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WELL-BEHAVED AND TOTALLY BOUNDED
APPROXIMATE IDENTITIES FOR Cy(X)

ROBERT F. WHEELER

Let X denote a locally compact Hausdorff space, Cy(X)
the Banach algebra of continuous complex-valued functions
on X which vanish at infinity. An approximate identity for
Co(X) is a net (f2)1e4 such that (1) || f2ll=<1V2i; and (2) if
heCy(X), then lim; || Af;—h||=0. Here the norm is the sup
norm, and multiplication is the usual pointwise product.

This paper contains an analysis of approximate identities
for Cy(X) of two special types: totally bounded in the strict
topology, and well-behaved in the sense of Taylor. In each
case, existence of an approximate identity of the stated type
is shown to be equivalent to paracompactness of X. A con-
structive, somewhat lengthy proof of the first equivalence
has been given by Collins and Fontenot; here a short non-
constructive proof is presented. That well-behaved implies
paracompact is shown using a set-theoretic lemma of Hajnal.
In the course of the argument certain spaces X which can
be embedded in Stone-Cech compactifications of discrete spaces
are considered. Using a result of Rosenthal on relatively
disjoint families of measures, it is shown that the strict
topology on C*(X) is the Mackey topology for some of these
X, not all of which are paracompact. This indicates that o-
compact spaces can be pasted together in fairly complicated
ways while still retaining the Mackey property.

The strict topology 8 on C*(X) was introduced by Buck [1].
Collins and Dorroh [3, Th. 4.2] noted that if X is paracompact, then
C(X) admits an approximate identity which is S-totally bounded.
Collins and Fontenot [4] proved the converse, and gave a systematic
classification of approximate identities according to their topological
and set-theoretic properties. The notion of a well-behaved approxi-
mate identity (WAI) is due to Taylor [12].

An approximate identity (f3);cs for Co(X) is a WAILIf (3) /. = 0V);
@) N <N=f s, =fi; and () if e and (\,) is a strictly in-
creasing sequence in 4, then there is a positive integer =, such that
Jofa, = Faoa, for m, n = n,. Condition (4) implies that each f, must
have compact support. Moreover, given x, there is a )\ such that
JSi®) = 1. It is known that X paracompact — C(X) has a WAI—
(C*(X), B) is a Mackey space.

1. B-totally bounded approximate identities for Cy(X).

THEOREM 1.1. If C(X) contains an equicontinuous subset H such
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that, for some a >0, sup{| f(@)|:f e H} > avxe X, then X is para-
compact.

Proof; If D is an equicontinuous subset of C*(X) and ¢ is a
positive number, let U(D, ¢) = {(z, ¥) € X x X:sup{| f(z) — f(y)|: f € D}
<¢}. Then {U(D, ¢): D equicontinuous, ¢ > 0} is a base for a uni-
formity which is compatible with the topology of X. Fix z,eX,
and choose f,€ H with |fy(%,)| > «. Then, since {y e X:|f(y)| = a/2}
is compact, so is U(H, a/2)[x,] = {xe X :|f(®) — f(x)] < a/2Vf e H}.
Thus X is uniformly locally compact, hence paracompact [9, p. 215].

COROLLARY 1.2. If C(X) has a B-totally bounded approximate
identity, then X 1s paracompact.

Proof. A subset of C*(X) is S-totally bounded if and only if
it is uniformly bounded and equicontinuous [2, Lemma 3.1]. Thus
the conditions of 1.1 are satisfied.

2. Well-behaved approximate identities for Cy(X).
In this section we prove the following result.

THEOREM 2.1. If C(X) has a well-behaved approximate identity,
then X is paracompact.

The proof relies on a sequence of lemmas. A space X is zero-
dimensional if the topology has a base of clopen sets. A map
Y— X is perfect if it is a continuous closed surjection such that
the inverse image of each point of X is compact.

LEMMA 2.2. If Y is a zero-dimensional locally compact Hausdorff
space, and C(Y) has a WAI (f).cs, then there is a corresponding
family (K,),., of compact-open subsets of Y such that (') U,;..K, =Y;
@) m<nm—K, CK,; and (3) if ned and (\,) is a strictly in-
creasing sequence in A, then there is a positive integer m, such that
K, NK, =K, NK,, for m,n=mn,.

Proof. For each \, 4, = {x € X: f)(x) = 1} is a compact subset of
the open set B, = {# e X: fi(x) > 1/2}. Choose a compact-open set K,
with A, C K, © B;. Then (1) holds, and, since B; C A4,, for ), <\,
so does (2"). If m, satisfies (5), it is not difficult to verify that =, + 1
will satisfy (3').

LEmmA 2.3. If X and Y are locally compact Hausdorff spaces,
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Cy(X) has a WAI, and there is a perfect map of Y onto X, then
C(Y) has a WAL

Proof. The inverse of a compact set under a perfect map is
compact. Thus if (f3);c. is a WAI for C(X), and ¢: Y — X is perfect,
it can be shown that (f;°¢),c, is a WAI for Cy(Y).

In order to motivate the final (and central) lemma, we begin the

Proof of Theorem 2.1. Suppose Cy(X) has a WAI (f)ica. Let
D denote the underlying set of X, endowed with the discrete topology.
Then the identity map 4: D — X has a unique continuous extension
¥: 8D —BX. Let Y =q4Y(X), and let ¢ =Y. Then we have:
(1) Y is locally compact Hausdorff, since Y is open in B8D; (2) DC
Y BD; thus Y is extremally disconnected [8, 6M], and therefore
zero-dimensional; and (3) ¢ is a perfect map of Y onto X, since 4
is perfect and ¢ is its restriction to a complete inverse image. From
2.2 and 2.3 we obtain a family (K;);., of compact-open subsets of
Y satisfying (1'), (2") and (3') of 2.2. For each \, let H, = K; N D;
then clyp H, = K;. Let 57 = (H));... Then 57 is a well-behaved
cover of D in the sense of the following definition.

DEFINITION 2.4. Let D be a set, A a directed set, and Z =
(Uses a family of subsets of D. Then % is a well-behaved cover
of Dif (1”) UueuU.=D; 2") @, < ;= U, CU,; and (3") if ¢4
and («,) is a strictly increasing sequence in A, then there is a posi-
tive integer u, such that U, N U,, =U, N U,, for m, n = n,.

There is a simple way of producing well-behaved covers of a
set D. Indeed let (V;);.; be any decomposition of D into pairwise
disjoint nonempty subsets. Let A be the collection of all finite
subsets of B, directed by inclusion. For each a = (8, -+, B,) €4,
define U, = U=, V;s,. Then (1”), (2”) and (3") are easily seen to hold
for Z = (U,),cs. Let us call a well-behaved cover produced in this
special way a decomposable cover of D.

DEFINITION 2.5. Two covers % and 7%~ of a set D are equiva-
lent if (1) given UeZ’, 3IWe %  such that UcC W; and (2) given
Weo7", 3Ue % such that Wc U.

The motivation for these two definitions is as follows. Suppose
we can show that our well-behaved cover 57 of D is equivalent to
some decomposable cover % arising from a decomposition (Vi)ses
of D. Then Y= U1 K; = UseaclinH; = Uuesclin U = Uses clen Ve
(the third equality will hold because 5% and % are equivalent, the
last because each U, is a finite union of sets V;). But the sets
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(clspVi)sep are pairwise disjoint compact-open subsets of BD, and
this implies that Y is paracompact. Since ¢: Y— X is perfect, X
will then be paracompact also [7, p. 165].

Thus the proof of 2.1 reduces to a purely set-theoretic question:
given a well-behaved cover 57 = (H,);., of a set D, is there a de-
composable cover % = (U,),.. of D which is equivalent to S#?
Professor Andras Hajnal has kindly furnished the author with a
proof that this is indeed the case. The author expresses his deep
appreciation to Professor Hajnal for his permission to record the
argument in the following lemma, which may be of independent
interest.

LEMMA 2.6 (Hajnal). A well-behaved cover of a set D 1is always
equivalent to some decomposable cover of D.

Proof. Let Z be a family of nonempty subsets of a set S which
covers S. We shall say that ¥ is a good cover of S if there is a
function f which assigns to each finite collection {4, ---, 4,} of
distinct members of %7 a member f(4, ---, 4,) of Z in such a way
that (a) U 4: C f(4,, -+, 4,); (b) f(4y, - 4,) T F(A, -4,y AL
and (¢)if Be Z and ' CZ/, there is a finite subcollection {4,, -+, A,}
of Z' such that BN (U{W: Wez'})c f(4,, -+, A,). In this case
f is said to be a good function for Z/.

Clatm 1. A well-behaved cover 57 = (H,),., of a set D is a good
cover of D. Define a function g from the collection of finite subsets
of 4 to 4 so that for any {A, -+, M} T4, Ny < g0y, + - *N,)VE and
Iy =ty Npe) < 9Ny v o+, Ny,).  This is easily done by induction on
n, the number of elements in the finite subset. We would like to
define f(H,, ---, H,) to be Hy;,. ..., but there is a difficulty in that
H, = H, for N s ¢t might occur, leading to an ambiguity in the
definition. Proceed as follows: well-order 4 as (M@)).<., (this well-
ordering of course has nothing to do with the partial order which

A already possesses). If P, --., P, are distinct members of 27,
choose, for each 4, the least a; such that H,., = P,. Then define
f, -+, P,) tobe H, where ¢t = g(\(«), - -, M,)). It follows easily

that (a) and (b) hold. Suppose (c) fails for some P, € 27 and o7’ C o7 .
By induction we can find a sequence (P,) in 22’ such that P,N P, &
f(Py, «++, P,_)¥n (P, is an arbitrary member of 2#’). Let P, =
H,., as above. Then property (3”) of a well-behaved cover is
violated for the indices Ma,) and g(M(a)) < gM(@y), Ma)) <--- <
giM(a), - -+, M(@,)) <---, a contradiction. Thus (¢) holds, and so f
is a good function for S7°.
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Claim 2. If Z¢ is a good cover of D, T is a mon-empty subsel
of D, and Z, ={ANT:-Aez, ANT+* @}, then Z; is a good cover
of T. Indeed Z¥ can be well-ordered in some way as (A.acq, If
Be Z/;, let a(B) be the least « such that A,;, N T=B. If B, ---,
B,c 7y, define W(B, :--, B,) = f(Auz,, *** Aws,y) N T. It can be
verified that & is a good function for % if f is a good function
for #.

Claim 3. A good cover of a set is equivalent to a decomposable
cover of that set. We induct on the cardinality of a good cover Z.
If card U< W, the claim is easily established. Now suppose the
result holds for good covers % of arbitrary sets, where card Z < &
and £ > Y,. Let card % = k, where % is a good cover of a set
D, and let a, be the least ordinal of cardinal £. Let f be a fixed
good function for Z.

If € Cc %, we shall say that & is closed if A, -+, A, €% =
f(4, -+, A,)e@. We construct a transfinite sequence (Z/.)i<q, Of
closed subfamilies of % such that (1) a < B= %, C %s; (2) %=
Us<. % for limit ordinals @; (8) Uu<e, %= = %; and (4) card %, =
card a + Wva.

Now % can be indexed as (4,) where « runs over the set of
nonlimit ordinals less than «,. If &% C %, there is a smallest closed
subfamily (%) of Z° which contains &, and it is not difficult
to show that card (¥ )< W, +card & . Let % = {4).
Suppose %, has been chosen for all @ < a, so that A,e %, for
nonlimit ordinals @ and (1), (2), (4) hold for a < «,. If «, is a limit
ordinal, let %, = Uuco, e If @y = @, + 1, let &, = T (%, U {4)-
In this way the desired transfinite sequence is obtained.

Now let S, = U{U: Uec%.}, Z, = S...\S, for a < a, (let Z, = ).
Note that no member of Z/, meets Z,. Let %, = (BN Z,: B€ % ,,,\% ).
As in Claim 2, one can show that 97, is a good cover of Z, for
each nonempty Z,. Since card %7, < card %,., < k£, we have by
induction that 277, is equivalent to a decomposable cover 7, of Z,.
Since D is the disjoint union of the sets Z,, the family 7~ of finite
unions of all members of the collections 9, is a decomposable cover
of D.

Finally we show that % and 7° are equivalent. If V €77, then
V =UwLV, where V, e 7,. Then each V,cCU, for suitable
Ue; € %oir\% uyy and V< f(U,, +-+, U, )eZ . Conversely, we show
by induction that if We %, and « is the least ordinal such that
WeZ then WV for some Ve? . For a =1 this is clear, since
7, and 77 are equivalent covers of Z,. Suppose the result holds
for all ¢ < @, If «, is a limit ordinal, then Uy = Uuca, %o 2nd
the result holds. Suppose o, = &, + 1. Applying property (c) of a
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good cover to 77, with B=W, ' = 7Z/,,, there exist A,, -+, 4, € %,
such that WnU{V:Vez,}=WnS,cfl4, -, A,). Since Z,,
is a closed family, f(A4, -+, A,)€%,,. Thus, by induction, Wn
S, cV, for some V,e7'. Since WeZ%,.\%,., we have Wn
(Ses\S2) =WnNZ, € 7,. Since %, and 7, are equivalent covers
of Z,, there is a member V, of 7 with W N (S,..\S,) V.. Then
UcV,UYV, which is in 7" because a decomposable cover is closed
under finite unions. This completes the proof.

3. An application to the Mackey problem for the strict to-
pology. A well-known result of Conway [6] states that if X is
paracompact locally compact, then (C*(X), B) is a Mackey space.
Considerable effort has been expended in attempting to find a larger
class of spaces for which this is true. The condition that X be
measure-compact is sufficient [11], but no example of a nonpara-
compact measure-compact locally compact space is known. An iso-
lated example of a locally compact non-paracompact space with the
Mackey property is presented in [13], under the assumption of the
continuum hypothesis. Theorem 2.1 shows that the concept of a
well-behaved approximate identity does not enlarge the class of
paracompact spaces. However, the proof of 2.1 does suggest con-
sideration of spaces X such that X c 8D, where D is discrete. Some
of these possess the Mackey property without being paracompact
as we now show.

The following lemma is probably well-known; we include a proof,
for completeness. If 3, is an ordinal, and (@)s<s, is a set of ordinals
such that 8, < B: < B, = @, < @, we shall refer to (s)ss, as an
increasing transfinite sequence with order type B,.

LemMA 3.1. Let a, be a limit ordinal, and let B = {8,. there is
an increasing transfinite sequence (¢;);;, of ordinals with sups.s @; =
). Then B has a smallest member 5, and B’ 1s the smallest ordinal
whese cardinal is card B'.

Proof. B is a nonempty set of ordinals, since «,c B, and there-
fore has a smallest member 5. Let ()< be a fixed increasing
transfinite sequence with sups.; @; = «,. Let 8” be the initial ordinal
of cardinal card £'. Let ¢:{B: 8 < B"}—{&s}s<sr be a 1 — 1 corre-
spondence (not assumed to preserve order). For each 8 <fB"”, let
N =sup {8(7): Y £ B). Then (Ms)s<pr is a non-decreasing transfinite
sequence of ordinals satisfying N, < @, VB and subsee \p = &,. We
can construct from (\g);<s a strictly increasing transfinite sequence
whose supremum is «, The order type of this sequence cannot
exceed B and has cardinal card &', hence must be £”.
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THEOREM 3.2. Let D be a discrete space of cardinal v, represented
as {a:a < a,} where a, is the least ordinal of cardinal v. Suppose X
is an open subset of BD such that (1) if xe X, 3o < «, such that
zxecl,{B: B a); and (2) if a < a,, then XNely, {B: B < a} is para-
compact. Then (C*(X), B) s a Mackey space.

Proof. If 7 is the supremum of an increasing sequence of smaller
cardinals 7,, let &, be the least ordinal of cardinal 7,. Then, using
1), X=Ur-. (X Nnelp{a:a < a,}) is the union of an increasing se-
quence of open and closed paracompact subspaces. It follows that
X is paracompact, so Conway’s theorem applies.

Now assume that 7 is not the supremum of any sequence of
smaller cardinals. For each a < «, let D, ={B:B = a} and U, =
X NelgpD,. Then the collection (U,)u<q, 18 2n increasing cover of X
by open and closed paracompact subspaces. Let M(X) denote the
space of bounded regular Borel measures on X (the dual space of
(C*(X), B)). If pe M(X), the support of y is contained in the union
of countably many U,; hence spt p C U; for some B < «,.

Let H be a weak*-compact (hence uniformly bounded) subset
of M(X). If 3a < «a, such that spt £ UvVp¢e H, then (2) implies
that H is uniformly tight. If this fails apply 3.1. Let (®;)s<s be
a fixed increasing transfinite sequence of smallest order type with
a, < aVB and sup «; = «, Choose ¢ with a, <d/ < @, Then
choose ¢, € H and ¢, such that 0, <9, <a, and | |(U,\U; ) > 0.
Suppose B, is an ordinal less than B, and (%), (0;), and (9,') have
been chosen for all 8 < B, Then supss, 0s < &,. Choose d;, with
sup {0, Sups<p, 05} <03, <. Then choose tt; € H and J,, such that
05, < 05, < @ and |t [(U;; \Us; ) > 0. By transfinite induction we
obtain (0s)s<p with sups.s 0, = «,. For each B < B’, use regularity
of p, and the fact that X is zero-dimensional to obtain a compact-
open subset K, of U; \U,, with |z, |(K)>0. Let B,={B<B": | s |(Ks)>
1/n}. Some B, is cofinal in {8: 8 < @'}, for if sup B, = B, < B'Vn,
then o, = supd; , contradicting our assumption that ¥ = card«, is
not the supremum of a sequence of smaller cardinals. Then B,
must have order type 5 because of the minimal property of £.

Thus there exist a uniformly bounded family (#)scs,, each
member of which can be regarded as a regular Borel measure on
BD, and family (K)ses,, of disjoint clopen subsets of SD such that
[ 146 (K5) > 1/n,¥B. Since BD is Stonian, we can apply Lemma 1.1(a)
of [10] to deduce the existence of a subset C of B,, with card C =
card B,, = card 8’ such that |z |(U{K,:7eC, v # 8B) < 1/2n¥BeC.
Note that C must be cofinal in {8: 8 < B} If supC = < B/, then
N is an ordinal with cardinal card &, a contradiction. Consequently,
SUPseq 05 = .
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We now show that the net (:)s¢, directed by the well-ordering
of C, has no weak*-cluster point in M(X). Let y,€ M(X), and find
a < a, such that spt 4, c U,.

Let B, be a fixed member of C such that 0; > a. For each
BeC such that 8= 8, let Hy = K;ND. Then Hyc{veD:0, <7=
85}, and K, = cl;pH; is the Stone-Cech compactification of H,. Since
|15 1(Kg) > 1/m,, there is a function hseC*(K,;) with ||A;|| £1 and
l . h,;dy,a‘ > 1/n,. Define f;: D — R by fy(x) = hy(z) if x € H, for B8eC,
B £ B and fi(x) = 0 otherwise. Now extend f, continuously to 8D,
and let f be the restriction to X. Note that f|U, =0, ||f|| 1,
and f|K; = h; for all 8eC such that B = B,.

We certainly have p(f) = 0; however, |u:(f)| > 1/2n, for each
BeC such that 8= B, To see this, fix such a 8, and write D as
the disjoint union of the sets H,;, U{H,:7e€C, 7 +# B}, and F (what
is left). Then X is the disjoint union of the sets Kj, cl;(lU{K:7€eC,
Y # B}), and clyF. The integrals of f with respect to y;, over these
three sets are, in absolute value, greater than 1/n, less than 1/2n,,
and 0. The conclusion follows. Hence ()¢ has no weak*-cluster
point, and we have contradicted weak*-compactness of H. This
completes the proof.

For the special case where card D = },, some of the technical
difficulties in this argument can be avoided, and the result can be
stated in modified form.

COROLLARY 38.3. Let D be a discrete space of cardinal $,, and
let X be an open subset of BD such that (1) if xe X, there is a
countable subset F of D such that © € cl;p F; and (2) if F is a countable
subset of D, then X N elypF is o-compact. Then (C*(X), B) is a Mackey
space.

ExampLE 3.4. Let D be any uncountable discrete space such
that card D is not the supremum of a sequence of smaller cardinals.
Let D = {a: a <a,} as in 3.2, and let X = U<y, clsp{B: 8 = a}. Then
X is extremally disconnected locally compact and sham-compact (every
o-compact subset is relatively compact), hence countably compact
and pseudocompact. But X is not compact, since {cl;p{B: B £ a}} is
an open cover with no finite subcover; thus X cannot be paracom-
pact. However, according to 3.2, (C*(X), B) is Mackey.

REMARK 3.5. (C*(X), B) is said to be a strong Mackey space if
the following is true: whenever H is a subset of M(X) such that
every sequence in H has a weak*-cluster point in M(X), then H is
uniformly tight. Conway’s proof shows that if X is paracompact,
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then the strong Mackey property holds; the same is true for the
space considered in [13]. However this cannot be true for any of
the spaces X described in 3.4. Indeed if H consists of all point
masses corresponding to points of X, then H is weak*-countably
compact in M(X), but not uniformly tight.

ExamPLE 3.6. It is easy to show that if (C*(X), B) is Mackey
and T is a closed subspace of X, then (C*(T'), B) is Mackey. Assume
the continuum hypothesis, and let p be a P-point of SN\N. As the
author pointed out in [14], (C*(BN\{»}), B) is nmot a Mackey space.
However, if X is the space of 3.4, with card D = ¥, then, by a
result of Comfort and Negrepontis [5], SN\N\{p} is homeomorphic
to the closed subspace X\D of X. Thus (C*(BN\N\{p}), B) is a Mackey
space. This gives some indication of the apparent subtlety of the
Mackey problem for the strict topology.
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