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THE SOLUTION OF A STIELTJES-VOLTERRA
INTEGRAL EQUATION FOR RINGS

BURRELL W. HELTON

For a triple (h, K, g) of functions and an interval [a, x|, the
author defines a subdivision-refinement-type limit
V(a,x; h,K,dg) of the set {V(D,h, K,Ag)} of determinants,
where each subdivision D = {x;}; of [a,x] defines an n X n
determinant of the set and each determinant has the form

hi+ hoK,0Ag, -1 0 0

h:+ hoKyAg, K- Ag, -1 0

hs+ hoKsAg, KuAg,  KiAg; -1
hi+ hoKsAg, KiAg:  KiAgs KiAgs

The following theorem is proved. If f, g, h and K are functions to
a ring and g has bounded variation on [a, b], then (f, K, g)E

OA* and f(x)=h(x)+(L)f f(OK(x,t)dg(t) on [a,b] iff
(h,K,g)€E OM* and f(x)= V(a,x;h,K,dg) on [a,b]. The
OA* and OM* sets are defined and sufficient conditions are

proved for (f, K,g)€ OA* and (h, K, g)€ OM™*, and for the
existence of the limit V(a,x;h K, dg), and for

Via,x;h K,dg)= h(x)—(L)th(t)dV(t,x; 1, K, dg).

Although the Volterra equation f(x)= h(x)+fxf(t)K(x, t)dt has

been studied in depth by many persons, it seems that only Hinton [3],
Reneke [4] [5] and Bitzer [1] [2] have published papers on the Volterra
integral equation in which the integral is a subdivision-refinement-type
Stieltjes integral. In this paper the solution of the Volterra equation and
the development of the related properties do not depend on a Picard
expansion or on the above quoted references. So far as the author has
been able to determine, this subdivision-refinement definition of the
solution V(a, x;h, K, dg) of the Volterra equation has not been pub-
lished previously.

Definitions and notations. The symbol R denotes the set of real
numbers and N is a ring which has a multiplicative identity element 1 and
anorm | -| with respect to which N is complete and [1|=1; f, g and h are
functions from R to N and K is a function from RXR to N. Also,
dg € OB’ on [a,b] means g has bounded variation on [a,b]. All
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integrals are of the subdivision-refinement-type limits; the approximating
sum for (L)f E(t)dg(t) is ZE(t-)[g()—g(t-)] and for

(R)f E(t)dg(t)is 2E(t)[g(t)— g(t-1)]. If no misunderstanding is likely,

the symbols K, f, and Ag, will be used for K(x, x;), f(x;) and g(x;)—
g(x;.,), respectively.

If {a;}};-) is a sequence of elements of N and p and g are integers
such that 1 = p = q = n, then the symbol | a; l‘; denotes the determinant

and is defined by the sum of the (¢ — p + 1)! products obtained as follows:
(1) each term of the sum is a product, or the negative of a product, which
contains one and only one element from each row and each column of
| a; IZ, (2) the factors of each term are ordered so that the second
subscripts appear in the order p,p + 1,-- -, q; and (3) the product or the
negative of a product is used as a term according as the number of
inversions of the first subscripts is even or odd. Note that the usual
theorems pertaining to determinants will hold, except where multiplica-
tive commutativity is needed in the proofs. Also, if A =|aq; |}, then |A |
denotes the norm of A and, if 1=p=n, A, *A, and *A, denote the
determinants defined as follows: A, = |a; [}, *A, = |a; |}, Ac=1, *A,., =
1, and if 1 =k = p, then *A, is the determinant obtained by replacing
the first column of | a; |} with the column {a, };-, of elements of {a;}];-,.

A =|a;|is a Volterra determinant means {a;}!,., is a sequence such
that g; = —1forj=i+1and a; =0 for j >i+1. A =|a,|; is a delta
determinant defined by the sequences {c;};;-, and {d;}]-, means A is a
Volterra determinant and a; = ¢;(d, —di-)) for 1=j=i=n

If D={x}; is a subdivision of a number interval [a, b], then
V(D, h,K,Ag) denotes the n X n Volterra determinant |a; |} such that
ain = h(x)+ h(x))K(x;, xo)[g(x1)— g(x0)] for i=1,2,---,n and a;=
K(x;, x;1)[g(x;)— g(x;-))] for 1<j=i=n. If no misunderstanding is
likely, V(D) will be used to denote V(D, h, K,Ag).

The limit V(a, b; h, K, dg) exists means there is an element J of N
such that if € > 0 then there is a subdivision D of [a, b] such thatif D'is a
refinement of D then |J— V(D' ,h,K,Ag)|<e. The symbol
V(a, b; h, K, dg) will be used to denote this limit J.

If m > 1, the number M is an m-bound for V( , , ,Ag) on [a,b]
means M = m and, if |h|<m on [a,b] and |K|<m on [a,b] X[a, b]
and D is a subdivision of a subinterval of [a,b] and A =|q;|}=
V(D, h, K,Ag), then |A| <M and each of |A,[,|*A,| and |*A, | is less
than M for 1=p=nand 1=j=p.
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The triple (f,K,g)€EOA* on [a,b] means that
(L)fxf(t)K(x, t)dg(t) exists for x €[a, b] and if € >0 then there is a

subdivision D of [a, b] such that, if {#}; is a refinement of D and
0<p=n and x =1, then

| @ [ oK g0 - 270K 1) g 0= g 00| < e

The triple (h, K, g) € OM* means V(a,x;h, K, dg) exists for x €
[a, b] and if € >0 then there is a subdivision D of [a, b] such that, if {x;};
is a refinement of D and 0<p =n and H = {x,}’, then

| V(@ x,5 K, dg) = V(H, b K. Ag)| < e

The triple (1, K, g) € OM** on [a, b] means V(x, b; 1, K, dg) exists
for x € [a, b] and if € > 0 then there is a subdivision D of [a, b] such that,
if {x;}; is a refinement of D and 0=p <n and H = {x;}}, then

|V(x,,b;1,K,dg)— V(H,1,K,Ag)| < ¢,

where 1 denotes the identity function.

y
In the following three definitions, G(x, y) =f |dg|.

b (b
f f |dK || dg||dg | =0 means if € >0 then there is a subdivision D

of [a, b] such that, if {x;}; is a refinement of D, then
=1 2)=1 M[G(xi~19 xi)G(xj—l’ x/) <eg,

where, for each i and j, M; is the lub of |K(x. ., x;1)— K(x,y)| for
Xa=x<x and x;_; =y <x;.

b
Ifa=p=hb, f |dK (p, x)||dg(x)| = 0 means if € >0 then there is a

subdivision D of [a, b] such that, if {x;}; is a refinement of D, then
SrMG(xi-1, ;) < €, where, for each i, M, is the lub of |K(p, x;)—
K(p, x)| for x,.; = x < x,.

b

f |dK( ,x)||dg(x)| =0 uniformly on [a,b] means if € >0 then

there is a subdivision D of [a, b] such that, if {x;}; is a refinement of D
and a = p = b, then 27 MG (x,_,, x;) < €, where, for each i, M, is the lub of
| K(p, xi-1)— K(p, x)| for x;.; = x < x;.

The set S of functions is bounded uniformly on [a, b] means there is
anumber M such.that, if f € S and x € [a, b], then |f(x)| < M. The set S
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of functions is quasicontinuous uniformly on [a, b] means S is bounded
uniformly on [a, b] and if € >0 then there is a subdivision D = {x;}; of
[a,b] such that, if fES and 0<i=n and x._,<r<t<x, then

[f(n-f()] <e

THeoOREMS. In Theorems 1-5 we develop properties of the Volterra
determinant. Theorem 6 gives the solution to the Stieltjes-Volterra
integral equation.

THEOREM 1. If A =|a;|} is a Volterra determinant and 0 <p = n,
then

@) A=a,*A,+*A,;

(b) A= 2;;1 ail*AH-l = E;:l Aj—lanj;

(c) if 0<j=p, then *A,, = a,;*A, .. t *A,0; = 21,0, Aii;

(d) A = 2;;1 A/‘-]*Ap]‘ = E;’:I AjAl(2?=p aij*AH-l);

() ifp<nandB=|b;|} and b, ,., =0 and b; = a; otherwise, then
B=3% A _,a,*A,.; and

(fs if a; =0 whenever 1<j=pand j=i=n, then A =*A,,.

Each item in Theorem 1 can be proved using the definition of a
determinant or by mathematical induction. Note that A, =1and *A,,, =
1.

THEOREM 2. If A is a delta determinant defined by the sequences
{c;}1 and {g}; and |c;|=m for i,j=1,2,---, n, then
Al =m|g —g|I:(1+m|g —g]).
Proof. (by induction) If A is a 2 X2 delta determinant defined by
{Cij}% and {g:}i, then
IA l = IC11A81C22A82+ C21A81|
= [Agi|(leullcal[Ag] +]cal) = m[Agi|(1+m[Ag)).

Suppose that the theorem is true for n=p and A is a
(p+1)X(p+1) delta determinant defined by {c;}’*' and {g}{*'; then
A=c,Ag*A,+*A, (Th. la). Since *A, and *A,, are p Xp delta
determinants which have Ag, and Ag, as factors of each element of the
first columns, respectively, then

|AT=lenllAgl[* Azl + [*Ax|

= |enl|Ag|[m|Ag| 1T (1+ m|Ag )]
+m|Ag |17 (1+ m|Ag )
m|Ag |IIP"'(1+m|Ag]).

A
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THEOREM 3. If m >1 and dg € OB° on [a,b], then there is a
number M such that M is an m-bound for V( , , ,Ag) on [a,b].

Proof. Suppose that m >1 and k is a bound for |g| on [a, b]. Let
b b
M =P+ Q, where P=m?*(1+2k) and Q = me [dg[expj m|dg]|.

Let D = {x;}[-, be a subdivision of a subinterval of [a, b] and let K and h
be functions such that m bounds | K| on [a, b] X [a, b] and |k | on [a, b].
Let A =|a;|t= V(D,h, K,Ag); then *A,,, is a delta determinant for
i=1,2,---,n—1. Hence, for i=1,2,---,n and 1<j=i, P=m’
+2m’k >|K, ;. ||Ag|=|a;| and P =m?+2m?*k >|h;|+]|h|| K| |Ag]
=la,|; hence, if 0<i=n and 0<j = n, then |a, | < P. Therefore,

|A| =2 an||*A] + | au | (Th. 1b)
<I'PI*ALL|+ P
=3 Pm|Ag. | - ,(1+ m|Ag|)+ P (Th. 2)

b b
éme ldglexpf m|dg|+P=Q+P=M.

Similarly, |A,| <M, |*A,| <M and |[*A,|<M for 1=p=n and
i=1,2,p.

Tueorem 4. If {f} and {a;}] are sequences of elements of N and
A =|a; |l is an n X n Volterra determinant, then the following statements
are equivalent.

(1) fi=aunand fi=a,+3_,f.a; for 1 <i=n; and

2) ff=A for0<i=n.

Proof. If 0<i=n, it follows from Theorem 1b that A, =
a,+ 2, A, a;; therefore, 1 —2 by induction and 2— 1 by induction.

THEOREM 5. If g is a function and m is a number such that m > 1
and dg € OB’ on [a, b], then there is a number Q such that, if m bounds
the functions H and K on [a,b]X[a,b] and h and k on [a,b] and
D ={x;}; is a subdivision of a subinterval of [a,b], then

'A - BI = OE;=12€=1’am - bp/ Hg(xp*fl)—g(xp)'a

where A =|a,|i= V(D,h,H,Ag), B =]|b,
|Ag,.|=1.

1= V(D,k,K,Ag) and

Proof. Let g be a function and m be a number such that dg € OB’
on [a, b] and m > 1. It follows from Theorem 3 that there is a number M
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which is an m-bound for V(,, ,Ag) on [ab]. Let Q=
b
Mm exp(mf |dg |> Let H, K, h and k be functions which are bounded

by m on [a, b].

First we will consider a special case. Suppose that D ={x;}; is a
subdivision of a subinterval of [a,b], A =|a;|}= V(D, h,H,Ag), B =
|bi|r=V(D,k,K,Ag), 1=p=n, and a; = b; for i#p; then A -B =
[a; |1 —|b; |7 is an n X n determinant C = |¢; | such that ¢; = a; for i # p,
¢ =a,—b, for 1=j=p and ¢, ,.,=0 for p <n.

If p=n, then

|A=B|=[C| =3} G-icy] (Th. 1b)
=3 Mla,; —by| = Q37 |ay — by [|Ag].

If 1=p <n, then

|A —BI = ,C| = |2f=1 C/’*lcpi*Cpﬂl (Th. le)
= Ele Mlapj - bpi”*cp+l|

b
=37 Mla, ~by|m|Agalexp [ mldg] (Th.2)
= szﬂlam’ _bpi”Agpﬂl‘

We will now prove the general case. Suppose that D ={x;}; is a
subdivision of [a, b] and that A and B are the determinants A = |q; [} =
V(D, h,H,Ag) and B = |b; |} = V(D, k, K, Ag). There exists a sequence
{R,}t of n X n determinants such that A=R,, B=R,, and A — B =
25-(R,.,— R,) and such that, if a<p=n and R, ,=|u;|} and R, =
|v; |7, then u; = v; for i# p. For each integer p, 0<p =n, R,_.,— R, is
the difference of two determinants as defined in the special case above;
therefore,

IA - B' = |2;=1 (R-P-l - RP)I = 2;=1 ‘ Rp~l - Rp,
= 254 szzl |y — by [ Mgyl
THEOREM 6. Given. K is a bounded function from R X Rto N and f,
h and g are functions from R to N and dg € OB® on [a, b]. Conclusion.

The following statements are equivalent:
(1) (fK,g)€EOA* on [a,b] and, if x €[a, b], then

f)=h)+ @) [ 10K D)
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2) (h,K,g)€E OM* on [a,b] and, if x €[a,b], then f(x)=
V(a, x; h, K, dg).

Proof of 1—2. Suppose that m is a bound for K and € > 0. Since
(f. K, g) € OA* on [a, b], there exists a subdivision H of [a, b] such that,
if H ={x,}; is a refinement of H and 0 <i=n and x = x,, then

‘ (L) f " F(OK (x, )dg (1) = S f(x-)K (x, x,_)Ag, ’ < €/M,

b b
where M=4[mf |dg|expf mldg|+1]. Let x €(a,b] and let H' =

{x,}; be any refinement of H such that x € H'; let x = x, and D = {x,}’,
where 0 < p = n. For each integer i such that 0 <i = p there exists an
element € € N such that

Fx) = h)+ () [ FOK (3, g

=h (xr) + 2;=l f(xl—l)K(xw xffl)[g(xf) - g(xl'l)] + €

= (h, + €+ anu,oAgl) + Ejzz ﬁ—th./—IAgp
where 2/_,( )=0. Let € be a function such that e(a)=0 and e(x,) = e,
fori=1,2,---,p. Let V(D,h +¢€ K,Ag)=|v,[’; then |y, |V is a Volterra
determinant such that v, =h, +¢€ + h,K  ,Ag, for i=1,2,---,p, and

v, = K,,Ag for 1 <j=i=p. Hence, f,=v, and f, = v, +3_, f,-,v; for
1< i = p. Therefore,

f(x)=f(x,)= V(D, h + ¢ K,Ag) (Th. 4)
= V(D,h,K,Ag)+ V(D, ¢ K, Ag).

Let A =|a;['=V(D,¢ K,Ag), then *A,., is a delta determinant for
i=1,2,---,p—1, and

|A|=]3"e*A..| (Th. 1b)

b
=3'e|m IAg,Hlexpf ml|dg|+ e | <e (Th.?2).

Therefore, |f(x)— V(D,h,K,Ag)|=|A| < e Since x is an arbitrary
element of (a, b] and H' is an arbitrary refinement of H containing x, it
follows that V(a,x;h,K,dg)=f(x) for x€&][ab] and that
(h,K,g)€ OM* on [a, b].

Proof of 2—1. Suppose that € >0. Since (h,K,g)E OM* on
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[a, b], there exists a subdivision H of [a, b] such that if H' = {x}; is a
refinement of H and 0 <i = n, then

1f(x)~ V(Dy b, K, Ag)| < €/2 <1+ m f |dg|>,

where m is a bound for K and D, ={x;}i. Let x €(a,b] and let
H'={x;}; be a refinement of H such that x € H'. Let x =x, and
D ={x;}t, where 0<p =n. Then there is a sequence {€}’ such that
f(x)—e&=V(D,h K ,Ag) for 0<i=p, where D,={x}. Let A=
la;[F= V(D, h,K,Ag); then A; = V(D;, h,K,Ag)forj =1,2,---,p,and

fx)=f(x,)=V(a,x;h, K ,dg)= V(D,h,K,Ag)+¢,

= ay +20 A4, t € (Th. 1b)

(h, + hoK,0Ag) +3F, V(D1 h, K, Ag)K, ;-1Ag + ¢,
= (hp + hOKp,OAgl) + 25”:2(ﬁ_1 - E]'—I)Kp.jAIAgj + Gp.

Il

Since h, = h(x) and h,= f, = f(a), then

{f(x)— h(x)— szHKn,f—lAgf , = lép |+ 25' €K, ,Ag ‘

=le | + [e/2/(l+mfab|dg[>] < e

Since x is an arbitrary element of (a,b] and H' is an arbitrary
refinement of H containing x, then f(x)— h(x)= (L)f f()K(x, t)dg(t)

for x €[a,b] and (f, K, g)E€ OA* on [a, b].

In the next three theorems, we prove a set of sufficient conditions for
a function triple (h, K, g) to belong to each of OA*, OM* and OM **
and show that, with appropriate restrictions,

V(a, b;h K, dg)=h(b)—(L) jb h(1)dV(t, b;1,K, dg).

The following lemma is used in the proofs of these theorems.

LEMMA. Given. fis a function from R to N and if € >0 then there is
a subdivision D = {x.;}; of [a, b] such that, if 0<i=nandx,_,<x <y <
x;, then |f(x)— f(y)| < €. Conclusion. The function f is quasicontinuous on
[a,b].

THEOREM 7. Given. (1) The functions f and K are bounded and
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dg € OB’ on [a,b] and F(x) = (L)fxf(t)K(x, t)dg(t) exists fora = x =

b; and (2) if € >0 then there is a subdivision D = {x;}; of [a, b] such that,
if0<i=nandx,_,<x<y<x and {t}] is a refinement of D such that
t, E{t:}; and y = t, then

'zi f(tr*l)[K(x’ tt—l)_ K(y’ tl—l)] [g(ti)_ g(t:—l)]l <€

Conclusion. (1) The function F is quasicontinuous on [a, b]; and (2)
(fK,g)E OA* on [a,b].

Proof of Conclusion 1. Suppose that € >0 and M is a bound for
[fI|K|. There is a subdivision D = {x;}i of [a, b] such that, if 0<p =n
y
and x and y € (x,-,, x,), then I |dg| < €/4M and, if {#,}; is any refine-
ment of D and y = ¢, then

[ZHf(-)[K(x, to) — K(y, t-)][g(6) — g (6-1)]] < €/4.

Let p be an integer and x and y be numbers such that 0<p =n and x
and y € (x,-,, x,). There is a refinement D' = {t,}; of D and integers r and
ssuchthatx =1,y =, and such that |A | < €/4 and | B| < €/4, where

A =F(x)- 2 f(6-)K(x, ) [g(t) — g(t-1)], and
B =F(y)— X f(t-)K(y, t-)[g () — g(t-)]-

Hence,
|F(y)-F(x)|=|A|+|B|+|C|+|E|<¢

where

C=2f(t-)[K(y, t.-1)— K(x,t..)][g(t)— g(t-)], and
E =2 f(t-)K(y, t1)[g(t)— gt

and|C| <e/dand|E|<e/4. Therefore, F is quasicontinuous on [a, b].

Proof of Conclusion 2. Let €e>0 and M be a bound for
[fI|K|. Since F is quasicontinuous on [a, b], then there is a subdivision
H,={z}¢ of [a, b] which is a refinement of the subdivision D defined
above and such that, if 0<p=m and z,,<x<y<z, then
| F(x)— F(y)| < €/4. Let H, be an interpolating sequence for H, and let
H be a refinement of H, U H, such that, if H' = {y;}; is a refinement of H
and y, € H,U H,, then
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|F(Yq) - E?f(Yi—l)K(an yi-)[g(y)— g()’i—l)” <e€/4

We now show that this subdivision H satisfies the definition for
OA*. Let H'={t}f be a refinement of H and let x =t € H'. If
x € H, U H,, then the OA * inequality || < € is satisfied. Suppose that
x& H, U H,; then there exist y = t, € H, and z,_,, z; € H, such that x and
y € (z;-1, z;). For convenience we will assume that x <y. Hence,

[F(x) =2 f(t)K(x, t-)[g(t)— gt )| = |A[+[B|+|C[+|E[<¢

where A = F(x)— F(y)and B, C and E are defined as in Conclusion 1 of
this proof. If x >y, the steps would be similar. Therefore, (f, K, g) €
OA* on [a,b].

THEOREM 8. Given. The function K is bounded on [a,b]X[a, b]
and on [a, b] the functions h and g have bounded variation, the set

{FlaclanlF = [ 1.0}

of functions is quasicontinuous uniformly and F(x)= V(a,x;h, K, dg)
exists. Conclusion. (1) F is quasicontinuous on [a,b]; and (2) (h, K, g) €
OM* on [a,b].

Proof of Conclusion 1. Suppose that 0 < e <1and m >1isabound
for h and K; then there is a number M which is an m-bound for
V(,,,Ag) on [a,b] and a number Q >1 which has the properties
stated in Theorem 5. There is a subdivision D = {x;}; of [a, b] such that,
if0<i=n and x,_, <x <y <ux, then

f: |dK(t,q)| < e/8mM(Lb |dg |+ 1) for g &€la,b],

fy ldg| < €/8QM, and fy{dh | < €/8M.

Suppose that 0 <i =n and that x,_, <x <y <x;; then there is a
refinement {z;}; of D such that x =z, and y =2z, and such that
|F(x)— V(P,h,K,Ag)| <€/8 and |F(y)— V(R, h,K,Ag)| < €/8, where
P={z} and R={z}. Let A=|a;|["=V(R hKAg); then
V(P,h,K,Ag)=]a; "= A,

Let B =|b,|? be the q X q determinant such that b; =0 for p <j =
i =q and b; = a; otherwise. It follows from Theorem 5 that



THE SOLUTION OF A STIELTJES-VOLTERRA INTEGRAL EQUATION 429

|A - BI = Qz?=12;=1|au’ - bu Hg(ziﬂ)_ g(Z,)]
= Q21 2l ay||Agn]+ 20 | a, ]

1=p+1

= O[Eq_l 2;=p+] ,Kl,l—lAgi ’ lAg“H'

1=p+1

+2q qu,J—lAgil]

J=p+l1

= O[M(fx:qldg]>z+fo:q|dg|] < ¢/d.

Also, B, = A;_, and *B,; = a, (Th. 1f) for j =1,2,- -, p; therefore,

|B~A,| =IS" B_*B, ~3"_ A a,| (Th. 1d,b)
= zf=1 ,AI‘IH*BPI — ay l = sz=1 ' a, — ap/J
= M”hq —h, l + ’hﬂl l Ky — KP”' ‘Agl‘ + 2‘,0:2! Koy .
- KPJ" ' (Agi ”

< M[e/8M+ mse (e/8mM(Lb |dg|+ 1)) |Ag |]< e/,

Hence,

|F(y)-F(x)|=|F(y)-A|+|A-B|+|B-A,|+|A, - F(x)]|
<e/8+€/d+€/4+€/8<e.

The proof of Conclusion 2 is similar to the proof of Conclusion 2 of
Theorem 7.

THEOREM 9. Given. The function K is bounded on [a,b]X[a,b]
and on [a, b] g has bounded variation and F(x)= V(a, b; 1, K, dg) exists,
where 1 denotes the identity function. Conclusion. (1) F is quasicontinuous
on [a,b]; 2) (1,K, g) E OM** on [a,b]; and (3) if dh € OB° on [a, b],

b
then V(a,b; h, K, dg) exists and is h(b)—(L)J h(t)dF ().

Proof of Conclusion 1. Let € >0, let M be a bound for | K| and let
Q be a number having the properties defined in Theorem 5. Since
dg € OB”, there is a subdivision D = {x,}{ of [a, b] such that, if 0 <i =m

b
and x, ;< x <y <x, then fy]dg]< e/6OM<1 +f |dg]>. Suppose that

0<r=m and x,_,<x<y<x. Since F(x)=V(x,b;1,K,dg) and
F(y)= V(y,b;1, K, dg) exist, then there exists a subdivision R = {z,}; of
[x, b] and an integer p such that 0 < p < n and a subdivision P = {z,};_, of
[y,b] such that x =2z, y=2z_, |F(x)—-V(R,1,K Ag)|<e/6, and
|F(y)— V(P,1,K,Ag)| < €/6.
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Let A=V(R,1,K,Ag)=|a;|t and C=V(P,1,K Ag)=|a;|1=
*A,; let B=|b;|! be the nxn determinant such that b,=a, for
p=i=nb;=0forl<j=i=p b,=0forp<i=nand2=j=p,and
b; = a; otherwise. In the following manipulations, |[Ag,.,|=1 and |a; |
denotes the norm of the element a;; hence,

|A~B|= QX 3,|a; —b,;||Agu] (Th. 5)
= Q[ an = bu| +37_,|ay |1+ Qi | an — bul[Agi]
+ O[3, 3 a; | |Agin |+ 215430, [a; | |Aginl]
= Q[|(1+ K.Ag) — (1 + K, ,-Ag,) |+ Ef=2 |K.,-Ag|]
+ O[5 [(1+ KiAg) — (1 + K ,-1Ag,) | [Agin]]
+ O[22, 25| K Ag |+ 250 zf;z |Kij-Ag | |Agia]
=20m [ |dg|+ oM(Iagi 1 +18g, ) [ 1dg|

+oM [ 1dg) [ 1dg]
<e/3+e/6+€/6="2€/3.

It follows from Theorem 1f that B =*A, = C; hence,
|F(x)=F(y)| =|F(x)-A|+|A—-B|+|B—-C|+|C-F(y)|
< €l6+2€/3+0+€/6=c¢.
Therefore, F is quasicontinuous on [a, b].

The proof of Conclusion 2 is similar to the proof of Conclusion 2 of
Theorem 7.

Proof of Conclusion 3. Suppose that € >0. Since dh € OB° and F
b b
is quasicontinuous, then (R)f dhF exists. Since (R)f dhF and

V(a,b; 1, K, dg) exist and (h, K, g) € OM**, there exists a subdivision D
of [a, b] such that if D' = {x,}; is a refinement of D and 0 < i = n, then

b
’(R)f th—E;‘AhE' < €/3
and

|F(x)— V(D, 1, K, Ag)| < €/3 (fb |dh |+ 1)
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fori=0,1,2,---, n, where D, = {x,},-.. Let D' = {x,}; be a refinement of
D and let D, ={x,};_; for i =1,2,-- -, n. Also, let V(D,h,K,Ag)=A =
la, |t and let V*(D, h, K,Ag)= B = |b,|; be the n X n Volterra determi-
nant such that (1) b,, = a,,, and (2) if 1 <i = n, then b, = a; — a,-,,, for
j=1,2,---,n. Note that A =|a; [f can be transformed into B = |b, |} by
adding the negative of the elements of the n — 1st row of A to the nth
row of A, the negative of the elements of the n —2nd row to the n — 1st
row, etc. Hence, A = B, and for i =1,2,3, - -, n, the determinant *B,,,
can be transformed into V(D, 1, K, Ag) by adding the elements of the
first row of *B,., to the 2nd row, the elements of the new 2nd row to the
3rd row, etc. Hence, there exists an element & of N such that [« | < € and

V(D,h,K,Ag)=|b,|r =3, b,*B,., (Th. 1b)
= (h,+ hoK\WAg))* B, + 3, [Ah, + ho(K,,— K-, ))Ag)*B..,

= ho[(1+ K\Ag)* B, + 3", (Ko~ K,-1.0)Ag.* B..,] + 3., AR, * B,

= h,V(D,1,K,Ag)+ 3" AhF(x,)+ 3r_,Ah[*B.., — F(x,)]

=h,V(a,b;1,K,dg)+(R) fab dhF + «
=h(a)F(a)+ h(x)F(x)t— (L) fab hdF + «
=h(b)— (L) fb hdF + a.

Therefore, V(a, b; h, K, dg) exists and

b
V(a,b;h,K,dg)=h(a)V(a,b;l,K,dg)Jr(R)f dhF
b
=h(b)—(L)f hdV (s, b; 1, K, dg).

In Theorem 11 we prove a set of sufficient conditions for the
existence of the limit V(a, b; h, K, dg). Theorem 10 is a lemma which is
used in the proof of Theorem 11.

THEOREM 10.  Given. The symbols n, r and p represent positive
integers, p<n, and A =|a;[! is an nXn Volterra determinant and
B =|b,["is an (n+r)X(n +r) Volterra determinant such that

(1) if0<j=i=p, then b, = a,;

(2) ifp<i=p+rand 0<j=p, then b; = a,;

3) ifptr<i=n+rand 0<j=p, then b,=a,,,;

@) ifprr<i=n-+r, then 277 b, = a,_, pu1;

J=p+l1
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®) ifprrti<j=si=n+r, thenb;=a;.,;,; and
6) ifp<j=si=p+r thenb; =0.

Conclusion. A = B, where A and B represent elements of N.
Proof. Note that A, =B, for i=1,2,---,p and *A, =*B,.,, for

i>p+1. It follows from (6) and (4) above that *B.., = *B,.,., ., for
i=p,pt+tl1l,---,p+r and Zf’:;*BM = Ef,’:;*BPHH,M =*A,... Hence,

B =53 B (Sb,*B.) (Th. 1d)
=30 Bi(210by* By + 215, by ¥ Biy)
=30 AL ay B+ X0 0, Ac) (2,3,5)
=3 A, A+ 20 a " AL
=2 AL, a7 AL = A, (Th. 1d).

THEOREM 11. Given. [a, b] is a number interval, K is a bounded
function from R X R to N and h and g are functions from R to N such that

b (b
dg and dhEOB® on [ab], f f 1dK||dg||dg|=0 and
b
f |dK (b, t)||dg(t)| = 0. Conclusion. (1) V(a, b; h, K, dg) exists, and (2)

b
iff |dK( ,t)||dg(t)] =0 uniformly on [a, b], then on [a, b] the function

f(x)=V(a,x;h, K, dg) exists, (h, K, g) € OM* and f is the solution of the
equation

f0) = k) + (@) | FOK (x0dg ),

Proof. We will show that the limit V(a, b;h, K, dg) exists by
showing that the following Cauchy criterion condition is satisfied: if € >0
then there is a subdivision D of [a, b] such that, if D' is a refinement of
D, then | V(D, h,K,Ag)— V(D' h,K,Ag)| < e. Let € >0 and let M be a

bound for (1+]h])(1+|K|)<l+fbldg]> on [a,b]. It follows from

Theorem 5 that there is a number Q such that, if U, W, u and w are
functions bounded by M on [a, b] and D = {x,}i is a subdivision of [a, b],
then

IA _BI = Qz;:lgle’api - bpjllg(xpﬂ)_g(xp)lv

where A =|qa;|}= V(D,u, UAg), B=|b;[t1=V(D,w, W,Ag) and
lAgn+l' = 1-
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b b
Since dg and dh € OB° and jf]dK|]dnggl=0 and

b
f |dK (b, t)||dg(t)| =0, there is a subdivision D = {x;}; of [a, b] such
that

(1) Lf’ ldglfi ldg| < €/9IMQ,
lf ldhlﬁ |dg| < e/90, and fffdgy<e/18Mo;
) =1 §=1MiiJ"i ldg’fi |dg | < e/9IMOQ,

where for each i and j, M, is the lub of |K(xi.,,x,)— K(x,y)| for
X, =x <x; and xia=y <x; and

G) s [ jdgl<eno,

where for each i, M, is the lub of | K (b, x;_,) — K(b, x)| for x,.; = x < x,.

Let D' ={z,}7 be a refinement of D, A =|a; |} = V(D, h,K,Ag) and
B =|b;|r=V(D', h,K,Ag). Let {n;}; be the sequence of integers such
that x;, = z,, for i =1,2,---, n. We now define an m X m determinant
C =|c; | such that C=A and |B—- C|<e€ and, hence, |A —B|=
|A — C|+|C~ B|<e In the following paragraphs, the symbols h, K;
and Ag represent h(z;), K(z,z;) and g(z;)— g(z:-,), respectively.

Let P, be the set of integer pairs such that i,j € P, iff j =1 and
1=i<n, Letc;=ay, for ij € P;; then

Sijer | by — ¢y |[Agi| = 217 2M |Agi | = 2ij |dg|
< 2M(e/18MQ) = €/90.

Let P, be the set of integer pairs such that i,j € P, iff j =1 and
m=i<m. IfijEP,and2<p=nandn, ,=i<n, then ¢; =a,, ..
Let N, =[n,-,,n,). Since x,= z,= a, then

zivjele bij — Gy l IAg,-+|| = 22=3 EiENpl h(Zi) + h(zo)K(Zi, Zo)(Agl)

= h(x,-1) = h(x0)K(x,-1, Xo0)[g (x1) — 8(X0)]l |Agii]
= E;=32ieNpl [h(z:) = h(x,-)] + B (x){K (2, 20)[g(21) — 8(20)]
= K(x,1, X0)[g (x1) — g(x0)]}| | Agiui]
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= E;=3 ziENp, h(z)— h(xp-l)l lAg.-+1l
+ 253 Zien,| B (x0) || K (zi, x0) — K (X1, X0)| | 8 (x1) — g (x0) || Agin |
+]g(z) - g(xl)l2;=32,-eN,|h(xo)lIK(Z,-, zo)|[Agia]

gzzﬁfxf !dhlff |dg|
+ , h(xo),EZ;z 2ieN,, Mp,()' g(xl) - g(xo)l 'Agiﬂl
+(e/18Mo)|h(xo)llK(z,-,zO)l(f ldgl+1>

<€/90 + M(e/9IMQ)+€/90Q = €/30,

where M,, is the lub of |K(x, ;, xs)— K(x,y)| for x,.,=x <x, and
X =y <ux,.

Let P; be the set of integer pairs such that i,j € P;iff 1 <j = n, and
J=i=m. Let ¢; =0 for i,j € P;; then

Sijer| by — ¢ | |Agin| = 2/ 30| K (2, 2-1)Ag | |Agin]
=37 Mg(z)—g () = M [ 1dg]
<M(e/IMQ)=€/90.

Let P, be the set of integer pairs such that the pair i, j € P, iff there is
an integer p such that 1<p=n and n,_,<j=i<n, Let ¢; =0 for
I,] € P,; then

Zi.jem I bij — ¢ I |Ag.'+1| = Ei.jEPa K(Zi, z,-_.)Agi l lAg.-Hl
= ME;:Z DI 2;‘=nw+l ' g(z)— 8(Zf‘l)l lg(zm) - 8(21)'

= M3, | ldglfxf ldg| < M(e/9MQ).

xp

Let P; be the set of integer pairs such that i, j € Psiff i = m and also
j=1or n,<j=m. Let ¢, = a, = h(x,)+ h(x))K(x,, xo)[g(x:) — g(x0)]
and, if 1<p=n and n,,<j=n, let ¢, = K(x, x,-))[g(z)) — g(z-1))-
Since z,, = x, and z,= x,, then

Sijerd by = i | = by = Cor| + 252 Zf20, 1| by — Co |
=[h(z,)+ h(20)K (2, 20)[8(21) — 8(20)]
= h(x2) = h(x0)K (x., x0)[8(x:) = g (x0)]|
+ 30530, 0| K(zm 2-1)[8(2) — 8(2-1)]
= K(xa, x,-)[8(2) — 8(z-)]]
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= |h(20)|| K (2w 20)| | 8 (x1) — 8(21)]
+ 2;=2 E,n”=n,,_.+1 l K(xm Z;—}) - K(xm xp—l)l 'g(z]) - g(zi—l),
=M|g(x)—gz)|+25-23,, M, |g(z)- g(z)|

= M(e/18Mo)+E;=2Mpfxp |dg| < €30,

where M, is the lub of |K(b, x,-,) — K(b, z)| for x,_, =z < x,.

Let P be the set of integer pairs such that i,j € P, iff there are
integers p and q such that 2=¢g < p = n and such that n,_., =i <n, and
n.<j=n. If i,jeP; and n,=i<n,, and n,_,<j=n, let ¢, =
K (x X,-)[8(2) = g(2,-)]; then

Zer by =y |[Agn]
=35 K(2,2,1)Ag — K(X,-1, X, 1)Ag || Ag,wi]
=30 23 S | Ko — K (Xpo1, %-0) | |Ag [ [Agia ]
=3, M, |Ag [|Agin]

éE;L;ZZ;'szfP |dg|f“ dg| < €90,

where M,, is the lub of |K(x, ,, x,-;)— K(x,y)| for x,.,=x <x, and
X,a=y<x,

The determinant |c; |7 can be reduced to the determinant |a, [} by
the following steps.

(1) If n,>1, use Theorem 1f and obtain a determinant of lower
order.

(2) For each integer p such that 2<p =n and n,>n,_,+1, use
Theorem 10 and the definition of the determinant |c;|! to obtain a
determinant of lower order. Note that, if 1 <n, =i <n,.,, then

Elninq,ptl Cu = K(xw xq‘l)[g(xq)_ g(xq—l)] = an'

Hence,

|IB-A|=|B-C|+|C-A|=|B-C|
= QX" 3. ]b, — | |Ag] (Th. 5)
= O(Ei;l Ei.iEP,, bl] - cl] , ,Agx+l’)< O(G/O) = €.

Therefore, if € > 0 then there is a subdivision D of [a, b] such that if

D' is a refinement of D, then |V(D,h, K, Ag)— V(D', h,K,Ag)|<e€;
hence, the limit V(a, b; h, K, dg) exists.
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b
Suppose that f |dK( ,t)||dg(t)] = 0 uniformly on [a,b]. lf a < x =

b, it follows from Conclusion 1 that V(a, x; h, K, dg) exists. We now
prove that (h, K, g)€ OM*on [a,b]. Let € >0 and define a subdivision
D of [a,b] in the same manner as in Conclusion 1 except that

b
j [dK( ,t)||dg(t)[=0 uniformly is used in defining D in place of

[1ax . 0114501 =0.

If {x;}; is a refinement of D and 0 < p = n, then a repetition of the
steps in the proof of Conclusion 1 shows that, if Q' is a refinement of
Q = {x;}}, then

| V(Q', h,K,Ag)— V(Q, h,K,Ag)| < e.

Since V(a, x,; h, K, dg) exists, there is a refinement Q' of Q such that
[V(Q',h,K,Ag)~ V(a, x,; h, K, dg)| < e; hence,

|V(a,x,; h,K,dg)— V(Q, h, K,Ag)|
=|V(a,x,;h,K,dg)— V(Q)| +|V(Q)— V(Q)| < 2e.

Therefore, (h, K, g) € OM* on [a, b]. It follows from Theorem 3 that f
is bounded on [a, b] and from Theorem 6 that f is the solution on [a, b] of

the equation f(x)=h(x)+ (L) f HOK (x, )dg ().
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