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SEQUENCINGS AND STARTERS

B. A. ANDERSON

B. Gordon characterized sequenceable Abelian groups as
those Abelian groups with a unique element of order 2. In this
paper Gordon's argument is generalized to prove that there are
non-Abelian sequenceable groups of arbitrarily large even order.
It is also noted that the sequencings described by Gordon are
related to 1-factorizations of complete graphs and to Howell
Designs.

1. Introduction. Suppose G is a finite group of order n with
identity e. A sequencing of G is an ordering e,a2, ••-,#„ of all the
elements of G such that the partial products e, eα2, ea2a3y , ea2 an

are distinct and hence also all of G. Sequencings arose in connection with
the problem of constructing complete Latin Squares [5]. Later [8] it was
noticed that sequencings can be used to decompose complete directed
graphs into directed Hamiltonian paths. Other possible uses of sequenc-
ings are described here. It turns out that the sequencings of Gordon all
induce 1-factorizations of an appropriate complete graph via associated
"starters" [6, p. 176-177]. Certain sequencings and their "starters" also
induce Howell Designs of type H(2m -2,2m) by the "starter-adder"
method [6, 176-177]. Thus, it appears that sequencings might have a
broader applicability that has yet been recognized.

As mentioned above, sequenceable Abelian groups have been
characterized [5]. But the sequencing question for non-Abelian groups
has hardly been budged. Keedwell [7] reports that there are 9 known
sequenceable non-Abelian groups and apparently in 7 of these cases, the
results were determined by computer. Recently [2] other non-Abelian
groups have been shown sequenceable. In this paper known sequencings
and Gordon's original argument are used to construct infinite families of
sequenceable non-Abelian groups of even order.

The sequencings we construct have the following property.

DEFINITION 1. Suppose G is a group of order In with identity e
and unique element g* of order 2. A sequencing e, α2, , απ, , a2n will
be called a symmetric sequencing iff αn+i = g* and for 1 ̂  i ^ n - 1,
ttn + l + i — \Q>n + l - i )

If g * is the unique element of order 2 in G, then g * is in the center of
G. Thus, symmetric sequencings

S: e, α2, , am an+u a~\ , a~2
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have the associated partial product sequence

P: e, b2, - , bn9 Kg*, bn-xg*9 , b2g*,g*.

DEFINITION 2. Suppose G is a group of order In with identity e
and unique element g* of order 2. Then E = {{xu yi}> * * Άχn-u yn-\}} is a
/e/ί (right) even starter for G iff

(i) every nonidentity element of G except one, denoted m, occurs
as an element of some pair of E,

(ii) every nonidentity element of G except g* occurs in

[ χ : λ y n y τ ι χ , : l ^ i ^ n - i } ( { χ t y τ \ y , χ ; u l ^ i ^ n - 1 } ) .

If G is Abelian, there is no distinction between left and right even
starters. Even starters are a modification of the starter concept that has
proven so useful in the construction of Room Squares [9] and perfect
1-factorizations [1, 3]. Preliminary computer testing by the author and D.
Morse indicates that even starters are more likely to generate perfect
1-factorizations than are starters. Thus the study of even starters should
be of interest. But whereas it is easy to see that one always has the
so-called patterned starter for groups of odd order, it does not appear to
be trivial to show that all finite groups with a unique element of order 2
have an even starter. It turns out that such a group has a symmetric
sequencing if and only if it has an even starter with an additional
property. Thus, we can think of even starters as a kind of generalized
sequencing. In order to see these results, we need to outline the
construction of Gordon [5].

Suppose G is sequenceable Abelian of order In. Then G = A x B
where A is cyclic of order 2\ k > 0 and B has odd order. G has a basis
Co, cu * ,cm where c0 has order 2k and the orders δ b δ2, , δm of
Cij c2,' * , cm are odd positive integers such that 0 < i < m implies 8, \ δι+λ.
If / is any positive integer, then there exist unique integers jo,ju ,/m

such that

/ = / 0 (mod δ,δ2- * δm) and

(!) /o = /i + 72δ, + y3δiδ2 + + ymδi δm_,, where

The sequence of partial products P is defined as follows.

If / = 2/ + 1, 0 ̂ / < n, then fe2/+1 = c^cV'cV2

^ If i = 2j + 2, 0 ̂  / < n, then b2j+2 = c^c'^cf1
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The sequencing 5 is defined as follows.

If i = 2/ + 2, 0 ^ / < n, then α, = &Γ-ifc = cJ'"+Ic|"+1 c2Jr+ι.

^ If i = 2/ + 1, 0 ^ / < n and 5 = min{r: / r ^ 0}, then α, = bT-ik

— Co c s cs+ί cm . i i y0 — u, α, — c 0 .

2. Even starters and symmetric sequencings. We first
show that the sequencings of Gordon are symmetric.

THEOREM 1. Suppose G is a sequenceable Abelian group of order
In. The sequencing au a2, , a2n described in (3) is a symmetric sequenc-
ing of G.

Proof Suppose a,ak = e. Since c0 has order 2\ k > 0, it is clear from
(3) that either i and k are both even or / and k are both odd. Suppose
i = 2/ + 1 and k = 21 + 1, 0 ^/ , / < n. By Definition 1, it will suffice to
show that i + it G {2,2n + 2}. Clearly /0 = 0 iff /0 = 0. We use the argu-
ment of Gordon on the case jo^O^ h- By (3)

it, - Co Cj c s + 1 c m

and

n — - - 2 1 . - 2 ^ - 2 ^ , - 1 . . . --2/m-l
ak — Co ct Xt+ί cm

 m .

Now each δt is odd so that we must have s = t. Hence

2(/ + 0 = 0 (mod 2k)

and Thus

/, + / , = 0 (mod δ.) /, + /, = δs

j s + ί + /ί+1 + 1 = 0 (mod δ ϊ+1) yί+1 + t + 1 + 1 = δs+1

/m + /m + 1 = 0 (mod δm). jm + /m + 1 = δm.

If we multiply the δ s + t equation by δi δs+ι-ι and add, then by (1) we
have /Ό+/o=δ 1 δTO. Thus / + / = 0(mod δi δm) and 2(/ + 0 =
0 (mod 2n). The restrictions on j and / allow us to conclude that either
2(/ + 0 = 0 i n which case α, = αfc = e or 2(/ + /) = In which implies
/ + / = n and i + fc = 2/t + 2. The case where both / and k are even is
similar.

We need some additional notation before the statement of the next
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theorem. If E is an even starter for G, let E* = E U{e, m} and let
Q* = {{x, xg*}: x E G}. If we think of the elements of G as labelling the
complete graph K{Gb then it is clear that E* and Q* are disjoint 1-factors
of jKjσi when m^ g* and we may consider the 2-factor union of E* and
0*.

THEOREM 2. The group G has a symmetric sequencing iff G has a
left even starter E such that £ * U O * is a Hamiltonian circuit of K\G\.

Proof. Suppose \G\ = 2n and G has a symmetric sequencing with
partial product sequence bu b2, * , bln. Let

U ({fc2»-c2/+i), fc2»-2j}: 0 ^/ ^ I -

Thus m is fen if n is even and bn+x otherwise. We must show that E is a left
even starter for G. For 0 ^ / < r c / 2 - l , {b2]+2)~lb2{j+l)+x = a2{j+ι)+x = ap

where 3 ^ p < r c + l and p odd. On the other hand 0 ^ / ^ n / 2 - l
implies (b2n-(2]+])y

ιb2n-2] = a2n-2j = aq where n + 2 g q ^ 2 n and q is even.
Since we have a symmetric sequencing it is clear that the αp's and α,'s
give us a set C of n - 1 distinct elements of G\{e, g*}. Furthermore, it is
certainly impossible to get 2n + 2 as the sum of two p's, two g's or a p
and a q. Thus no element of C is the inverse of itself or another element
of C and E is a left even starter for G. Note that since g* = b2n, g* ̂  m.
In each of the two cases n even and n odd it is easy to see that E* U Q*
is a Hamiltonian circuit of K|G|.

Conversely suppose G has a left even starter E such that E* U Q*
is a Hamiltonian circuit of K!G|. The circuit allows us to order the
elements of G by picking a starting vertex and direction around the
circuit. Recall that (e, m} is a pair of £ * . We start at e and proceed
around the circuit in the m direction. For notational purposes we now
use hλ to denote m. Thus the Hamiltonian circuit is

H: e, hu Λ,g*, ft2, ̂ 2g*? Λ3, Λ3g*, * , ΛΛ-i, ΛΛ-ig*, K = g*.

Remember that £ * = {e,fc,}U{{Λ ( g*,U:l^ign-l} . We use the
sequence H to construct the sequence P of partial products. Again we
have the two cases n even and n odd. In both cases we start hλ = m in
the middle (at bn or fen+1) and work to the ends of P alternating from side
to side. For example, if n is even, then

feven: e, K-\, K-2g*, - -, h3, h2g*, hu hig*, h2, h3g*, - - , Λπ_ig*, hΛ.



SEQUENCINGS AND STARTERS 21

Note that bn = hλ= m and b2n = hn = g*. lΐ n is odd, then

POM: e, K-u K-ig*,' , Λ4, Λ3g*, Λ2, Λig*, Λi, ^ g * , Λ3, ̂ g * , , Λπ-ig*, hn.

Note that bn+ι = Λt and 62π = Λn. In each case it is clear that αn+1 = g*.
Furthermore in each case it is clear that for 1 ̂  i ^ n - 1 , Λπ+i-ι =
ΛΓ+iΛ/g* and απ+i+l = (αn+i-,-)"1. Finally αn+i_; is a difference associated
with the starter pair {ft, g*, Λi+i} so that the sequence au ** *, ̂ 2« includes
every element of G and is a symmetric sequencing.

THEOREM 3. // G is a group with order In and E is a left even starter
for G, then E induces a 1-factorization &(E) on Kln+2.

Proof Label the vertices of K2n+2 with the elements of G and two
ideal elements oo, and °c2. Let g*,m and e have their usual meanings.
Note that here, g* and m can be the same. Extend the group operation
by defining for every g in G:

g ' °°i = °°r g = °°i and g oo2 = oo2. g = oo2.
Suppose

£ # = £U{e,oo1}U{m,oo2}
and

Let ^ ( £ ) = {gE#: g E G} U Q*. It is obvious that each element of
is a 1-factor of l£2n+2. Since |&(E)\ = In + 1 it will suffice to show that
every edge of K2n+2 occurs in some element of cP(E). It is clear that all
{g,°°i} and {g,°°2} belong to 1-factors in 9{E) and ί 0 0 !, 0^}^ Qφ- Thus,
suppose {g, h) is a pair of distinct elements of G. If g'ιh = g*, then
h = gg* = g*g and {g,Λ}e O # . If g~ιh^ g* then there is a pair {JC, y}E
E such that g~ιh = x^y. Thus gx~ι = hy"1 so that if k is this common
element, k -{x, y} = {g, h}E kEφ and the result follows.

A group G may have even starters but have no even starter E such
that E*UQ* is a Hamiltonian circuit. For example consider the
quaternion group Q3 with generators a and b and defining relations
α 4 = e , b2=a2 and ba = a3b. One may verify that £ =
{{α, αfe}, {α2£, α3fe},{α3, b}} is both a left and right even starter for
Q3. Note that here g* = a2 = m so that E* U Q* is not a Hamiltonian
circuit. It has been computer verified [4] that Q3 has no sequencing
whatsoever. Thus it certainly has no symmetric sequencing and no even
starter E such that E* U Q* is a Hamiltonian circuit. Actually it is quite
easy to prove algebraically that Q 3 does not have a symmetric sequenc-
ing. For, suppose 5: e, α2, α3, α4, g*, α ί \ αj 1 , α 2

! is a symmetric sequenc-
ing of Q3. Now O3/(β2) = Z 2 x Z 2 . Let the members of Z2x Z2 be
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designated by e, 1,2,3. Then each nonidentity element of Z 2 x Z 2 is its
own inverse and the product of any two nonidentity elements is the third.
The sequence S must induce a sequence T on Z 2 x Z 2 such that every
element of Z 2 x Z 2 occurs exactly twice in T and its associated partial
product sequence P. Clearly 5 forces T to be of the form

T: l,x, y, z, l,z, y,x.

But then the associated partial product sequence is

P: l,x, z, l , l ,z , x, 1

and Q3 has no symmetric sequencing.
It seems possible that symmetric sequencings could be used to

construct families of Howell Designs of type H(2m - 2,2m). For exam-
ple consider the cyclic group Z 1 0 . The symmetric sequencing

5:0,4,8,1,3,5,7,9,2,6

induces the partial product sequence

P: 0,4,2,3,6,1,8,7,9,5.

The associated even starter is E = {{4,2}, {3,6}, {8,7}, {9,5}}. Note that the
sums of the pairs of E are 6,9,5,4. The sums are distinct and no sum is
2 m = 2 - 1 . Thus, it follows from [6] that - 6, - 9, - 5, - 4, - 2,0 when
applied to the {4,2}, {3,6}, {8,7}, {9,5}, 1,0 in order give a starter-adder
construction of an H(10,12). Thus, we arrive at the following.

DEFINITION 3. Suppose G is an Abelian group of order 2n and 5 is
a symmetric sequencing of G. S is strong if and only if in the associated
partial product sequence P

(i) 1 g i < / ^ n - 1 implies btbi+λ ^ b}bί+λ

and
(ii) 1 ̂  i ^ n - 1 implies e^ ί>Λ+i ̂  m2.
As noted above, a strong symmetric sequencing of an Abelian group

of order 2m - 2 will induce a Howell Design of type H(2m - 2 , 2 m ) .

PROBLEM. Find general constructions of strong symmetric sequenc-
ings.

Note that from (2) it follows easily that the sequencings of Gordon
are not strong for n ^ 4 since for those sequencings 0 ^ / < n implies that
*2/+i * b2]+2 = Cod ' c m .
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We conclude the paper by generalizing the theorem of Gordon to
include non-Abelian groups of arbitrarily large even order. Let Z2 denote
the group of order 2.

THEOREM 4. // G is a sequenceable group of odd order n, then
G x Z 2 has a symmetric sequencing.

Proof. By hypothesis, G has a sequencing e, x2, , xn. G\{e} can
be partitioned into 2-element subsets such that each subset consists of an
element and its inverse. Choose one element from each 2-element subset.
If Xι is a chosen element, then associate (*,, 1) with xι and if JC, is not a
chosen element, associate (JC,, 0) with xr This leads to the string

yi, y2, , y* = (e,0), (χ2, /2), , (*«, L)

of elements of G x Z 2 . We extend this to a symmetric sequencing of
GxZ2 as follows. Define yπ+1 = g* = (e, 1) and for 1 ^ / ^ n - l , let
yn+1+/ = (yn+i-y)"1 = (Xnii-y, /ήl w ). It is clear that the string
yi> y2, , yπ,' * *> y2n includes all elements of G x Z 2 . Since yn+] - (e, 1) is
certainly in the center of G x Z 2, it is easy to see that the partial products
also include all elements of G x Z 2 .

Note that by [7] there are at least 5 known sequenceable non-
Abelian groups of odd order.

THEOREM 5. Suppose the group G has a symmetric sequencing and
B is an Abelian group such that gcd(\G\,\B |) = 1. Then G x β has a
symmetric sequencing.

Proof. The idea is to replace the cyclic group A of order 2\ h > 0 in
[5] with G and use the arguments of Gordon and Theorem 1. G has
order In. Let SG: xh x2, , x2n be a symmetric sequencing of G with
associated partial product sequence PG: yu y2, * * , y2n. Now B has odd
order k. We wish to define a symmetric sequencing S: au a2, , alnk of
G x B. We first define the partial product sequence P: bu b2, , b2nk.
In the following we use the complete residue system
1,2,3, , In mod In. As before B has a basis cu , cm such that the
orders 8U , δm are odd positive integers with 0 < i < m implying δ, | δι+ι

so that (1) still holds.

If / = 2/ + 1, 0 ^ / < nk, then b2j+1 = (yί(mod2n), c\ix * cm

7-).

If i = 2j + 2, 0 ^ y < n/ί, then fc2y+2 = (y I (mod2n), cV+1 c'»+1).

The fc{'s must be shown to be distinct. Suppose bs = fer where 5 = 2w + 1
and ί = 2u + 1, 0 ^ w, ϋ < nfe. Then clearly 2w = 2ϋ (mod 2n) so that
u = υ (mod n). As in the proof of Theorem 1, w = v (mod /c). Since
gcd(n, k) = 1, we have u = υ (mod nk) and thus w = v. A similar argu-
ment suffices if s = 2u + 2 and ί = 2υ + 2, 0 ^ u, v < nk. Finally, if
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s = 2w + 1 and t = 2v + 2, then the first coordinates of bs and bt must be
different.

The sequence S is now defined as follows.

If i = 2/ + 2, 0^j<nk, then fll = bjlΛ = (* l(mod2n), c?' +1 c2>+1)

If / = 2/ + 1, 0 ^ / < nfc and 5 = min{r: j r ^ 0}, then α, = bjlφi

= (Xl(mod2n), C '̂C ^ - 1 C ^ ' 1 ) - I f 7θ = 0 , α, = (Xί(mod2n), β).

We may verify that the α,'s are distinct in the same way that the fc,'s were
shown distinct. Thus G x B has a sequencing.

The indicated sequencing is in fact symmetric. Suppose apaq = e. The
symmetric sequencing of G shows that either p and q are both even or p
and q are both odd. The argument now proceeds as in Theorem 1.

It would be nice if the results above could be used to find
sequencings of more non-Abelian groups of odd order. For example, it is
known that the non-Abelian group N2\ of order 21 is sequenceable. Thus
by Theorems 4 and 5, N 2 ] x Z 2 and (JV2i x Z2) x Z 5 have symmetric
sequencings. One might hope that the symmetric sequencings of (N21 x
Z2) x Z 5 would "cut back" to a sequencing of N2 1 x Z 5, but this is not the
case in general.

Added in Proof. R. Friedlander in a paper to appear in Ae-
quationes Math, has shown that if p is a prime, p = 1 (mod 4), then the
dihedral group Dp is sequenceable.
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