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SEQUENCINGS AND STARTERS
B. A. ANDERSON

B. Gordon characterized sequenceable Abelian groups as
those Abelian groups with a unique element of order 2. In this
paper Gordon’s argument is generalized to prove that there are
non-Abelian sequenceable groups of arbitrarily large even order.
It is also noted that the sequencings described by Gordon are
related to 1-factorizations of complete graphs and to Howell
Designs.

1. Introduction. Suppose G is a finite group of order n with
identity e. A sequencing of G is an ordering e, a,, -+, a, of all the
elements of G such that the partial products e, ea,, ea,as, -+, ea," - - a,
are distinct and hence also all of G. Sequencings arose in connection with
the problem of constructing complete Latin Squares [S]. Later [8] it was
noticed that sequencings can be used to decompose complete directed
graphs into directed Hamiltonian paths. Other possible uses of sequenc-
ings are described here. It turns out that the sequencings of Gordon all
induce 1-factorizations of an appropriate complete graph via associated
“starters” [6, p. 176-177]. Certain sequencings and their “starters” also
induce Howell Designs of type H(2m —2,2m) by the ‘‘starter-adder”
method [6, 176-177]. Thus, it appears that sequencings might have a
broader applicability that has yet been recognized.

As mentioned above, sequenceable Abelian groups have been
characterized [5]. But the sequencing question for non-Abelian groups
has hardly been budged. Keedwell [7] reports that there are 9 known
sequenceable non-Abelian groups and apparently in 7 of these cases, the
results were determined by computer. Recently [2] other non-Abelian
groups have been shown sequenceable. In this paper known sequencings
and Gordon’s original argument are used to construct infinite families of
sequenceable non-Abelian groups of even order.

The sequencings we construct have the following property.

DeriNniTION 1. Suppose G is a group of order 2n with identity e
and unique element g* of order 2. A sequencing e, a,," " *, G, * * *, @, Will
be called a symmetric sequencing iff a,.,=g* and for 1=i=n-1,
Ani1+i = (an+l—i)_]-

If g * is the unique element of order 2 in G, then g * is in the center of
G. Thus, symmetric sequencings

S:e, a5, Anir, Ay, 0, a5
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have the associated partial product sequence
P: e? bZ, ) bm bng*a bn—lg*7 Tt ng*a g*'

DEFINITION 2. Suppose G is a group of order 2n with identity e
and unique element g* of order 2. Then E = {{x;, y.}, - -, {Xa-1, Ya-i}} is @
left (right) even starter for G iff

(i) every nonidentity element of G except one, denoted m, occurs
as an element of some pair of E,

(i) every nonidentity element of G except g* occurs in

xDyeyi'xcl=sisn-1({xyiLyx;1lsi=sn—1)).

If G is Abelian, there is no distinction between left and right even
starters. Even starters are a modification of the starter concept that has
proven so useful in the construction of Room Squares [9] and perfect
1-factorizations [1, 3]. Preliminary computer testing by the author and D.
Morse indicates that even starters are more likely to generate perfect
1-factorizations than are starters. Thus the study of even starters should
be of interest. But whereas it is easy to see that one always has the
so-called patterned starter for groups of odd order, it does not appear to
be trivial to show that all finite groups with a unique element of order 2
have an even starter. It turns out that such a group has a symmetric
sequencing if and only if it has an even starter with an additional
property. Thus, we can think of even starters as a kind of generalized
sequencing. In order to see these results, we need to outline the
construction of Gordon [5].

Suppose G is sequenceable Abelian of order 2n. Then G = A X B
where A is cyclic of order 2%, k >0 and B has odd order. G has a basis

c(,,cl,-'-,c,,, where ¢, has order 2* and the orders 68,6, -, 8, of
C1, €y, "+, Cn are odd positive integers such that 0 < i < m implies 6 [ 841
If j is any positive integer, then there exist unique integers jo, i, ", jm
such that

j =Jjo(mod 8,6,---8,) and
(1) Jo=Jit 28+ 38,8, + -+ jub - 8,1, where
O§j1<8]’ §j2<62’."30§jm<8m.

The sequence of partial products P is defined as follows.

If i=2j+1, 0=j<n, then by, =coci"c;” ¢,
@ ff i=2j42, 0=j<n then by.=cilerten e ot



SEQUENCINGS AND STARTERS 19

The sequencing S is defined as follows.

If i=2j+2, 0=j<n, then a =blb =cl"c¥* " - c¥",

(3) If i=2j+1, 0=j<n and s=min{r:j,#0}, then a =bib

S TP T RO ] NS I | I | L — =2
= Cole e ¢, I jo=0, a =cy”

2. Even starters and symmetric sequencings. We first
show that the sequencings of Gordon are symmetric.

THEOREM 1. Suppose G is a sequenceable Abelian group of order
2n. The sequencing a,, a,, - * *, a,, described in (3) is a symmetric sequenc-
ing of G.

Proof. Suppose a,a, = e. Since ¢, has order 2%, k >0, it is clear from
(3) that either i and k are both even or i and k are both odd. Suppose
i=2j+1and k =21+1, 0=}, | <n. By Definition 1, it will suffice to
show that i + k € {2,2n + 2}. Clearly j,= 0 iff [,=0. We use the argu-
ment of Gordon on the case j, # 0 # I,. By (3)

— ,2jp 2l p =21 21
a, = Cy ICS lscs+lls+l ...lem

and

— 210200201 -2l,-1
a. = cy'cy Coip™

Now each §; is odd so that we must have s =t Hence

2(j + 1)=0 (mod 2*)

and Thus
j,+ 1 =0 (mod &) j+L=38
js+l + lx+1 + 1 = 0 (mOd 8:+1) js+1 + ls+] + 1 = 5s+1
jm + 1, +1=0(mod §,). jm L+ 1=,

If we multiply the §,.; equation by &, - - - §,.,-, and add, then by (1) we
have jo+ 104, =8,--:6, Thus j+I1=0(modd,---5,) and 2(j+1)=
0 (mod 2n). The restrictions on j and ! allow us to conclude that either
2(j+1)=0 in which case a,=a, =e or 2(j +1)=2n which implies
jtl=n and i + k =2n +2. The case where both i and k are even is
similar.

We need some additional notation before the statement of the next
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theorem. If E is an even starter for G, let E*=E U{e,m} and let
*={{x, xg*}: x € G}. If we think of the elements of G as labelling the
complete graph K, then it is clear that E* and Q* are disjoint 1-factors
of K,y when m# g* and we may consider the 2-factor union of E* and
Q*.
THEOREM 2. The group G has a symmetric sequencing iff G has a
left even starter E such that E* U Q* is a Hamiltonian circuit of K.

Proof. Suppose |G|=2n and G has a symmetric sequencing with
partial product sequence b, b,, - - -, b,,. Let

E= {{bz,+2, byjinn}: 0=j < g — ]}
U {{bzn—(zj+1), bz,,,z,}: 0 g,‘ = _;_1 _ 1} '

Thus m is b, if n is even and b,., otherwise. We must show that E is a left
even starter for G. For 0=j<n/2—1, (by.2) 'byjin = @rjsnn = Gy
where 3=p<n+1 and p odd. On the other hand 0=j=n/2-1
implies (bzn-y<1)) 'b2n-2, = @20y = a, Wwhere n + 2= g =2n and q is even.
Since we have a symmetric sequencing it is clear that the a,’s and a,’s
give us a set C of n — 1 distinct elements of G\{e, g*}. Furthermore, it is
certainly impossible to get 2n + 2 as the sum of two p’s, two q¢’s or a p
anda q. Thusno element of C is the inverse of itself or another element
of C and E is a left even starter for G. Note that since g* = b,,, g* # m.
In each of the two cases n even and n odd it is easy to see that E*U Q*
is a Hamiltonian circuit of Kg.

Conversely suppose G has a left even starter E such that E* U Q*
is a Hamiltonian circuit of K. The circuit allows us to order the
elements of G by picking a starting vertex and direction around the
circuit. Recall that {e, m} is a pair of E*. We start at e and proceed
around the circuit in the m direction. For notational purposes we now
use h; to denote m. Thus the Hamiltonian circuit is

H: e7 hh hlg*> hZ, hlg*7 h39 h3g*’ T hn—h hnflg*7 hn = g*~

Remember that E*={e, h,)}U{{hg* h.}:1=i=<=n-1}. We use the
sequence H to construct the sequence P of partial products. Again we
have the two cases n even and n odd. In both cases we start h, = m in
the middle (at b, or b,.,) and work to the ends of P alternating from side
to side. For example, if n is even, then

Peven: e, hn—h hn—Zg*a T h}, hzg*, hly hlg*) hZ? h3g*7 T hn-lg*, hn'
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Note that b, = h,=m and b,, = h, = g*. If n is odd, then
Podd: e’ hn—l, hn—Zg*, Y h4, h3g *a hZ, hlg*a hl, th *7 h39 h4g *7 Y hn-lg *a hn'

Note that b,,, = h, and b,, = h,. In each case it is clear that a,., = g*.
Furthermore in each case it is clear that for 1=i=n-1, a,,,., =
h:;hg* and a,.,.; = (@..,-;)"". Finally a,.,; is a difference associated
with the starter pair {h,g*, h..,} so that the sequence ay, - - -, a,, includes
every element of G and is a symmetric sequencing.

THEOREM 3. If G is a group with order 2n and E is a left even starter
for G, then E induces a 1-factorization ¥(E) on K,,.,.

Proof. Label the vertices of K,,., with the elements of G and two
ideal elements », and »,. Let g*, m and e have their usual meanings.
Note that here, g* and m can be the same. Extend the group operation
by defining for every g in G:

g0, =0 g =0 and g P, = 00 g =X,
Suppose
E*=E U{e,®,} U{m,x,}
and )

Q*={{g,g*g}: 8 E G} U{x,, =}

Let #(E)={gE*: g € G}U Q7. It is obvious that each element of #(E)
is a 1-factor of K,,.,. Since | #(E)|=2n +1 it will suffice to show that
every edge of K,,., occurs in some element of #(E). It is clear that all
{g, .} and {g, »,} belong to 1-factors in ¥(E) and {x,,,} € Q*. Thus,
suppose {g, h} is a pair of distinct elements of G. If g7'h = g*, then
h=gg*=g*g and{g,h}€ Q*. If g7'h # g* then there is a pair {x, y} €
E such that g7'h = x7'y. Thus gx™'= hy ™' so that if k is this common
element, k -{x,y}={g, h} € kE* and the result follows.

A group G may have even starters but have no even starter E such
that E*U Q* is a Hamiltonian circuit. For example consider the
quaternion group Q; with generators a and b and defining relations
a*=e, b*=a’ and ba=a’h. One may verify that E=
{{a, ab},{a’b, a’b},{a’, b}} is both a left and right even starter for
Q;. Note that here g* = a’= m so that E* U Q* is not a Hamiltonian
circuit. It has been computer verified [4] that Q; has no sequencing
whatsoever. Thus it certainly has no symmetric sequencing and no even
starter E such that E* U Q * is a Hamiltonian circuit. Actually it is quite
easy to prove algebraically that Q; does not have a symmetric sequenc-
ing. For, suppose S: e, a,, a;, a,, g*, ai', a3', a;' is a symmetric sequenc-
ing of Q;. Now Qs/(a®*)=Z,X Z,. Let the members of Z,X Z, be
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designated by e, 1,2,3. Then each nonidentity element of Z,X Z, is its
own inverse and the product of any two nonidentity elements is the third.
The sequence S must induce a sequence T on Z, X Z, such that every
element of Z,X Z, occurs exactly twice in T and its associated partial
product sequence P. Clearly S forces T to be of the form

T:1,x,y,2,1,2z,y,x.
But then the associated partial product sequence is
P:1,x,21,1,z,x,1

and Q; has no symmetric sequencing.

It seems possible that symmetric sequencings could be used to
construct families of Howell Designs of type H(2m —2,2m). For exam-
ple consider the cyclic group Z,,. The symmetric sequencing

S$:0,4,8,1,3,5,7,9,2,6
induces the partial product sequence
P:0,4,2,3,6,1,8,7,9,5.

The associated even starter is E = {{4, 2}, {3, 6}, {8, 7},{9, 5}}. Note that the
sums of the pairs of E are 6,9,5,4. The sums are distinct and no sum is
2-m =2-1. Thus, it follows from [6] that — 6, —9, —5, —4, —2,0 when
applied to the {4,2},{3, 6},{8,7},{9,5},1,0 in order give a starter-adder
construction of an H(10, 12). Thus, we arrive at the following.

DEeriNITION 3. Suppose G is an Abelian group of order 2n and S is
a symmetric sequencing of G. S is strong if and only if in the associated
partial product sequence P

(i) 1=i<j=n-1implies bb., # bb,.
and

(i) 1=i=n-1implies e# bb,., # m>.

As noted above, a strong symmetric sequencing of an Abelian group
of order 2m — 2 will induce a Howell Design of type H(2m —2,2m).

ProBLEM. Find general constructions of strong symmetric sequenc-
ings.

Note that from (2) it follows easily that the sequencings of Gordon
are not strong for n = 4 since for those sequencings 0 = j < n implies that
b2j+1 ° b2,+2 = CoC1* " * Cpy
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We conclude the paper by generalizing the theorem of Gordon to
include non-Abelian groups of arbitrarily large even order. Let Z, denote
the group of order 2.

THEOREM 4. If G is a sequenceable group of odd order n, then
G X Z, has a symmetric sequencing.

Proof. By hypothesis, G has a sequencing e, x,, - - -, x,. G\{e} can
be partitioned into 2-element subsets such that each subset consists of an
element and its inverse. Choose one element from each 2-element subset.
If x; is a chosen element, then associate (x,, 1) with x, and if x; is not a
chosen element, associate (x,0) with x,. This leads to the string

yl’ yZ) ) Yn = (e7 O)’ (x27 iZ)a Tt (xm in)

of elements of G X Z,. We extend this to a symmetric sequencing of
G x Z, as follows. Define y,.,,=g*=1(e,1) and for 1=j=n-1, let
Varrej = (Yurry) " = (X0dio, inhio). It is  clear that the string
Vi, V2" % Ym * * *5 Yo Includes all elements of G X Z,. Since y,., = (e, 1) is
certainly in the center of G X Z,, it is easy to see that the partial products
also include all elements of G X Z,.

Note that by [7] there are at least 5 known sequenceable non-
Abelian groups of odd order.

THEOREM 5. Suppose the group G has a symmetric sequencing and
B is an Abelian group such that gcd(|G|,|B|)=1. Then G X B has a
symmetric sequencing.

Proof. Theideais to replace the cyclic group A of order 2, h >0 in
[5] with G and use the arguments of Gordon and Theorem 1. G has
order 2n. Let Sg: x1, X5, -+ +, X5, be a symmetric sequencing of G with
associated partial product sequence Pg: yi, y2,°* ", y2.. Now B has odd
order k. We wish to define a symmetric sequencing S: a;, a,, * - *, dyn Of
G X B. We first define the partial product sequence P: by, by, -, by
In the following we wuse the complete residue system
1,2,3,---,2n mod 2n. As before B has a basis ¢, -, ¢,, such that the
orders 6y, - * -, 8,, are odd positive integers with 0 < i < m implying 8, | §,.,
so that (1) still holds.

If i=2j+1, 0=j<nk, then by.i = Yimoazny C1"" """ Cl).

If i = 2] + 2, O éj < nk, then b21+2 = (y:(modZn)’ C’]'H ce Cim"'+1).
The b,’s must be shown to be distinct. Suppose b, = b, where s =2u + 1
and t =2v+1, 0=u, v <nk. Then clearly 2u =2v (mod 2n) so that
u=v (modn). As in the proof of Theorem 1, u =v (mod k). Since

ged(n,k)=1, we have u = v (mod nk) and thus u = v. A similar argu-
ment suffices if s=2u+2 and t=2v+2, 0=u, v <nk. Finally, if
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s =2u+1 and t = 2v + 2, then the first coordinates of b, and b, must be
different.
The sequence S is now defined as follows.

If i=2j+2, 0=j<nk, then a, = b:}ib, = (X moazn), €7+ - C™).
If i=2j+1, 0=j<nk and s = min{r: j,# 0}, then a, = bi!,b

_ ~2s p =211 ~2fp= P —
- (xr(modZn)y Cs AL cml 1)~ If ]O - 0: a, (xl(modZn)’ e)~

s+1

We may verify that the a,’s are distinct in the same way that the b,’s were
shown distinct. Thus G X B has a sequencing.

The indicated sequencing is in fact symmetric. Suppose a,a, = e. The
symmetric sequencing of G shows that either p and q are both even or p
and g are both odd. The argument now proceeds as in Theorem 1.

It would be nice if the results above could be used to find
sequencings of more non-Abelian groups of odd order. For example, it is
known that the non-Abelian group N,, of order 21 is sequenceable. Thus
by Theorems 4 and 5, N, X Z, and (N, X Z,)X Zs; have symmetric
sequencings. One might hope that the symmetric sequencings of (N, X
Z,) X Zs would “‘cut back” to a sequencing of N,, X Z, but this is not the
case in general.

Added in Proof. R. Friedlander in a paper to appear in Ae-
quationes Math. has shown that if p is a prime, p =1 (mod 4), then the
dihedral group D, is sequenceable.
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