QUASITRIANGULAR OPERATOR ALGEBRAS

JOAN K. PLASTIRAS

Fix a sequence $\mathscr{P}=\{P_n\}_{n=1}^\infty$ of finite dimensional projections increasing to the identity on a separable Hilbert space \mathscr{H} and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded operators on \mathscr{H} . The quasitriangular algebra associated with \mathscr{P} and denoted as $\mathscr{QT}(\mathscr{P})$ is defined to be the set of those operators T in $\mathscr{L}(\mathscr{H})$ for which $\|P_n^\perp TP_n\| \to 0$.

In this paper we will examine the structure of the $2\mathcal{T}(\mathcal{P})$ algebras. Specifically, if $\mathcal{R} = \{R_n\}_{n=1}^\infty$ is another sequence of finite dimensional projections increasing to the identity on the same Hilbert space, when is $2\mathcal{T}(\mathcal{R})$ equal to $2\mathcal{T}(\mathcal{P})$? By an algebraic isomorphism between two algebras we shall mean a bijection which preserves algebraic structure: that is to say — addition, scalar multiplication, multiplication, but we do not impose any topological condition. When are two quasitriangular algebras isomorphic?

In [5] we asked the same questions of $\mathcal{D}(\mathcal{E}) + \mathcal{C}(\mathcal{H}) = \{T + K : T \text{ belongs to the commutant of } E \text{ and } K \text{ is compact} \}$ and answered them completely by arguments very different from those presented here; the conclusions were different too. The concept of quasitriangularity for operators was first isolated for systematic study in [3]. The quasitriangular algebra was introduced later in [1] and a formula expressing the distance from such an algebra to an arbitrary operator was obtained. We begin our discussion with an algebraic property:

DEFINITION 1. A subset \mathcal{G} of $\mathcal{L}(\mathcal{H})$ is said to be inverse-closed if whenever T in \mathcal{G} is invertible in $\mathcal{L}(\mathcal{H})$ then T^{-1} belongs to \mathcal{G} .

LEMMA 2. $\mathcal{QT}(\mathcal{P})$ is inverse-closed for every sequence $\mathcal{P} = \{P_n\}_{n=1}^{\infty}$ of finite dimensional projections increasing to the identity on a Hilbert space.

Before verifying Lemma 2 we remark that the assumption that the P_k be finite dimensional is essential.

Proof. From [1, Corollary following 2.2] we know that $2\mathcal{T}(\mathcal{P}) = \mathcal{T}(\mathcal{P}) + \mathcal{C}(\mathcal{H})$, where $\mathcal{T}(\mathcal{P})$ is the set of operators T such that $P_n^{\perp}TP_n = 0$ for all n. Hence, it suffices to assume that S belongs to $\mathcal{T}(\mathcal{P}) + \mathcal{C}(\mathcal{H})$ and is invertible in $\mathcal{L}(\mathcal{H})$ and show that S^{-1} belongs to $2\mathcal{T}(\mathcal{P})$. So, S = T + C, where $T \in \mathcal{T}(\mathcal{P})$ and $C \in \mathcal{C}(\mathcal{H})$. Since $S_m = T + P_m C P_m$ tends in norm to S, S_m is invertible for all m greater than a positive

integer l. Fix m > l and note that $S_m P_n = P_n S_m P_n$ for all $n \ge m$, and since dim $P_n < \infty$, S_m maps $P_n \mathcal{H}$ onto itself, so that $P_n S_m^{-1} P_n = S_m^{-1} P_n$ (or equivalently, $P_n^{\perp} S_m^{-1} P_n \equiv 0$). Hence, S_m^{-1} belongs to $\mathcal{QT}(\mathcal{P})$ by definition. As S_m^{-1} tends in norm to $(T+C)^{-1}$ and $\mathcal{QT}(\mathcal{P})$ is norm-closed [1, Proposition 2.1], we conclude that $(T+C)^{-1}$ belongs to $\mathcal{QT}(\mathcal{P})$.

THEOREM 3. Suppose that T is an invertible operator in $\mathcal{L}(\mathcal{H})$. Then T implements an automorphism of $2\mathcal{T}(\mathcal{P})$ (i.e. $T2\mathcal{T}(\mathcal{P})T^{-1}=2\mathcal{T}(\mathcal{P})$) if and only if T belongs to $2\mathcal{T}(\mathcal{P})$.

- *Proof.* \Leftarrow : Assume that T belongs to $\mathcal{2T}(\mathcal{P})$. To show that T implements an inner automorphism of $\mathcal{2T}(\mathcal{P})$ it will suffice to show that T^{-1} also belongs to $\mathcal{2T}(\mathcal{P})$. But that is immediate from Lemma 2.
- \Rightarrow : Assume that T implements an automorphism of $2\mathcal{T}(\mathcal{P})$. First we conclude from [1, Theorem 3.3] that T admits a factorization T = UA, where A belongs to $\mathcal{T}(\mathcal{P})$ and U is a partial isometry. Note that $A = U^*T$ has closed range; since $\ker A = \{0\}$, A is semi-Fredholm by definition. Since A belongs to $2\mathcal{T}(\mathcal{P})$ the index of A is nonnegative [2] so that $\ker A^* = \{0\}$ and A is consequently invertible. This forces U to be unitary. Since $A \in 2\mathcal{T}(\mathcal{P})$ is invertible, then by the previous argument, A implements an automorphism of $2\mathcal{T}(\mathcal{P})$ so that we are reduced to showing that if U is a unitary operator which implements an automorphism of $2\mathcal{T}(\mathcal{P})$, then U belongs to $2\mathcal{T}(\mathcal{P})$.

So, we assume that U does not belong to $2\mathcal{T}(\mathcal{P})$ and arrive at a contradiction. Since U does not belong to $2\mathcal{T}(\mathcal{P})$ then by the definition of $2\mathcal{T}(\mathcal{P})$ there is an $\alpha > 0$ and a subsequence $\{P_{n(k)}\}_{k=1}^{\infty}$ of \mathcal{P} for which $\varliminf_k \|P_{n(k)}^{\perp}UP_{n(k)}\| \ge \alpha$. From Lemma 2 we know that U^* does not belong to $2\mathcal{T}(\{P_{n(k)}\}_{n=1}^{\infty})$, so that by definition, there is $\beta > 0$ and a subsequence $\{m(k)\}_{k=1}^{\infty}$ of $\{n(k)\}_{k=1}^{\infty}$ for which $\varliminf_k \|P_{m(k)}^{\perp}U^*P_{m(k)}\| \ge \beta$. If we let $\epsilon = \min(\alpha, \beta)/2$, then we can conclude that $\|P_n^{\perp}UP_n\|$ and $\|P_nUP_n^{\perp}\|$ ($= \|P_n^{\perp}U^*P_n\|$) are both greater than ϵ for all n in an infinite subset M of N.

We will obtain a sequence $\{m_i, n_i\}_{i=1}^{\infty}$ of positive integers such that $0 < m_1 < n_1 < m_2 < n_2 < \cdots$ and projections $\{F_k, E_k\}_{k=1}^{\infty}$ such that $F_k = P_{m_k} P_{n_{k-1}}^{\perp}$ and $E_k = P_{n_k} P_{m_k}^{\perp}$ for which $\|F_k U E_k\|$ and $\|E_k U F_k\|$ are both greater than $\epsilon/2$. We do so inductively.

For k=1, define $F_1=P_{m_1}$, where m_1 is the first integer in M. Let n_1 be the first integer such that $\|P_{n_1}P_{m_1}^{\perp}UP_{m_1}\|$ and $\|P_{m_1}UP_{m_1}^{\perp}P_{n_1}\|$ are both greater than $\epsilon/2$ (such an n_1 exists because $\|P_{m_1}^{\perp}UP_{m_1}\|$ and $\|P_{m_1}UP_{m_1}^{\perp}\|$ are greater than ϵ and the P_n tend strongly to the identity).

Assume that we have obtained $\{E_k, F_k\}_{k=1}^l$. To obtain m_{l+1} and n_{l+1} , note that UP_{n_l} and $P_{n_l}U$ are compact; hence, there is a positive integer j such that $\|P_n^\perp UP_{n_l}\|$ and $\|P_{n_l}UP_n^\perp\|$ are both less than $\epsilon/4$ for all $n \ge j$. Let m_{l+1} be the first integer in M greater than j.

Then

$$||P_{m_{l+1}}^{\perp}UP_{m_{l+1}}P_{n_{l}}^{\perp}|| \ge ||P_{m_{l+1}}^{\perp}UP_{m_{l+1}}|| - ||P_{m_{l+1}}^{\perp}UP_{m_{l+1}}P_{n_{l}}||$$

$$\ge \epsilon - ||P_{m_{l+1}}^{\perp}UP_{n_{l}}||$$

$$\ge \epsilon - \epsilon/4 = \frac{3}{4}\epsilon.$$

Similarly, $||P_{m_{l+1}}P_{n_l}^{\perp}UP_{m_{l+1}}^{\perp}|| \ge 3\epsilon/4$ by the same argument. Let n_{l+1} be the first positive integer greater than m_{l+1} for which $||P_{m_{l+1}}P_{m_{l+1}}^{\perp}UP_{m_{l+1}}P_{n_l}^{\perp}||$ and $||P_{m_{l+1}}P_{n_l}^{\perp}UP_{m_{l+1}}P_{n_l}^{\perp}||$ are both greater than $\epsilon/2$. Let $F_{l+1} = P_{m_{l+1}}P_{n_l}^{\perp}$ and let $E_{l+1} = P_{n_{l+1}}P_{m_{l+1}}^{\perp}$. Continue inductively.

We select a subsequence $\{E_{i_i}, F_{i_j}\}_{j=1}^{\infty}$ of $\{E_i, F_i\}_{i=1}^{\infty}$ as follows: first, we let $\{\alpha_{i_j}\}_{i,j=1}^{\infty}$ be any sequence of positive real numbers such that $\sum_{i,j} \alpha_{ij}^2 \le \epsilon^2/16$. Let $i_1 = 1$. Assuming that we have obtained i_k , let i_{k+1} be the next positive integer such that for all $l \le k+1$, $||E_{i_{k+1}}UF_{i_1}||$ and $||F_{i_{k+1}}UE_{i_1}||$ are less than $\alpha_{k+1,l}$ while $||E_{i_l}UF_{i_{k+1}}||$ and $||F_{i_l}UE_{i_{k+1}}||$ are less than $\alpha_{l,k+1}$. This is possible because UF_{i_l} , $F_{i_l}U$ (respectively UE_{i_l} , $E_{i_l}U$) are compact and the E_i (respectively F_i) tend weakly to zero. Continue inductively. Now for each i_k there is a rank one partial isometry $T_{i_k} \in \mathcal{L}(E_{i_k}\mathcal{H}, F_{i_k}\mathcal{H})$ such that $||E_{i_k}UT_{i_k}U^*F_{i_k}|| \ge \epsilon^2/4$. Clearly, $T = \sum_{k=1}^{\infty} T_{i_k}$ is a partial isometry in $\mathcal{F}(\mathcal{P})$. So, for arbitrary l in N,

$$E_{i_1}(UTU^*)F_{i_1} = \sum_{k=1}^{\infty} E_{i_1}UT_{i_k}U^*F_{i_1} = E_{i_1}UT_{i_1}U^*F_{i_1} + \sum_{k=1 \atop k \neq l}^{\infty} E_{i_1}UT_{i_k}U^*F_{i_l}.$$

Hence,

$$||E_{i_{i}}(UTU^{*})F_{i_{i}}|| + ||\sum_{\substack{k=1\\k\neq l}}^{\infty} E_{i_{i}}UT_{i_{k}}U^{*}F_{i_{i}}|| \ge ||E_{i_{i}}UT_{i_{l}}U^{*}F_{i_{i}}||.$$

$$||E_{i_{i}}(UTU^{*})F_{i_{i}}|| + \sum_{\substack{k=1\\k\neq l}}^{\infty} ||E_{i_{i}}UT_{i_{k}}U^{*}F_{i_{i}}|| \ge (\epsilon/2)^{2} = \epsilon^{2}/4.$$

Therefore,

$$|E_{ii}(UTU^*)F_{ii}|| \ge \frac{\epsilon^2}{4} - \sum_{k \ne i} ||E_{ii}UF_{ik}|| \cdot ||E_{ik}U^*F_{ii}||$$
$$\ge \frac{3\epsilon^2}{16}.$$

Since i_l was arbitrary, it follows from the construction that

$$\frac{3\epsilon^2}{16} \leq \|E_{i_l}(UTU^*)F_{i_l}\| \leq \|P_{m_{i_l}}^{\perp}(UTU^*)P_{m_{i_l}}\|.$$

Hence,

$$\overline{\lim_{k}} \|P_{k}^{\perp}(UTU^{*})P_{k}\| > 0$$

and it follows by definition of $\mathcal{2T}(\mathcal{P})$ that UTU^* does not belong to $\mathcal{2T}(\mathcal{P})$. This contradicts our assumption that U implements an automorphism of $\mathcal{2T}(\mathcal{P})$ and thus concludes the argument of the proof of Theorem 3.

DEFINITION 4. Let $\mathscr{P} = \{P_n\}_{n=1}^{\infty}$ be a sequence of finite dimensional projections increasing to the identity on a Hilbert space \mathscr{H} . An operator T is said to be *strictly upper triangular for* \mathscr{P} if $P_n^{\perp}TP_{n+1} = 0$ for all n in \mathbb{N} .

REMARK 5. Note that in the proof of Theorem 3 we showed that if U does not belong to $2\mathcal{T}(\mathcal{P})$ then there is an operator T, which is strictly upper triangular for \mathcal{P} , and such that UTU^* does not belong to $2\mathcal{T}(\mathcal{P})$.

REMARK 6. Let $\mathcal{G} = \{S_n\}_{n=1}^{\infty}$ be any sequence of finite dimensional projections increasing to the identity on \mathcal{H} . Let $\mathcal{P} = \{P_n\}_{n=1}^{\infty}$ be a subsequence of \mathcal{G} . Then $2\mathcal{T}(\mathcal{G}) \subseteq 2\mathcal{T}(\mathcal{P})$. Equality may fail; however, if T is strictly upper triangular for \mathcal{P} then T belongs to $2\mathcal{T}(\mathcal{G})$.

DEFINITION 7. A sequence of projections $\mathcal{G} = \{S_n\}_{n=1}^{\infty}$ increasing to the identity on a Hilbert space \mathcal{H} is said to be a *defining sequence* for a quasitriangular algebra \mathcal{A} if and only if $\mathcal{A} = \{T \in \mathcal{L}(\mathcal{H}): ||S_n^{\perp}TS_n|| \to 0\}$.

REMARK 8. Suppose that U is a unitary operator which implements an isomorphism $T \to UTU^*$ from $2\mathcal{T}(\mathcal{P})$ onto $2\mathcal{T}(\mathcal{P})$. Then U maps defining sequences of $2\mathcal{T}(\mathcal{P})$ to defining sequences of $2\mathcal{T}(\mathcal{P})$.

LEMMA 9. Suppose that $\mathcal{P} = \{P_n\}_{n=1}^{\infty}$ and $\mathcal{S} = \{S_n\}_{n=1}^{\infty}$ are sequences of finite dimensional projections increasing to the identity such that $\mathcal{P} \cup \mathcal{S}$ is totally ordered by inclusion. Then $2\mathcal{T}(\mathcal{P}) = 2\mathcal{T}(\mathcal{S})$ if and only if there exist positive integers m_0 and n_0 such that $P_{m_0+k} = S_{n_0+k}$ for all k in \mathbb{N} .

Proof. \Leftarrow : This conclusion is clear.

 \Rightarrow : Assume that $\mathcal{QT}(\mathcal{P}) = \mathcal{QT}(\mathcal{F})$. Then $\mathcal{QT}(\mathcal{P}) = \mathcal{QT}(\mathcal{P} \cup \mathcal{F})$. We assert that \mathcal{P} contains all but perhaps finitely many of the projections in $\mathcal{P} \cup \mathcal{F}$. Contrapositively, assume not. Let $\mathcal{R} = \{R_n\}_{n=1}^x$ be a total ordering of $\mathcal{P} \cup \mathcal{F}$ and choose an infinite subsequence $\{n_k\}_{k=1}^x$ for which $R_{n_k} \not\in \mathcal{P}$ but $R_{n_{k+1}} \in \mathcal{P}$. Let T_k be any rank one partial isometry with initial space $(R_{n_k} \bigcirc R_{n_{k-1}})\mathcal{H}$ and final space $(R_{n_{k+1}} \bigcirc R_{m_k})\mathcal{H}$. Then $T = \sum_{k=1}^x T_k$ is a partial isometry which belongs to $\mathcal{QT}(\mathcal{P})$ but not to $\mathcal{QT}(\mathcal{P} \cup \mathcal{F})$.

Hence, $2\mathcal{T}(\mathcal{P} \cup \mathcal{S}) \subsetneq 2\mathcal{T}(\mathcal{P})$. We conclude that \mathcal{P} contains all but perhaps finitely many of the projections in $\mathcal{P} \cup \mathcal{S}$.

By symmetry, \mathscr{S} contains all but perhaps finitely many of the projections in $\mathscr{P} \cup \mathscr{S}$. So there exists a positive integer k such that $\{P_n : \dim P_n \ge k\} \subseteq \mathscr{S}$ and $\{S_n : \dim S_n \ge k\} \subseteq \mathscr{P}$. Let m_0 be the first positive integer such that $\dim(P_{m_0}) \ge k$ and let n_0 be the first integer such that $\dim(S_{n_0}) \ge k$. Then $P_{m_0+k} = S_{n_0+k}$ for all $k \in \mathbb{N}$.

THEOREM 10. $\mathcal{G} = \{S_n\}_{n=1}^{\infty}$ is a defining sequence for $2\mathcal{F}(\mathcal{P})$ if and only if there exist positive integers m_0 and n_0 such that $\lim_k \|P_{m_0+k} - S_{n_0+k}\| = 0$.

Proof. \Leftarrow : We note that $\mathcal{QT}(\mathcal{S}) \subseteq \mathcal{QT}(\mathcal{P})$ since for T in $\mathcal{QT}(\mathcal{S})$,

$$\begin{split} \|P_{m_{0}+k}^{\perp}TP_{m_{0}+k}\| & \leq \|S_{n_{0}+k}^{\perp}TS_{n_{0}+k}\| + \|(P_{m_{0}+k}^{\perp} - S_{n_{0}+k}^{\perp})TS_{n_{0}+k}\| \\ & + \|P_{m_{0}+k}^{\perp}T(P_{m_{0}+k} - S_{n_{0}+k})\| \\ & \leq \|S_{n_{0}+k}^{\perp}TS_{n_{0}+k}\| + \|P_{m_{0}+k}^{\perp} - S_{n_{0}+k}^{\perp}\| \cdot \|T\| \\ & + \|T\| \cdot \|P_{m_{0}+k} - S_{n_{0}+k}\|, \end{split}$$

and the other inclusion follows by symmetry.

 \Rightarrow : We assume that $\mathcal{G} = \{S_n\}_{n=1}^{\infty}$ is a defining sequence for $2\mathcal{F}(\mathcal{P})$. Let V be any unitary operator such that $\{VS_nV^*\}_{n=1}^{\infty} \cup \{P_n\}_{n=1}^{\infty}$ is a sequence of projections totally ordered by set inclusion.

Let $W = \{W_n\}_{n=1}^{\infty}$ with $W_n = VS_nV^*$ for each n. We assert that V belongs to $2\mathcal{T}(W)$. So assume that T is strictly upper triangular for W; it suffices to show that VTV^* belongs to $2\mathcal{T}(W)$ by Remark 5. By Remark 6, T belongs to $2\mathcal{T}(\mathcal{P}) \cup W) \subseteq 2\mathcal{T}(\mathcal{P})$ so that it remains to observe that $V2\mathcal{T}(\mathcal{P})V^* \subseteq 2\mathcal{T}(W)$: $W_n^{\perp}(VTV^*)W_n = (VS_n^{\perp}V^*)(VTV^*)(VS_nV^*) = VS_n^{\perp}TS_nV^*$, so that $\|W_n^{\perp}(VTV^*)W_n\| = \|VS_n^{\perp}TS_nV^*\| = \|S_n^{\perp}TS_n\| \to 0$.

Hence, we conclude that V belongs to $\mathcal{QT}(W)$. Since $\mathcal{QT}(W)$ is inverse-closed by Lemma 2, it follows that $\|W_n^{\perp}VW_n\| \to 0$ and $\|W_nVW_n^{\perp}\| = \|W_n^{\perp}V^*W_n\| \to 0$.

- (1) Since $W_n V = V S_n$, we have that $W_n V W_n^{\perp} = V S_n W_n^{\perp}$ so that $||W_n V W_n^{\perp}|| = ||V S_n W_n^{\perp}|| = ||S_n W_n^{\perp}|| \to 0$ and
- (2) Since $W_n^{\perp}V = VS_n^{\perp}$, we have that $W_n^{\perp}VW_n = VS_n^{\perp}W_n$ so that $\|W_n^{\perp}VW_n\| = \|VS_n^{\perp}W_n\| = \|S_n^{\perp}W_n\| \to 0$.

Since $||S_n - W_n|| = \max\{||S_n^{\perp}W_n||, ||S_nW_n^{\perp}||\}$ [5, Lemma 6] it follows that $\lim_n ||S_n - W_n|| = 0$ and by a previous argument that \mathcal{W} is a defining sequence for $2\mathcal{F}(\mathcal{P})$. It follows from Lemma 9 that there are integers m_0 and n_0 such that $W_{n_0+k} = P_{m_0+k}$ for all k in \mathbb{N} . Hence

$$\lim_{k} \|S_{n_0+k} - P_{m_0+k}\| = 0,$$

which concludes the proof.

EXAMPLE 11. As an easy consequence of Theorem 10, it follows that there exist defining sequences $\mathscr{P} = \{P_n\}_{n=1}^{\infty}$ and $\mathscr{R} = \{R_n\}_{n=1}^{\infty}$ for a quasitriangular algebra \mathscr{A} such that $\{P_n \vee R_n\}_{n=1}^{\infty}$ is not a defining sequence for \mathscr{A} ("\v" denotes the supremum of two projections). This phenomenon is suggested by an example in [3, p. 285].

We shall say that two subsets of $\mathcal{L}(\mathcal{H})$, \mathcal{F} and \mathcal{T} , are *locally isomorphic* if each operator in \mathcal{F} is unitarily equivalent to an operator in \mathcal{F} and conversely. Because every quasitriangular operator is a compact perturbation of a triangular operator, it follows that any two quasitriangular algebras are locally isomorphic; from Theorem 12 we conclude that they are not necessarily isomorphic.

THEOREM 12. Let $\mathcal{QT}(\mathcal{P})$ and $\mathcal{QT}(\mathcal{S})$ be quasitriangular algebras. Then $\mathcal{QT}(\mathcal{P})$ and $\mathcal{QT}(\mathcal{S})$ are algebraically isomorphic if and only if there exist positive integers j_0 and l_0 such that $\dim(P_{j_0+k}) = \dim(S_{l_0+k})$ for all k in N.

Proof. \Leftarrow : If we assume that there exist positive integers j_0 and l_0 such that $\dim(P_{j_0+k}) = \dim(S_{l_0+k})$ for all k in \mathbb{N} , then we can define a unitary operator U such that $UP_{j_0+k}U^* = S_{l_0+k}$ for all k in \mathbb{N} . We assert that U implements an isomorphism from $2\mathcal{F}(\mathcal{P})$ to $2\mathcal{F}(\mathcal{S})$.

 \Rightarrow : Assume that there is a map α from $2\mathcal{T}(\mathcal{P})$ to $2\mathcal{T}(\mathcal{P})$ which preserves algebraic structure. Since $2\mathcal{T}(\mathcal{P})$ and $2\mathcal{T}(\mathcal{P})$ are Banach algebras, each of which contains the set of finite rank operators, it follows from [6, Theorem 2.5.19] that there exists an invertible operator S such that $\alpha(T) = STS^{-1}$ for all T in $2\mathcal{T}(\mathcal{P})$.

We conclude from [1, Theorem 3.3] that S has a factorization S = UA where A belongs to $\mathcal{T}(\mathcal{P})$ and U is unitary. Then we note that $R_n = UP_nU^*$ is a defining sequence for $2\mathcal{T}(\mathcal{S})$; by Theorem 10, we note that there exist positive integers m_0 and n_0 such that $||R_{m_0+k} - S_{n_0+k}|| \to 0$. So, there exists a positive integer d such that $||R_{m_0+d+k} - S_{n_0+d+k}|| < 1$ for all k in N. Hence, $\dim(R_{m_0+d+k}) = \dim(S_{n_0+d+k})$ for all k in N. Since $\dim(P_n) = \dim(R_n)$ for all n in N, let $j_0 = m_0 + d$ and let $l_0 = n_0 + d$ to obtain the theorem.

REFERENCES

^{1.} W. B. Arveson, *Interpolation problems in nest algebras*, J. Functional Analysis, **20** (1975), 208-233.

- 2. R. G. Douglas and C. Pearcy, A note on quasitriangular operators, Duke Math. J., 37 (1970), 177-188.
- 3. P. R. Halmos, Quasitriangular operators, Acta Sci. Mat. (Szeged), 29 (1968), 283-293.
- 4. ——, Ten problems in Hilbert space, Bulletin Amer. Math. Soc., 76 (1970), 887-933.
- 5. J. K. Plastiras, Compact perturbations of certain von Neumann algebras, Trans. Amer. Math. Soc., (to appear).
- 6. C. E. Rickart, General Theory of Banach Algebras, D. van Nostrand Company, Inc. (1960).
- 7. B. Sz.-Nagy, Specktraldarstellung linearer Transformation des Hilbertschen Raumes, Berlin, (1942).

Received February 23, 1976.

University of Pennsylvania