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THE SOLUTION OF A STIELTJES-VOLTERRA
INTEGRAL EQUATION FOR RINGS

B U R R E L L W. H E L T O N

For a triple (ft, K, g) of functions and an interval [a, x], the
author defines a subdivision-refinement-type limit
V(a, x ft, K, dg) of the set {V(D, ft, K,Ag)} of determinants,
where each subdivision D={JC/} (" of [α, JC] defines an n x n
determinant of the set and each determinant has the form
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The following theorem is proved. If /, g, ft and K are functions to
a ring and g has bounded variation on [a, b], then (f,K,g)G

OΛ* and /(x) = ft(x) + (L) Γ/(f)K(jt, ί)dg(ί) on [a,b] iff

(h,K,g)<ΞθM* and /(x) = V(α, x; ft, X, dg) on [α,f>]. The
OΛ * and OM * sets are defined and sufficient conditions are
proved for (/,X,g)G OΛ * and (ft,X,g)E OM*, and for the
existence of the limit V(a, x h, K, dg), and for

V(a, x;h,K, dg) =h(x)-(L)Γ ft (t)dV(t, JC 1, X, dg).

Although the Volterra equation /(*)= h(x)+ f(t)K(x,t)dt has

been studied in depth by many persons, it seems that only Hinton [3],
Reneke [4] [5] and Bitzer [1] [2] have published papers on the Volterra
integral equation in which the integral is a subdivision-refinement-type
Stieltjes integral. In this paper the solution of the Volterra equation and
the development of the related properties do not depend on a Picard
expansion or on the above quoted references. So far as the author has
been able to determine, this subdivision-refinement definition of the
solution V(a, x; h, X, dg) of the Volterra equation has not been pub-
lished previously.

Definitions and notations. The symbol R denotes the set of real
numbers and N is a ring which has a multiplicative identity element 1 and
a norm | | with respect to which N is complete and 111 = 1; /, g and ft are
functions from R to N and X is a function from RXR to N. Also,
dg E OB° on [α, b] means g has bounded variation on [α, b]. All
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integrals are of the subdivision-refinement-type limits; the approximating

sum for (L)j E(t)dg(t) is Σ E ( ^ ) [ g ( O - g ^ ) ] and for

(R) E(t)dg(t) is XE(ti)[g(ti)- g(ί, -i)]. If no misunderstanding is likely,

the symbols Kih ft and Δg, will be used for K(x nXj\ f(xt) and g(jc,)~
g(Xi-i), respectively.

If {&η}li=\ is a sequence of elements of N and p and q are integers
such that l ^ p ^ ^ g n , then the symbol | aή \q denotes the determinant

and is defined by the sum of the (q — p + 1)! products obtained as follows:
(1) each term of the sum is a product, or the negative of a product, which
contains one and only one element from each row and each column of
\aa\q

p\ (2) the factors of each term are ordered so that the second
subscripts appear in the order p,p + 1, , <?; and (3) the product or the
negative of a product is used as a term according as the number of
inversions of the first subscripts is even or odd. Note that the usual
theorems pertaining to determinants will hold, except where multiplica-
tive commutativity is needed in the proofs. Also, if A = |αίy |Γ, then \A \
denotes the norm of A and, if 1 ̂ p ^ n, Ap, *AP and *Apk denote the
determinants defined as follows: Ap = | ax] \

p

u *AP = \ aή \p, Ao = 1, * An+1 =
1, and if 1 ̂  k ^ p , then *Apk is the determinant obtained by replacing
the first column of |αiy |"with the column {aik}UP of elements of {aιj}lj=λ.

A = I Uij \ι is a Volterra determinant means {α^}"/=1 is a sequence such
that αίy = - 1 for j = i + 1 and αi;- = 0 for / > i + 1. A = | aV] |" is a delta
determinant defined by the sequences {Ci/}"/=1 and {dJ/U means Λ is a
Volterra determinant and aV] - c^d, - dy-i) for l^kj^ki^kn.

If D = {Xi}S is a subdivision of a number interval [α, 6], then
V(D,h,K,Δg) denotes the n x n Volterra determinant |α / ; |" such that

xo)[g(xί)'-g(xo)] for / = l,2, ,n and aiy =
i)] for Kj^i^n. If no misunderstanding is

likely, V(D) will be used to denote V(D, Λ, K,Δg).
The limit V(a, b h, K, dg) exists means there is an element / of N

such that if e > 0 then there is a subdivision D of [α, fe] such that if D' is a
refinement of D then | / - V(Dr, ft, K,Δg)| < 6. The symbol
V(a, b h.K, dg) will be used to denote this limit /.

If m > 1, the number M is an m-bound for V( , , ,Δg) on [α, b]
means M^m and, if | h \ < m on [α, b] and | K | < m on [α, fc] x [α, ft]
and D is a subdivision of a subinterval of [a,b] and A=|α i / | ί l =
V(D, Λ, K, Δg), then | A \ < M and each of | Ap |, | *A p \ and | * Apj \ is less
than M for 1 ̂ p ^ n and l^j^p.
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The triple (f,K,g)£OA* on [α, b] means that

(L) I f(t)K(x, t)dg(t) exists for x E [α, b] and if e > 0 then there is a
Jα

subdivision D of [α, fe] such that, if {r, }o is a refinement of D and
0<p ^ n and JC = ίp, then

(L) I' f(t)K(x,t)dg(t)-^f(t^)K(x,t^)[g(ti)- g(ti.,)]
J a

< €.

The triple (ft, K, g) E OM* means V(α, x;h,K,dg) exists for x E
[α, b] and if 6 > 0 then there is a subdivision D of [a, b] such that, if {x,}J
is a refinement of D and 0 < p ^ n and H = {*,-}£, then

<

The triple ( l , K , g ) E O M * * on [α,fe] means V(x, fc; 1, K, dg) exists
for x E [α, fc] and if e > 0 then there is a subdivision D of [α, fe] such that,
if {Xi}o is a refinement of D and 0 ̂  p < n and H = {x,}p, then

I V(Xpfb;l, K, dg)- V(H, 1, K,Δg)| < β,

where 1 denotes the identity function.

In the following three definitions, G(x,y)=\ \dg\.
J X

Γb Γb

I I dK 11 dg 11 dg I = 0 means if e > 0 then there is a subdivision D

of [α, fc] such that, if {JCJS is a refinement of D, then

- u xj) < 6,

where, for each i and /, Mif is the lub of \K(xi-uxj-ι)- K(x, y) | for
jCi-i ^ x < JC, a n d xM ^ y < jcy.

If a^p^b, \ IdX(p, JC)| |dg(x)\ = 0 means if e >0 then there is a
Jα

subdivision D of [a,b] such that, if {JC, }O is a refinement of D, then
Σ"M ίG(x /_i,x I)< β, where, for each /, M, is the lub of \K{p,x^λ)-
K{p, x)\ for JC/-! ^ x < xf .

,jc)| |dg(jc)| = 0 uniformly on [ayb] means if β > 0 then

there is a subdivision D of [α, fc] such that, if {JCJS is a refinement of D
and a ^ p ^b, then Σί1 M Gίx -i, JC. ) < e, where, for each /, M, is the lub of
\K(pyXi^)- K(p,x)\ for x/_1^x<x ί.

The set S of functions is bounded uniformly on [a, b] means there is
a number M suck that, i f / E 5 and x E [α, 6], then | / (x) | < M. The set S
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of functions is quasicontinuous uniformly on [α, b] means S is bounded
uniformly on [α, b] and if e > 0 then there is a subdivision D = {jcjj of
[a, b] such that, if / E S and 0 < / ^ n and jcf_i < r < t < xh then

1/(0-/(01 <«•
THEOREMS. In Theorems 1-5 we develop properties of the Volterra

determinant. Theorem 6 gives the solution to the Stieltjes-Volterra
integral equation.

THEOREM 1. If A =\ atj |" is a Volterra determinant and 0 < p ^ n,
then

(a) A=an*A2+*A21',
(b) A = ΣΓ=i fl,-i*Ai+ι = Σ;=1 A^!^-
(c) i/ 0 < y ^ p , ί/ien *ΛW- = αp/*Λp+1 + *Ap+1,y = ΣΓ=Pα/y*Λ1+1;

(d) A - X;=1 Λ ^ M ^ - Σ;=1 Ay-.ίΣΓ-pfl^A^O;
(e) if p < n and B = |feiy |" and fepp+1 = 0 and bή = aή otherwise, then

β = Σ;=1A/_1aw-*Ap+1; ami
(f) // atj = 0 whenever 1 < / ^ p and j = i = n, ί/ien A = *Apl.

Each item in Theorem 1 can be proved using the definition of a
determinant or by mathematical induction. Note that Ao = 1 and * An+ί =
1.

THEOREM 2. // A is a delta determinant defined by the sequences
{Cij}ι and {gi}ζ and | cη \^km for ij = 1,2, , n, then

Proo/. (by induction) If A is a 2 x 2 delta determinant defined by
and {gf}?, then

IA I = |c 1 1Δg 1c 2 2Δg 2+c 2 1Δg 1 |

Suppose that the theorem is true for n = p and A is a
(p + l ) x ( p + l) delta determinant defined by {c/y}^

+1 and {gf}g
+1; then

A = c 1 1Δg 1*A 2+*A 2 i (Th. la). Since *A2 and *A21 are pXp delta
determinants which have Δg2 and Δgϊ as factors of each element of the
first columns, respectively, then
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THEOREM 3. If m>ί and dg E OB° on [a,b], then there is a
number M such that M is an m-bound for V{ , , , Δg) on [α, b].

Proof Suppose that m > 1 and k is a bound for \g \ on [α, b]. Let
Γb Γb

M = P + Q, w h e r e P = ra2(l + 2fc) a n d Q = P r a | d g | e x p m\dg\.
J a J a

Let D = {JC/}Γ=O be a subdivision of a subinterval of [α, b] and let K and h
be functions such that m bounds | X | on [a, b] x [α, fc] and | ft | on [α, 6].
Let A =|fl/y|r= V(D, Λ, K,Δg); then *Λ/+1 is a delta determinant for
/ = 1,2, , n - 1. Hence, for / = 1,2, •••,/! and 1 < / ^ / , P = m2

+ 2 m 2 f c > | X , , ^ 1 | | Δ g ; | ^ | α t y | and P = m 2 + 2m2fc >|ΛI-| + | Λ 0 | | X i 0 | | Δ g 1

S I α, , I hence, if 0 < / ^ M and 0 < / ^ n, then | α/y | < P. Therefore,

(Th. lb)

|Δg,+11 //;= i + 2(l + m |Δg71) + P (Th. 2)

fc
^ Pm\ I dg I e x p ί m | d g | + P = Q + P = M .

S i m i l a r l y , | Λ P | < M , | * Λ P | < M a n d | * Λ W | < M for ί^p^n a n d

THEOREM 4. // {/}" and {a,,}" are sequences of elements of N and
A = |a l 71" is an n x n Volterra determinant, then the following statements
are equivalent.

(1) /, - au and f = an + Σj=2^-iΛί/ for \<i^n\ and
(2) /• = A, /or 0 < i ^ n.

Proo/. If 0 < / ^ /t, it follows from Theorem lb that A =
α, i + Σj=2 Ay-ifl/y; therefore, 1—>2 by induction and 2—>1 by induction.

THEOREM 5. // g is a function and m is a number such that m>\
and dg E OB° on [α, b], then there is a number Q such that, if m bounds
the functions H and K on [α, b]x[ay b] and h and k on [a,b] and
D = {x,}o is a subdivision of a subinterval of [α, ft], then

\A - B\ ^ QX ^ ^ l a , - bPJ\\g(xp+ι)- g(xp)\,

where A = | aX] \[ = V(D, ft, H, Δg), B = | ^ |? - V(D, fc, X, Δg) and
|Δgπ + 1 | = l.

Proo/. Let g be a function and m be a number such that dg E Oβ°
on [α, ft] and m > 1. It follows from Theorem 3 that there is a number M
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which is an ra-bound for V( , , , Δg) on [α, b]. Let Q =

Mm exp Ira | dg | ) . Let H, K, ft and /c be functions which are bounded
\ J a I

by m on [α, b].
First we will consider a special case. Suppose that D ={JC, }S is a

subdivision of a subinterval of [α, 6], A = 1 ^ 1 " = V(D, ft, H,Δg), B =
|&i,ΊΓ= V(D, fc,K,Δg), l^p^n, and aiy = ̂  for ίVp; then A - B =
I aij |Γ"~ I ŷ I" is an n x n determinant C = | cή |" such that ct/ = aV] for ιV p,
cp} = apj - bpj f o r ί^j^p a n d c p p + 1 = 0 f o r p < n .

If p = n, then

\ΪUCMcnj\ (Th. lb)

| α n y - bni I ̂  O Σ ? = , l α ^ - bnj | | Δ g n + 1 | .

If 1 ̂  p < n, then

IA - B | = | C | = |Σ; β i q-,c w -*C p + 1 | (Th. le)

^ X ; β l M | f l w - - 6 w - | | * C p + I |

^ Σ ; = 1 M | α p y - 6 p / | m | Δ g p + 1 | e x p Γ m\dg\ (Th. 2)

We will now prove the general case. Suppose that D ={JC, }O is a
subdivision of [α, b] and that A and B are the determinants A = | αiy |" =
V(D, ft, H, Δg) and B = \ bι} \

n

λ = V(D, fc, K, Δg). There exists a sequence
{Rp}o of n x n determinants such that A = i?0, β = ί?n, and A - B =
Xp=1(i?p_, - i?p) and such that, if a < p ^n and /?p_, = | w/y |" and Rp =
I y(y I", then Uij = Vij for zV p. For each integer p, 0<p ^ n, Rp-ι - Rp is
the difference of two determinants as defined in the special case above;
therefore,

THEOREM 6. Given. K is a bounded function from R x R toNandf
h and g are functions from R to N and dg E OB° on [a,b]. Conclusion.
The following statements are equivalent:

(1) (/, K, g)<ΞOA* on [α, b] and, if x e [α, b], then

Γ
J a

f(t)K(x,t)dg(t);
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(2) (h,K,g)EOM* on [α,6] and, if xe[a,b]9 then f(x) =

V(a,x;h,K,dg).

Proof of l->2. Suppose that m is a bound for K and 6 >0. Since
(/, K, g) G OA * on [α, b], there exists a subdivision H of [α, b] such that,
if if' = {JC,}O is a refinement of H and 0 < / ̂  n and x = xn then

(L) f" f(t)K(x, t)dg(t)- yi=ίf(xM)K(x, x,_,)Δg, <e/M,

Γ ίb ίb 1
where M = 4 m | dg | exp m | dg | + 1 . Let x G (α, ft] and let JFΓ =

L Ja Ja J

{xJS be any refinement of H such that x E H'; let x = xp and D = {*,}£,
where 0 < p ^ n. For each integer / such that 0 < i: ^ p there exists an
element eι E N such that

/ ;

where Σ/

1

=2( ) = 0. Let e be a function such that e{a) = 0 and 6(x,) = €„
for i = 1,2, , p. Let V(D, h + e,K, Δg) = | ϋv |j; then | vη \* is a Volterra
determinant such that υιX = ht + e, + Λo^oΔg, for / = 1,2, , p, and
ft/ = iCw_!Δgy for 1 < / ^ / ̂  p. Hence, /Ί = un and /, = υιλ + Σj=2 /7-i^/ for
1 < / ̂  p. Therefore,

/(x) = f(xp) = V(D, Λ + 6, K, Δg) (Th. 4)

V(D,e,K,Δg).

Let A =|fli/l5'= V(D, e, X,Δg), then *Ai+1 is a delta determinant for
i = 1,2, ,p - 1, and

I Λ I - I ^ ^ M , ^ ! (Th. lb)

^ Σp11 6,1 m I Δg/+11 exp ί * m \dg | + | ep \ < 6, (Th. 2).
J a

Therefore, \f(x)— V(D,h,K,Δg)\ = \A\ < e. Since x is an arbitrary
element of (α, ft] and fί ' is an arbitrary refinement of H containing x, it
follows that V(α, x h, K, dg) = f(x) for x G [α, b] and that
(h,K,g)<EOM* on [α,6].

Proof of 2->l. Suppose that β >0. Since (h,K,g)£OM* on
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[a,b], there exists a subdivision H of [a, b] such that if H' = {x,}5 is a
refinement of H and 0 < i ^ n, then

|/(jc,)- V(Dhh,K,Δg)\ < e/2 (l + m J

where m is a bound for K and D,={x;}0. Let x E (α, b] and let
H' = {x,}S be a refinement of H such that xE.H'. Let x - xp and
^ - f a J o ' where 0<p^=n. Then there is a sequence {e^ such that
/(x,) - e, - V(Dί? ft, K, Δg) for 0 < ii ̂  p, where D, = {xjj. Let Λ =
I an |f = V(D, h, K, Δg); then A,- = V(Dy, ft, X, Δg) for / = 1,2, , p, and

/(x) = /(xp) = V(α, x;h,K,dg)= V(D, h, K,Ag)+ ep

= a,,, + Σ;=2 A^a,, + ep (Th. lb)

= (hp + fto/ςoΔg.) + Σ;=2 V(Dy_,, ft, X, Δg^y- .Δs + ep

- (ftp + ftoKP,oΔg,) + Σ;=2α_, - ^-OK^ -.Δg, + €„.

Since hp = h(x) and ho = fo = f(a), then

^ | c p | + I e/2/ (l + m | \dg\)\ < e.

Since x is an arbitrary element of (a,b] and H' is an arbitrary

refinement of H containing x, then f{x)-h{x) = (L) I f(t)K(x, t)dg(t)

for jcE[α,6] and (fK,g)<EOA* on [α,6].
In the next three theorems, we prove a set of sufficient conditions for

a function triple (h,K,g) to belong to each of OA*, OM* and OM**
and show that, with appropriate restrictions,

V(a,b;h,K,dg)=h(b)-(L) Γ h{t)dV{t,b;\,K,dg).
J a

The following lemma is used in the proofs of these theorems.

LEMMA. Given, f is a function from R to N and if e > 0 then there is
a subdivision D = {jcjj of [a, b] such that, if 0 < i ^ n and x^ < x < y <
xh then \f(x) — f(y)\<€. Conclusion. The function f is quasicontinuous on

THEOREM 7. Given. (1) The functions f and K are bounded and



THE SOLUTION OF A STIELTJES-VOLTERRA INTEGRAL EQUATION 427

dg G OB" on [a, b] and F(x) = (L) \ f(t)K(x, t)dg(t) exists for a g x g
J a

b and (2) ife>0 then there is a subdivision D = {xJS of [a, b] such that,
if 0 < i g n and JC/_I < x < y < xt and {ίj?1 is α refinement of D such that
ts E{ti}Z and y = ίs, then

Conclusion. (1) The function F is quasicontinuous on [α, 6]; and (2)
on [a,b].

Proof of Conclusion 1. Suppose that e > 0 and M is a bound for
I/I I i£ I. There is a subdivision D = {jtjo of [a, b] such that, if 0 < p ^ n

and x and y E (xp-u xp), then I | dg | < β/4M and, if {ίjj1 is any refine-
Λ

ment of D and y = ίs, then

- g(ί,-i)]I < e/4.

Let p be an integer and x and y be numbers such that 0 < p i n and x
and y E (jcp_b xp). There is a refinement D' - {ίj™ of D and integers r and
5 such that x = ίr, y = ts and such that | A \ < e/4 and | B | < β/4, where

A =F(jc)"Σ;/(ί ί_1)K(x,ίι-i)[g(ί i)-g(t-i)], and

Hence,

where

and I C| < e/4 and | E | < e/4. Therefore, F is quasicontinuous on [α, fe].

Proof of Conclusion 2. Let e > 0 and M be a bound for
I/| IKI. Since F is quasicontinuous on [α, 6], then there is a subdivision
Hi = {z/Jo1 of [α, ί>] which is a refinement of the subdivision D defined
above and such that, if 0 < p ^ m and zp-λ < x < y < zp, then
| F ( x ) - F(y)| < e/4. Let H2 be an interpolating sequence for Hx and let
H be a refinement of //! U H2 such that, if H' = {yjj is a refinement of H
and yfl E Hλ U H2, then
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We now show that this subdivision H satisfies the definition for
OA*. Let H' = {ti}p

0 be a refinement of H and let x = trEHf. If
x E H j U H2, then the OA * inequality | | < e is satisfied. Suppose that
x£HxΌ H2\ then there exist y = ts E ίί 2 and zy _i, z; E /iΊ such that x and
y E (Zj-U Zj). For convenience we will assume that x < y. Hence,

where A = F(x) — F(y) and B, C and £ are defined as in Conclusion 1 of
this proof. If x > y, the steps would be similar. Therefore, (f,K,g)£
OA* on [a,b].

T H E O R E M 8. Given. The function K is bounded on [a,b]x[a,b]
and on [α, b] the functions h and g have bounded variation, the set

of functions is quasicontinuous uniformly and F(x)= V{a, x \ h, K, dg)
exists. Conclusion. (1) F is quasicontinuous on [«,&]; and (2) (/ι, K, g)£Ξ
OM* on [α,6].

Proof of Conclusion 1. Suppose that 0 < e < 1 and m > 1 is a bound
for h and i£; then there is a number M which is an m-bound for
V( , , ,Δg) on [a, b] and a number Q>\ which has the properties
stated in Theorem 5. There is a subdivision D = {JC,-}? of [α, fc] such that,
if 0< i ^ n and x,-_, < x < y < xh then

for

ί" I dg I < 6/8QM, and ί" | dh \ < e/8M.
J X J X

Suppose that 0 < i ^ n and that xt-x < x < y < x,; then there is a
refinement {z,}o of D such that x = zp and y = zq and such that
| F ( J C ) - V ( P , Λ , K , Δ g ) | < e / 8 and | F ( y ) - V(JR, Λ, X,Δg)| < e/8, where
F - {ZiY0 and /? = {zjj. Let A=\ a, |J = V(Λ, Λ, K, Δg); then

|
Let β = 16ίy |̂  be the ( j x ^ determinant such that bή = 0 for p < j ^

^ ^ and bij = α/; otherwise. It follows from Theorem 5 that
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\A-B\^QXl1Vl.l\ali-bll\\g(zl+l)-g(z,)\

£ + 1 x;.,+1 I α, 11 Δg ί + 11+Σ;_,+ 1 I a j ]

- ° [ M ( Γ | ί ί g | ) 2 + M Γ | ί ί g | ] < e / 4 -
Also, BM = A, _, and *Bp ; = α ί ; (Th. If) for / = 1,2, , p ; therefore,

=|Σ;. 1B ;_ 1*Bw-Σf. 1Λ l. lflw | (Th. ld,b)

g Σf_, I Λ - i 11 * B W - α w I ̂  M Σ ; = 1 1 ̂  - flw I

§ M [ I ft, - fcp I + |Λ011 Kq0 - Kp011 Δ g , | + Σ;_21 Kq,M

mΣ;=l (e/8mAf( ί" \dg\ + l)) |Δg, |1 < e/4.

Hence,

The proof of Conclusion 2 is similar to the proof of Conclusion 2 of
Theorem 7.

THEOREM 9. Given. The function K is bounded on [a, b] x [a, b]
and on [a, b] g has bounded variation and F(x) = V(a, b;l,K,dg) exists,
where 1 denotes the identity function. Conclusion. (1) F is quasicontinuous
on [a,b]-(2){l,K,g)BOM** on [a,b\, and (3) if dh <Ξ OB° on [a,b],

then V(a,b;h,K,dg) exists and is h(b)-(L) ί h(t)dF(t).
J a

Proof of Conclusion 1. Let e > 0, let M be a bound for | K | and let
O be a number having the properties defined in Theorem 5. Since
dg E OB°, there is a subdivision D = {xt}o of [α, b] such that, if 0 < i: ̂  m

Γy / Γ6 \
a n d JC,_, < x < y < JC,, t h e n | d g | < 6 / 6 Q M 1 + \dg\j. S u p p o s e t h a t

Jx \ Ja I

0<r^m and χr_λ < x < y < xr. Since F{x) = V(x, b;l,K, dg) and
F(y) = V(y, b l.K, dg) exist, then there exists a subdivision /? = {zjj of
[x, 6] and an integer p such that 0 < p < n and a subdivision P = {zjp-i of
[y,6] such that x = z0, y = zp_,, | F ( x ) - V(R, 1, X",Δg)| < 6/6, and



430 BURRELL W. HELTON

Let A = V ( i U , K , Δ g ) = K I ? and C =
*AP; let J5 = |6/, |7 be the n X n determinant such that bn = aip for
p ^ i ̂ n, bij = 0 for 1 < j" ̂  i ̂  p, bή = 0 for p < i ̂  n and 2^=j^p, and
fc/y = α/y otherwise. In the following manipulations, |ΔgΛ + 1 | = 1 and |α/71
denotes the norm of the element αf/; hence,

IA - BI g OΣΓ=, Σj-, I α, - b, 11 Δgί+11 (Th. 5)

= O[I Λm - 6»i I + Σf.21 αn, I] + OΣΓ.-.J I a n - bn 11Δgi+11

+ O [Σf.2 Σj=21 a, 11 Δg/+11 + ΣΓ=;+1 %2 K 1 1 Δg j+11 ]

O [Σf.2 Σ;:=21X,y-.Δa I + Σ?-'+1 Σ;=21 ^ . . . Δ f t 11 Δg i + 1

< 6/3+ 6/6+ 6/6 = 26/3.

It follows from Theorem If that B = *AP = C; hence,

\F(x)-F(y)\ ^ \F(x)-A\ + \A -B\ + \B - C\ + \C-F(y)\

< 6/6 + 26/3 + 0+6/6=6.

Therefore, F is quasicontinuous on [α, b].
The proof of Conclusion 2 is similar to the proof of Conclusion 2 of

Theorem 7.

Proof of Conclusion 3. Suppose that e > 0. Since dh E OB° and F
Γb Γb

is quasicontinuous, then (R) dhF exists. Since (R) j dftF and

V(α, b;l,K,dg) exist and (ft, K,g)E OM**, there exists a subdivision D
of [α, b] such that if D' = {JC, }5 is a refinement of D and 0 < i; ̂  n, then

and

< e/3

V(D,,l,K,Δg)\<e/3Π \dh\ + ή
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for / = 0,1,2, , n, where Dt = {JCP}£=,-. Let Dr = {xt}ζ be a refinement of
D and let D, = {xp}

n

p=i for i = 1,2, , n. Also, let V(D, Λ, K, Δg) = A =
aη I" and let V*(D, Λ, K, Δg) = J3 = 16iy |" be the n x n Volterra determi-

nant such that (1) bu = flu, and (2) if 1 < i ^ n, then bη = aή - at-hJ for
/ = 1,2, , n. Note that A = |αiy |" can be transformed into B = \bη |" by
adding the negative of the elements of the n - 1st row of A to the nth
row of A, the negative of the elements of the n — 2nd row to the n — 1st
row, etc. Hence, A = B, and for i = 1,2,3, , n, the determinant *Bi+ί

can be transformed into V(Dn 1,K, Δg) by adding the elements of the
first row of *Bι+] to the 2nd row, the elements of the new 2nd row to the
3rd row, etc. Hence, there exists an element a of N such that | a \ < € and

V(D, h, K, Δg) = I bv |7 = XΓ., V B ί + I ( τ h l b )

= (h, + h()KmΔg,)*B2 + ΣΓ

= ftoV(α,6;l,K,<ig) + (/?) ί*ίi/ιF
J a

= h(a)F(a)+ h(x)F(x)\b

a- (L) Γ

Therefore, V(a, b; h, K, dg) exists and

V(α, b;h,K,dg)=h(a) V(α, 6 1, K, dg) + (I?)

= h(b)-(L) ί" hdV(t,b;l,K,dg).
J a

In Theorem 11 we prove a set of sufficient conditions for the
existence of the limit V(α, b h.K, dg). Theorem 10 is a lemma which is
used in the proof of Theorem 11.

THEOREM 10. Given. The symbols n, r and p represent positive
integers, p < n, and A =\aij\

t! is an n x n Volterra determinant and
B = I bij |Γ r is an (n + r)x(n + r) Volterra determinant such that

(1) i / 0 < / ^ i ^ p , thenbX] = al}\
(2) if p <i^p + r and 0 < / ^ p, ί/ien 6ίy = αpy

(3) ifp + r<i^n + r and 0 < / ^ p,
(4) ifp + r<i^n + r,
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(5) i/ p + r + 1 < / ^ / ̂  n + r, then bV] = ai-rJ-r and
(6) if p<j ^i^p + r, then bη = 0.

Conclusion. A = B, where Λ and B represent elements of N.

Proof Note that A-= ft for i = l,2, ,p and *A = *ft+r for
/ > p + 1. It follows from (6) and (4) above that *ft+1 = *B p + r + l ι i + 1 for
ΐ = p,p + 1, ,p + r and Σ?:;*ft+ 1 = Σ ? : ; * B p + r + u + 1 - *AP+1. Hence,

J5 = Σ;=1 BM&:r

pbtj*Bl+l) (Th. Id)

= ΣfβlB/--I(Σf:;6,*ft>1 + X?^+Γ+16, B i + I)

= Σ;=1 A-i(Σr:;αw- ft+. + ΣΓ=P+1 α, *A+ I) (2,3,5)

= Σj>

=1A -iK/*Λ+i + ΣΓ=P+iαi/*AI-+1)

= Σ;=I A -«ΣΓ=p%*Aί+1 = A, (Th. Id).

THEOREM 11. Given. [a,b] is a number interval, K is a bounded
function from R x R to N and h and g are functions from R to N such that

dg and dh^OB0 on [α,ft], Γ Γ\dK\\dg\\dg\ = 0 and
J a J a

\\dK(b, t)\\dg(t)\ = 0. Conclusion. (1) V(a,b;h, K, dg) exists, and (2)
J a

ίb

if \dK( , t)\ \dg(t)\ = 0 uniformly on [a, b], then on [α, b] the function
J a

f(x) = V(a, x;h,K,dg) exists, (h, K,g)E. OM* and f is the solution of the
equation

f(x)=h(x) + (L)Γ f(t)K(x,t)dg(t).
J

Proof We will show that the limit V(a,b;h,K,dg) exists by
showing that the following Cauchy criterion condition is satisfied: if e > 0
then there is a subdivision D of [α, b] such that, if D' is a refinement of
D, then | V(D,Λ,K,Δg)- V(D',Λ,K,Δg)| < e. Let e > 0 and let M be a

bound for (1 + |Λ |)(1 + | K | ) ( l + ί | d g | ) on [a,b]. It follows from

Theorem 5 that there is a number Q such that, if [/, W, w and w are
functions bounded by M on [α, fc] and D = {JCJ" is a subdivision of [α, 6],
then

IA - B I s; O ^ , Σf=I I αw- - 6W-11 g ( v . ) " g ( ^ ) l ,

w h e r e A = \aη \n

λ = V ( D , II, ί / ,Δg) , B = |6 i y |Γ= V ( D , w, W , Δ g ) a n d
| Δ g π + 1 | = l .
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Since dg and dh E OB° and Γ \"\dK\ \dg \\dg | = 0 and
J a J a

fb

\dK(b, t)\\dg(t)\ = 0, there is a subdivision D = {xt}o of [a,b] such
J a

that

(1) ΣΓ-t Γ \dg\ Γ \dg\<e/9MQ,
J Xi-l J X t- 1

Σ?=, P' |dfι I f" |dg|<e/9O, and ί" \dg\ < e/18MQ;

(2) Σr.,Σ;=,M

w h e r e f o r e a c h / a n d /, M ί y is t h e l u b of \K(Xi-u JC7-_I) — K(x, y)\ for
jc. -i ^ x < Xi a n d JC;-_, g y < x7 a n d

(3) XϊMiΓ |dg|<6/90,

where for each /, Mt is the lub of | K(b, jcf-_i) - iC(fe, JC)| for JC, _I ^ JC < xf.
Let D ' = {zjo" be a refinement of D, A = | α/y |? = V(D, Λ, X, Δg) and

J5 = |6/y|Γ= V(D ;, Λ, X,Δg). Let {njo be the sequence of integers such
that Xi = zm for i = 1,2, , n. We now define an m x m determinant
C = \cij\T such that C = Λ and \B-C\<e and, hence, | Λ - J B | S
| Λ - C | + | C - β | < £ . In the following paragraphs, the symbols hh Kif

and Δg, represent h{zι), K(zhZj) and g(2, ) —g(zf _i), respectively.
Let Pλ be the set of integer pairs such that ί, / E P , iff / = 1 and

1 ^ / < n2. Let ci; = an for /,/ E P ^ then

Let F 2 be the set of integer pairs such that /, / G P2 iff / = 1 and
n2 ^ i < m. If ί, j G P2 and 2 < p ί= n and np_, ̂  / < np, then cίy = αp_i,i.
Let JVP = [np_i, np). Since xo = zo= a, then

( ) - h(xp.ι)] + h(xo){K(zh zo)[g(z,)- g(zo)]
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h xo)-K(xp-u xo)| \g(xθ- g(xo

< e/9O + M(e/9MQ) + e/9Q - e/3Q,

where Mp 0 is the lub of |K(x p _ι,x 0 )- K(x, y)\ for JC, _I = x < x* and
xy_, § y < *,,

Let F, be the set of integer pairs such that /, j G P 3 iff 1 < / ̂  nλ and
j = i = m. Let c/y = 0 for /,/ ε F 3 ; then

Σ,, 7 e f t I bn - c,; 11 Δ g ί + 1 1 = Σy"i2 ΣΓ->I X ( z h z^OΔg,-11Δg j+11

< M(e/9MQ) =

Let P4 be the set of integer pairs such that the pair i, j G PA iff there is
an integer p such that 1 < p ^ n and np_i < ] lί i < np. Let cj; = 0 for
/,;' G F 4; then

fcί; - cfJ 11 Δg i + 11 = Σ,, j eP41 K(z,, zy-OΔg, 11 Δg ί + 11

z,-)-g(zM)\ |g(z ί +

M(β/9MQ).

Let P5 be the set of integer pairs such that i, y E P 5 iff i = m and also
y = 1 or nx<j^m. Let cml = αn] = /ι(xn)+ /ι(xo)^(Xn, *o)[g(*i)- g(^o)]
and, if Kp^n and np-ί<j^np, let c m / = JK:(xw,xp-,)[g(zy)-g(zy-,)].
Since zm = xn and z0 = x(h then

Σ ^ e p , I bη - cη I - I bm] - c m ] I + Σ ; = 2 Σ y ^ n p _ 1 + i I ibmy - c m / I

= |Λ(zm)+Λ(zo)lC(zM,Zo)[g(21)-g(zo)]

- Λ(xn) - h(xo)K(xn, xo)[g(xι) ~ g(x0)] I
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;£np_1+, I K(xm z,_j) - £ ( * „ , xp_,)| I g(z, ) -

| d g | < e / 3 Q ,

where Mp is the lub of \K(b,xp-x)- K(b,z)\ for xp_, ^ z < xp.
Let P6 be the set of integer pairs such that ί, / G P6 iff there are

integers p and q such that 2^q < p ^n and such that np_, ̂  i < np and
n, , < y ^ n,. If /,/ G P6 and np^ki < np+, and n,_i < / = nq, let cy =

) - g ( v ι ) ] ; t h e n

\dg\ p \dg\<e/9Q,
1 J Xq-\

where MM is the lub of |X(JCP_,, xq-\)~ K(x, y)\ for xp_! ^ x < xp and
χq-ι = y <*q-

The determinant |ciy- |Γ can be reduced to the determinant |αiy |" by
the following steps.

(1) If nι > 1, use Theorem If and obtain a determinant of lower
order.

(2) For each integer p such that 2 < p ^ n and np > n ^ + 1, use
Theorem 10 and the definition of the determinant | cf/ |Γ to obtain a
determinant of lower order. Note that, if 1 < np ^ / < np+1, then

Σ;^_1+i cv = K(xp, xq-i)[g(xq)-g(xq-i)] = an.

Hence,

\ (Th.5)

fc, - cη I |Δg l + I | )< 0(6/0) = 6.

Therefore, if e > 0 then there is a subdivision D of [α, ί>] such that if
D' is a refinement of D, then | V(D, Λ,K,Δg)- V(D', Λ, X,Δg)| < e;
hence, the limit V{a,b\h,K,dg) exists.
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fb

Suppose that \dK( , t)\ \dg(t)\ = 0 uniformly on [α, b]. If a < x ^
J a

b, it follows from Conclusion 1 that V(α, x;/ι, iί, dg) exists. We now
prove that (ft, X, g) G OM* on [α, fe]. Let β > 0 and define a subdivision
D of [a,b] in the same manner as in Conclusion 1 except that

r
\dK{ , t)\ \dg(t)\ = 0 uniformly is used in defining D in place of

\dK(b,t)\\dg(t)\ = 0.

If {JCJO is a refinement of D and 0 < p ^ n, then a repetition of the
steps in the proof of Conclusion 1 shows that, if Q' is a refinement of
Q = {xM, then

\V(Q',h,K,Ag)- V(Q,h,K,Ag)\<e.

Since V(a, xp; h, K, dg) exists, there is a refinement Q' of 0 such that
I V{Q\ h, K, Δg)- V(a, xp;h,K,dg)\<e; hence,

\V(a,xp;h,K,dg)- V(Q,h,K,Ag)\

S I V(α, JCP; Λ, K, d g ) - V(O')| + | V(Q')- V(O)\ < 2e.

Therefore, (h, K, g)E OM* on [a, b]. It follows from Theorem 3 that /
is bounded on [a, b] and from Theorem 6 that / is the solution on [a, b] of

the equation f(x) = h(x) + (L) Γ f(t)K(x, t)dg(t).
J a
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