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QUASITRIANGULAR OPERATOR ALGEBRAS

JOAN K. PLASTIRAS

Fix a sequence ^ = {Pn}"=i of finite dimensional projections
increasing to the identity on a separable Hubert space W and let
j?(2ίf) denote the algebra of all bounded operators on 5K. The
quasitriangular algebra associated with $P and denoted as
Ά3~(&) is defined to be the set of those operators T in i?($?) for
which || Pt TPn | |-»0.

In this paper we will examine the structure of the Ά2Γ(SP)
algebras. Specifically, if &t = {jRn}^=1 is another sequence of finite
dimensional projections increasing to the identity on the same
Hubert space, when is Άθ'iβ) equal to °U(<P)Ί By an algebraic
isomorphism between two algebras we shall mean a bijection
which preserves algebraic structure: that is to say — addition,
scalar multiplication, multiplication, but we do not impose any
topological condition. When are two quasitriangular algebras
isomorphic?

In [5] we asked the same questions of S ( g ) + <€{%) = {Γ + K: T
belongs to the commutant of E and K is compact} and answered them
completely by arguments very different from those presented here; the
conclusions were different too. The concept of quasitriangularity for
operators was first isolated for systematic study in [3]. The quasitrian-
gular algebra was introduced later in [1] and a formula expressing the
distance from such an algebra to an arbitrary operator was obtained. We
begin our discussion with an algebraic property:

DEFINITION 1. A subset ^ of «#(#?) is said to be inverse-closed if
whenever T in Sf is invertible in S£{βί) then T ι belongs to Sf.

LEMMA 2. 2.2T{0>) is inverse-closed for every sequence & = {Pn}
cc

n=ι
of finite dimensional projections increasing to the identity on a Hilbert
space.

Before verifying Lemma 2 we remark that the assumption that the Pk

be finite dimensional is essential.

Proof. From [1, Corollary following 2.2] we know that SIS'^) =
2Γ{&) + <£($?), where Sr(&) is the set of operators Γ such that PL

nTPn = 0
for all n. Hence, it suffices to assume that S belongs to SΓ(0>)+ ^>{W)
and is invertible in «SP(5ίf) and show that 5"1 belongs to Ά2Γ{3>). So,
S=T+Q where TeSΓ(SP) and CE^(X). Since Sm = T+PmCPm

tends in norm to 5, Sm is invertible for all m greater than a positive
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integer /. Fix m > / and note that SmPn = PnSmPn for all n ^ ra, and
since dim Pn < oo, Sm maps PJt onto itself, so that PnSm

ιPn = S'm
ιPn (or

equivalent^, PL

nSm

ιPn =0). Hence, Sm

ι belongs to Ά2Γ(&) by definition.
As Sm

ι tends in norm to ( Γ + C ) 1 and Q3~(2P) is norm-closed [1,
Proposition 2.1], we conclude that ( Γ + C) ' 1 belongs to

THEOREM 3. Suppose that T is an invertible operator in ££{df(). Then
Timplements an automorphism ofSlSΓ^) (i.e. T2t2r{3>)Tx = &&(&)) if
and only if T belongs to

Proof Φ : Assume that T belongs to St&iΦ). To show that T
implements an inner automorphism of 2tSΓ(9>) it will suffice to show that
Γ"1 also belongs to 2tSΓ{9>). But that is immediate from Lemma 2.

=> : Assume that T implements an automorphism of Ά3~($P). First
we conclude from [1, Theorem 3.3] that T admits a factorization
T = UA7 where A belongs to S"(0>) and U is a partial isometry. Note
that A = U*T has closed range; since ker A = {0}, A is semi-Fredholm
by definition. Since A belongs to QSΓ(SP) the index of A is nonnegative
[2] so that ker A * = {0} and A is consequently invertible. This forces U
to be unitary. Since A EQ2Γ(2P) is invertible, then by the previous
argument, A implements an automorphism of Ά2Γ(Θ>) so that we are
reduced to showing that if U is a unitary operator which implements an
automorphism of Ά2Γ(&), then U belongs to <2^(0>).

So, we assume that U does not belong to SlS'i^) and arrive at a
contradiction. Since U does not belong to <2J~(£?) then by the definition
of ΆSΓ(SP) there is an a > 0 and a subsequence {Pn(k)}Γ=i of SP for which
limjt \\Pt(k)UPn{k)\\ ̂  a. From Lemma 2 we know that U* does not belong
to SίΓ({Pn(fc)}~=1), so that by definition, there is β > 0 and a subsequence
{m(k)}U of'{n(fc)K=1 for which ljm* \\Pi{k)U*Pm{k)\\ ^ β. If we let
e = min(α,j3)/2, then we can conclude that | |P i l /P π | | and | |P π [/Pi | |
(= \\PiU*Pn ||) are both greater than e for all n in an infinite subset M of
N.

We will obtain a sequence {mh n, }Γ=i of positive integers such that
0 < m, < nλ < m2< n2< and projections {Fk, Ek}l=λ such that Fk =
PmkPik_, and Ek=PnkPik for which | |FkΓ/Ek | | and | | £ k l / F k | | are both
greater than e/2. We do so inductively.

For k = 1, define F! — Pm], where mj is the first integer in M. Let nλ

be the first integer such that \\PmPL

mxUPmx\\ and \\PmxUPL

mxPn]\ are both
greater than e/2 (such an ni exists because | |Pi l l i7Pm i | | and ||PfΠ1C/Pi11|| are
greater than e and the Pn tend strongly to the identity).

Assume that we have obtained {Ek,Fk}Ui To obtain m/+1 and n/+1,
note that UPnι and PnιU are compact; hence, there is a positive integer /
such that \\PnUPnι || and | |P n ι[/Pi | | are both less than e/4 for all n ^ /. Let
m/+1 be the first integer in M greater than /.
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Then

I I P 1 UP P111^ I I P 1 UP I I - I I P 1 UP P II

^ 6 - I I P 1 UP II

— c II x mi + i * ^ * m | |

^ 6 - 6/4 = ^6.

Similarly, \\Pmι+ιPt,UPi,+ι\\ ^ 3e/4 by the same argument. Let n/+1 be the
first positive integer greater than m / M for which | |Pn l + lPί,ml/Pm ι + 1Pi ( | | and
| |P m ι + I Pil/P 1 , . A + I | | are both greater than e/2. Let F/+1 = Pm/+1Pi, and let
Eι+ι = Pnι+iPiι+ι. Continue inductively.

We select a subsequence {£,., PlJJLi of {£,, /\ }Γ=i as follows: first, we
let {«/,-}£/=i be any sequence of positive real numbers such that Σ t / α ^
62/16. Let /i = 1. Assuming that we have obtained iΛ, let 4+1 be the next
positive integer such that for all / g k 4-1, Hiv.ί/JF;, || and ||fik+1{7£/; || are
less than α k + u while WE^UF^^W and U^t/E/^JJ are less than aik+]. This
is possible because UF W FUU (respectively UEin EUU) are compact and
the Ei (respectively F,) tend weakly to zero. Continue inductively. Now
for each ik there is a rank one partial isometry Tik E J£(Eikffl, Fikffl) such
that ||JBik[/7^k[/*f;k | | ^ 62/4. Clearly, T = ΣΓ=i Tik is a partial isometry in

) . So, for arbitrary / in N,

EU{UTU*)FU = £ EuUTlkU*Fu = EUUTUU*FU + Σ EuUTlkU*Fιr

Hence,

EilUT,kU*F,l ^ IIEbυτuυ*Fu

\\EU{UTU*)FU\\ \Ei,UTikU*Fll\\ ^ (e/2)2=e2/4.

Therefore,

E,XUTU*)FH \\*ζ- nUF^ || \\ElkU*Fι, |

16 "

Since i, was arbitrary, it follows from the construction that

^ WE^uruηF, I ̂  \\p^uTU*)pm,l
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Hence,

ϊϊm||Pί(t/Γt/*)Fk||>0

and it follows by definition of ΆSΓ(SP) that UTU* does not belong to
SlSfC^). This contradicts our assumption that U implements an au-
tomorphism of 21SΓ(9>) and thus concludes the argument of the proof of
Theorem 3.

DEFINITION 4. Let 9> = {PnYn=\ be a sequence of finite dimensional
projections increasing to the identity on a Hubert space Sίf. An operator
T is said to be strictly upper triangular for 9> if Pi TPn+ι = 0 for all n in N.

REMARK 5. Note that in the proof of Theorem 3 we showed that if
U does not belong to Q2Γ(2P) then there is an operator Γ, which is strictly
upper triangular for 0>, and such that UTU* does not belong to Ά3~(ίP).

REMARK 6. Let Sf = {Sn}™=λ be any sequence of finite dimensional
projections increasing to the identity on %C. Let £P = {PnK=ι be a
subsequence of Sf. Then £2Γ(Sf) C 2L&(&). Equality may fail; however,
if T is strictly upper triangular for SP then T belongs to ΆSf{Sf).

DEFINITION 7. A sequence of projections Sf = {Sn}~=l increasing to
the identity on a Hubert space 76 is said to be a defining sequence for a
quasitriangular algebra si if and only if d = {T G #(3ίf): \\Sλ

nTSn ||-» 0}.

REMARK 8. Suppose that U is a unitary operator which imple-
ments an isomorphism Γ-» [/7T/* from £2Γ(&) onto St&i?). Then (7
maps defining sequences of ^SΓ(^) to defining sequences of SI

LEMMA 9. Suppose that & = {Pn}"=i and 5̂  = {Sn}^=1 are sequences
of finite dimensional projections increasing to the identity such that & U ϊf
is totally ordered by inclusion. Then £3~{g>) = ΆSΓ(y) if and only if there
exist positive integers m0 and n{) such that Pmo+k = Sm+k for all k in N.

Proof. 4= : This conclusion is clear.
Φ : Assume that Ά3~{9) = Ά&iSf). Then £SΓ(SP) = ΆZr($> U if).

We assert that & contains all but perhaps finitely many of the projections
in 2P U Sf. Contrapositively, assume not. Let $ί = {JRn}«=i be a total
ordering of 9 U Sf and choose an infinite subsequence {nk}k=1 for which
Rnk gi Ŝ  but i?nk+1 E 0\ Let Tk be any rank one partial isometry with initial
space (Rnk Q Rnk-X)^ and final space (Rnk+ι Q Rmk)%. Then T = Σj = 1 Tk is
a partial isometry which belongs to Ά?Γ{β>) but not to ΆSΓ(@ U Sf).
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Hence, &&(& U SP)§3^(0>). We conclude that 0> contains all but
perhaps finitely many of the projections in ^ U ^ .

By symmetry, ίf contains all but perhaps finitely many of the
projections in ^U5^. So there exists a positive integer k such that
{Pn: dimPn ^ k}Cίf a n d {Sn: d i m Sn ^ k}C <3>. L e t m 0 b e t h e first
positive integer such that dim(Fmo) ^ k and let n0 be the first integer such
that dim(5J ^ k. Then Pmo+k = Sm+k for all k E N.

THEOREM 10. ¥ = {Sn}:=ι is α defining sequence for £2Γ($P) if
and only if there exist positive integers m0 and nn such that

\\Pm}+k — S^+fc || = 0 .

Proof Φ : We note that 2L&{&) C <2^(0>) since for T in

\ + k - Si+k)TSm+k

and the other inclusion follows by symmetry.

φ : We assume that 5̂  = {SΠ};=, is a defining sequence for
£3"(&). Let V be any unitary operator such that {V5,V%,U{P,};=I

is a sequence of projections totally ordered by set inclusion.
Let W = {Wn}:=l with WB = V5nV* for each n. We assert that V

belongs to 3.^(W). So assume that T is strictly upper triangular for W;
it suffices to show that VTV* belongs to £3~(W) by Remark 5. By
Remark 6, T belongs to SίST(§> U < r ) C ^ 5 " ( ^ ) so that it remains to
observe that VΆ3~(9>)V* C 213~{W): Wϊ(VTV*)Wn =
(VS1

nV*)(VTV*)(VSnV*)= VSλ

nTSnV*, so that \\W1

n(VTV*)Wn\\ =
\\VStTSnV*\\ = \\SϊTSn\\^0.

Hence, we conclude that V belongs to 2,SΓ{W). Since 2.2Γ(W) is
inverse-closed by Lemma 2, it follows that || Wt VWn \\ ->• 0 and

\\\ \\

(1) Since WΠV= V5B, we have that WnVWt= VSnW
L

n so that
II WnVWt\\ = I VS.Wί|| = ||S,,Wi||->0 and

(2) Since Wλ

nV = VSλ

n, we have that WL

nVWn = VS$Wn so that

II wt vwn || = || vstwn ii = \\siwn \\^o.
Since | | S n - Wn || = max{||Si WB ||, ||SnWi||} [5, Lemma 6] it follows

that limn ||Sn - Wn \\ = 0 and by a previous argument that W is a defining
sequence for 2ί3~φ). It follows from Lemma 9 that there are integers
m0 and n0 such that Wm+k = Pmι+k for all k in N. Hence
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limfc || Sm+k - Pm)+k || = 0,

which concludes the proof.

EXAMPLE 11. As an easy consequence of Theorem 10, it follows
that there exist defining sequences 9 - {Pn}Z=ι and 3t = {Rn}n=ι for a
quasitriangular algebra si such that {Pn v Rn}Z=ι is not a defining
sequence for si ("v" denotes the supremum of two projections). This
phenomenon is suggested by an example in [3, p. 285].

We shall say that two subsets of 5£(%!\ ίf and ίΓ, are locally
isomorphic if each operator in Sf is unitarily equivalent to an operator in
θ' and conversely. Because every quasitriangular operator is a compact
perturbation of a triangular operator, it follows that any two quasitrian-
gular algebras are locally isomorphic; from Theorem 12 we conclude that
they are not necessarily isomorphic.

THEOREM 12. Let ΆSΓ^) and ΆSΓ(^) be quasitriangular algebras.
Then &2Γ(SP) and ΆSΓ(y) are algebraically isomorphic if and only if there
exist positive integers j0 and l0 such that dim(P/o+fc) = dim(S4)+jt) for all k in
N.

Proof φ : If we assume that there exist positive integers /0 and l0

such that dim(P/()+fc) = dim(St)+fc) for all k in N, then we can define a
unitary operator U such that UPjo+kU* = Ski+k for all k in N. We assert
that U implements an isomorphism from &3~(&) to

=> : Assume that there is a map a from ΆSΓ^) to Sί3'(&>) which
preserves algebraic structure. Since Ά2Γ(2P) and SISΓ{^) are Banach
algebras, each of which contains the set of finite rank operators, it follows
from [6, Theorem 2.5.19] that there exists an invertible operator 5 such
that a(T) - STS1 for all T in ΆSΓ(SP).

We conlude from [1, Theorem 3.3] that S has a factorization
S = UA where A belongs to 3~(&) and U is unitary. Then we note that
Rn = UPnU* is a defining sequence for 2,&(£f); by Theorem 10, we note
that there exist positive integers m() and n0 such that \\Rmo+k ~ S^+k ||—>0.
So, there exists a positive integer d such that WR^+d+k ~ $no+d+k || < 1 for all
k in N. Hence, dim(Rmo+d+k) = dim(Sno+d+k) for all k in N. Since

dim(Pn) = dim(Rn) for all n in N, let jo= m o + d and let lo= no+d to

obtain the theorem.
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