά ^ min Re (l + ZfSZΆ - max
PEP

zp'(z)
p(z)+h

His result, however, was not sharp because for | z \ = r,

. Ό f z p ϊ z ) l ^
min Re 1 ( \+u \ - "" max

with equality on/y when h = 0. The function that he claimed to be
extremal need not be in C(α, β). See [9]. It is known [1] that

. D f1 ,
min R e 1 +
| z i=r [

f1 , zφ;/(z)l
[ φϊz) J 1 + r

with equality for functions of the form

- e l o g ( l - e z )

Thus, taking into account (4), the radius of convexity of C(α, j3) is seen to
be the smallest positive r for which

(5)
1 + r

+ min Re
| z | = r
p G P

= 0.
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In §2 we will use a theorem of V. A. Zmorovic to find
min(z|=rpePRe{z/?/(z)/(/?(z)+ h)}. In §3 we will determine the radius of
convexity of C(α, β) and examine some of its consequences. Finally, in
§4 we will find a sharp bound on |arg/'(z)| for f(z)G C(a,β).

2. Consequences of Zmorovic's theorem. The following
theorem is due to V. A. Zmorovic [11].

THEOREM A. Let Ψ(w,W) = M(w) + N(w)W, where M{w) and
N(w) are defined and are finite in the half plane Re{w}>0. Set

1 + zT 1 + zT
w~λΊ-z?+λ2l-z?'

W~λi(\-zTf + λ 2 ( l - z Γ ) 2 '

where zλ and z2 are any points on the circle \ z | = r < 1, m is a positive
integer, λ{ ̂  0, λ2 ̂  0, and A, + λ2 = 1. Then the function Ψ(w, W) can be
put in the form

, W) = M(w) + y (w2- l)N(w) + y ( p 2 - pl)N(w)e2ιφ,

where

w = a + pne'φ" (O^pe^p),

1 -I- r2m ? r m

n — L ^ ' n — Δ r

U ~~ γ _ γ2m J P — γ _ γ2m 5

Also,

(6) min Re{Ψ(w, W)} = Ψp(w)

= Re JM(vv) + ̂  (w 2- l)N(w)} - f \N(w)\(p2- p2).

T/1/5 minimum is reached when

exp[i(2ψ + arg N(w)] = - 1.

The importance of this formidable theorem lies in the fact that the
minimum of Re Ψ(w, W) in the disk | w — a \ ̂  p depends only on the two
variables Re w and Im w, as can be seen by (6), and not on W, λu or λ2.
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I would like to thank the referee for pointing out that the following
theorem may be found in [12]. For completeness we include a more
detailed proof of this useful result.

THEOREM 1. Suppose p(z)£ F, h is defined by (1), and a is defined
as in Theorem A. Then

Re

where rβ is the unique root of the equation (1 - 2β)r3 - 3(1 - 2β)r2 + 3r -
1 = 0 in the interval (0,1]. This result is sharp.

Proof Set M(w) = 0, N(w) - l/(w + h), m = 1, and w = p(z) = p
in Theorem A, and note that W = zp'(z). Thus Ψ(w, W) = Ψ(p,zp') =
zp'(z)/(p(z)+ h) and, in view of (6),

Since | p - α | = po = p, we may set p = α + ξ + iη, ρj=ξ2+η2, and
R=\p + h\. Then

p + h
P

(a

\-ξ)-(a + ξ + h)
R2

Vh)\R2-(h2 + 2ϊ
R2

th)\R2-2h(a +

+ h\{a-f ξ)2

+1)

-(h2

-v2]

}~2hv

2

-ί))-2hη2

R2

A substitution of (8) into (7) gives

h i
2 Λ + 2 / ? 2 2/? •

We now wish to minimize Ψp(p) as a function of T/. A differentia-
tion shows that

dη 2 R
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where

S(ξ, η)=[ξ2 + 4(a + h)ξ + p2+ η2 + 2(a + h)2]R - 2(h2-l)(ξ + a + ft)

(11) g [ f + 4(α

But the last expression in (11) is an increasing function of ξ in the interval
[~ρ,ρ]. Hence

We thus see from (10) that Ψp(ξ,η) is minimized on every chord
ξ - constant of the circle ξ2 + η2 = pi at the point η = 0. Therefore the
minimum of Ψp(ξ, η) in the disk ξ2+ η2^ p2 occurs somewhere on the
diameter η = 0. Setting η = 0 in (9) and noting that R - a + £ + ft, we
have

(12) t ( p ) g ψ p ( P ) = P ) = I - h + h2 + e

2R

p2~1 •

Using the identities ξ = R -(a + ft) and p2 - a2 -\ in (12), we get

(13) ^ ^

We must now determine the minimum of l(R) for R in the interval
[a + ft - p, a + ft + p], A differentiation of (13) shows that l(R) assumes
its minimum at

(14) R0

as long as

(15) a + h-p^Ro^a + h+p.

The right hand inequality in (15) is always true, but the left hand
inequality will not hold when ft (and consequently β) is small. In the
latter case, l(R) assumes its minimum at the point

(16) R, = a + h-p.

Substituting (14) and (16), respectively, into (13), we find

(17) l(R0) = 2Vft2+αft - (a + 2ft)
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h — p (1 + r)[l + h — (1 — /i)r]

As β increases, the transition from 1{R\) to l(R0) occurs at the point
where Ro = /?,. But Ro = ί?! when h2+ ah = (a — p + h)2, or in terms of r,
when the polynomial equation

t(r) = (1 - 2j3)r3 - 3(1 - 2β)r 2 + 3r - 1

has a root in the interval (0, 1]. Note that

t\r) = 3[(1 - 2β)r2 - 2(1 - 2β)r + 1] > 0 (0 < r < 1)

so that t(r) is increasing. Further, f(0) = - 1 and ί(l) = 4/3 so that t(r) has
a unique root in the interval (0, 1]. This completes the proof.

Equality holds in (18) for p(z) = (1 + z)/(l - z), and in (17) for

F V J 2 [ί-z

where cos ΘQ is defined by the equation

(19) h + (1 - r2)(l - 2r0cos θQ+r2Γ = /?o (r0 = /(/?o))

3. R a d i u s of convex i ty t h e o r e m s . We may now use

Theorem 1 to prove

THEOREM 2. Suppose rβ is the unique root of

ί(r) = ( l - 2 β ) r 3 - 3 ( l - 2 β ) r 2 + 3 r - l

in the interval (0, 1]. Set

, „, 12— Q, ~ Σβ -\- \ <x la. + 4 p op •+• 3

Then the radius of convexity of C(α, β) is r(α, β) when 0 < r(α, β)^ rβ,
and is otherwise the smallest root greater than rβ of the polynomial equation

v(r) = [ α 2 - β(a2 + 2α - l ) ] r 4 - 2(1 - α ) ( β + aβ - a)r3

+ [(1 - a)\\ -β) + 2aβ]r2 + 2β(l - a)r - β.

This result is sharp for all a and β.
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Proof. An application of Theorem 1 to (5) shows that the radius of
convexity of C(a,β) is the smallest positive root of

(20)

2r
h)-(ί-h)r]

+2λ/h2+ah-a-2h = 0 (rp < r < 1),

where α is denned in Theorem A and h is defined by (1). The first
expression in (20) may be written as

( l - 2 α ) ( l - 2 ) 6 ) r 2 - 2 ( 2 - α - 2 / 3 ) r + l

(l + r)[(l + Λ)-( l-Λ)r]

whose roots are

(2 - a - 2/3) + V(2 - α - 2/3)2 - (1 - 2α)(1 - 2/3)

1

( 2 - α - 2 β ) ± V α 2 - 2 α + 4 / 3 2 - 6 β + 3

If both roots are positive, the minimum root is r(a,β). Similarly, a
computation shows that r* is a root of the second expression in (20) if and
only if it is a root of v(r). This completes the proof.

The extremal function is of the form

f(z)= Γ 1 + ( 1 " 2 β ) ^ r

when 0< r(α, β)^ rβ, and is otherwise of the form

P l-2/3cosg0 + (2 i8-l)r 2

A Z ; Jo ( l-2 ίcosβ 0 +ί 2 ) ( l - ί ) 2 ( 1 " β ) '

where cos β0 is defined by (19).

COROLLARY. // 0 ̂  β g ^, ί/ι̂ n ί/iβ radius of convexity of C(α, β) is
r(a7 β) for all a.

Proof We must show that 0 < r(α, j8) g rβ for 0 ̂  a ̂  1 and 0 g
jS^l/10. Note that dt(r)/dβ = 2r 2(3- r), so that ί(r) is an increasing
function of j8. This means that rβ is a decreasing function of β. Set
A = Vα2 - 2α + 4/32 - 6β + 3. Then
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and

Thus r(a,β)^r(l,-k)
upon observing that

1 \ 1 A

> 1 5 ) = 2 a n d

g α g l a n d θ ^ j 3 i i The result follows

REMARK. When β = 0, we see that

2 - α + v V - 2 α + 3 '

In this case, Libera's result [5] is sharp.
We turn now to a distinguished subclass of C(α, β),and state the

result as a separate theorem.

THEOREM 3. If f(z)G S with Ref(z)> β, then f(z) is convex in a
disk of radius

1

1 + ,, V
-\

This result is sharp.

Proof. Since φ(z) = z is the only function in K(ί), the class under
consideration is C(l, β) so that Theorem 2 may be applied. As we saw in
the corollary to Theorem 2,

1
'(1,0) =

which gives the first part of the theorem.
Since t(rβ) = O when a = 1 and β =io, the radius of convexity of

C(l,β) for β >i^ is the only positive root of
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or

ι - 2 β

This completes the proof.

REMARK. The cases β = 0 and β = \ were proved, respectively, by
MacGregor [6] and Hallenbeck [2].

4. An argument theorem.

THEOREM 4. // f(z) E C(α, β), then

This result is sharp.

Proof. We may write

f'(z)=φ'(z)q(z), where φ(z)eK(a) and q(z)EPβ.

Hence

(21)

But by a result of Pinchuk [8],

(22) |argφ'(z) |g2(l-α)sin- ! r

Since Reg(z)>β, the function

is analytic with ω(0) = 0 and |ω(z)| < 1 in \z \ < 1.
Thus by Schwarz's lemma,

q(z)-(2β-ί)
<\z\ for | z | < l .

Hence the values of q(z) are contained in the circle of Apollonius
whose diameter is the line segment from (1 + (2β - l)r)/(l + r) to
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(1 - (2/3 - l)r)/(l - r). The circle is centered at the point (1 + (1 - 2β)r2)/
(1-r 2) and has radius (2(1 - j3)r)/(l - r2). Thus |argq(z)| attains its
maximum at points where a ray from the origin is tangent to the circle,
that is, when

(2 3) arg<?(z) = ±sin
-i 2(l-/3)r

Substituting (22) and (23) into (21), the result follows.
Equality holds for functions of the form

with suitably chosen e, r/, where | e | = | η \ = 1.

REMARK. For α = β = 0, this reduces to

I arg f\z) I g 2 sin'1 r + sin"1 γ^-2 = 2 (sin"1 r + tan"1 r),

a result of Krzyz [4].

THEOREM 5. Suppose /(z), g(z)E C(α,/3). 77ιen

λ/(z) + ( l - λ ) g ( z ) ( O ^ λ ^ l )

is univalent in a disk \z \ < r, w/iere r is ί/ie smallest positive root of the
equation

/5 s/iαrp.

Proof. In [7], MacGregor showed that the exact radius of unival-
ence of convex linear combinations of a rotation and conjugation
invariant subclass of 5 is given by the supremum of the values of r for
which Re/ ; (z)>0, | z | < r , where /(z) varies over all functions in the
class. Since K{a) is rotation and conjugation invariant, see [10], so is
C(α, ]8). That is, /(z)G C(α,jβ) if and only if /(z) is in C(α,j3). Since
Re/'(z)>0 if and only if |argf(z) | < ττ/2, the result follows from
Theorem 4.
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