PACIFIC JOURNAL OF MATHEMATICS
Vol. 65, No. 2, 1976

STANDARD REGULAR SEMIGROUPS
R. J. WARNE

We give a structure theorem for a class of regular semi-
groups. Let S be a regular semigroup, let 7 denote the
union of the maximal subgroups of S, and let E(T) denote
the set of idempotents of 7. Assume 7T is a semigroup
(equivalently, 7' is a semilattice Y of completely simple semi-
groups (Ty:y€Y)). If Y has a greatest element and ¢, f, g€
E(T), e > f, and ¢ > g imply fg = gf, we term S a standard
regular gemigroup. The structure of S is given modulo
right groups and an inverse semigroup V in which every
subgroup is a single element by means of an explict mul-
tiplication. We specialize the structure theorem to orthodox,
Z-unipotent, and inverse semigroups, and to a class of semi-
groups with Y an oY-semilattice.

Finally, we show that S is a regular extension of T by V in
the sense of Yamada [19].

Let us first state the structure theorem. Let Y be a semilattice
with greatest element. Let V be an inverse semigroup with semilattice
of idempotents Y such that each subgroup of V consists of a single
element. Let (/, °) be a standard regular semilattice Y of left zero
semigroups (I,: y€ Y). Let (J, *) be a standard regular semilattice
Y of right groups (J,: y€ Y). Suppose I, NJ, = {¢,}, a single idem-
potent element, and ejfe, = ¢,0¢, = ¢,, for ally,ze€ Y. Let H, denote
the maximal subgroup of J, containing e¢,. Let ¢— B; be a homo-
morphism of (I, o) into P(J), the semigroup of right translations of
(J, *); let b— B, be a mapping of V into End (J, *), the semigroup
of endomorphism of (J, *), and let ¢ be a mapping of V X V into
H=U(H,;,yecY), asemilattice Y of groups (H,: y € Y) (with respect
to the multiplication * in J) such that 1(a) jB,e€ H,, for 1€, and
jed, (b) J.8y & Hy—1,4, (¢) 9(c, d) € Hiety-1ca- 2(a) hB,, = hB, = h*e,
for heJ and ye Y. (b)if jeH, and 1€, jB, =3 (¢) 9(¥, 2) = e,.
for y,zeY. 3(a)

Bcled = Bcd g(c,d)(xcz = z~1*x*z for X, 2 GH)

(b) g(a, be)+g(b, ¢) = g(ab, c)+(g(a, b)8.). Let (Y, I, J, V, B, B, g) denote
{(i, a, j):ae V,1€l,,1, j €J,~1,} under the multiplication (4)

(i, a, g)(w, by ’U) = (7’ ° e(ab)(ab)—l, G;b, g(a,, b)*JBwBb*v) .

We show (Theorem 3.14) that (Y, I, J, V, B, B, g) is a standard regular
semigroup, and, conversely, every standard regular semigroup is
isomorphic to some (Y, I, J, V, B, B, 9).
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If X is a semigroup, E(X) will denote the set of idempotents of
X. Let & &£ 57, and & denote Green’s relations (notation of [1]).

Using [1, Theorem 2.3], 27 is the identity congruence on V.
Hence, using a result of Munn [5, Theorem 2.3; see also 6], V is iso-
morphic to a subsemigroup U of the semigroup X of isomorphisms
between principal ideals of E(V) with E(U) = E(X).

In special cases, explicit multiplications for V have been given
(see for example [8] and [4]). Probably, the most familiar example
of V is the bicyclic semigroup.

The multiplication for J is described by means of “connecting
homomorphisms” between the J, (i.e. if a €J,, bed,, axb = al,,,.*bC, .
where {,,,(y > w) is a homomorphism of J, into J,). The multiplica-
tion for I is similarly characterized (see Remarks 1.7, 1.8, and 3.15).

A regular semigroup X is termed locally inverse if ¢, f, g € E(X),
e>f, and ¢ > g imply fg = gf. (Let X be a regular semigroup and let
ec E(X). Hence, if aceXe, there exists y € X such that ¢ = aye =
(ae)y(ea) = aleye)a. Thus, the semigroup eXe is also regular. Hence,
using [1, Theorem 1.17], a regular semigroup X is locally inverse
if and only if eXe is an inverse semigroup for all ¢c E(X)). Thus,
a standard regular semigroup is a locally inverse semigroup such
that 7 is a semigroup and Y has a greatest element.

Following Hall [3], a regular semigroup X is termed orthodox
if B(X) is a semigroup. In general, a standard regular semigroup
is not orthodox.

Yamada [18, Theorem 2] described the structure of locally in-
verse orthodox semigroups in terms of inverse semigroups (locally
inverse orthodox = generalized inverse in the sense of Yamada {18,
Theorem 1]).

A Cliffordian semigroup is a semigroup which is a union of its
subgroups. A semigroup S is Cliffordian if and only if S is a semi-
lattice Y of completely simple semigroups (S,:¥ ¢ Y) (Clifford, [1,
Theorem 4.6]).

In §1, we show that the multiplication of a locally inverse
Cliffordian semigroup S is described by means of connecting homo-
morphisms between the S, (Theorem 1.6) and give some consequences
of this theorem. The results of this section are applied repeatedly
in the sequel.

In §§2 and 3, we prove the converse and direct parts, respectively,
of our structure theorem (Theorem 3.14).

Let N denote the nonnegative integers and let Y be a semilattice
with greatest element. If W = N x Y with (k, a)4(s, \) = (k, ), (s, \),
or (k, aA)) according to whether k> s,s >k, or s =k, we term W
an o Y-semilattice. A regular semigroup S is termed @ Y-.<“unipotent
if E(S) is an wY-semilattice of right zero semigroups (¥, ,: (n, 0) €
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N xY) and fu,0 D imn(Fino € Ewni funn € Ew,y) if and only if 6 = .
If E., is a single element for each (n,0)e N XY, we term S an
wY-inverse semigroup.

Munn [5, Theorem 8.3] described the structure of simple wY-
inverse semigroups. In [10, Theorem 4], Warne described the struc-
ture of simple w Y- -unipotent semigroups such thatee E, ;), f € Ein.»»
and (n, 0) < (m, ) implies ¢ < f. When specialized to inverse semi-
groups, this result yields a theorem [10, Corollary 5] equivalent to
Munn’s theorem (see also [15, Lemma 2.1]). In [11, theorem and
corollary], we show “simple” may be omitted. In [15, Theorem 6.1],
we give a structure theorem for w Y- -unipotent semigroups.

Let S be a standard regular semigroup such that T is an wY-
semilattice of completely simple semigroups (7,::(n, 0)e N XY).
It fooDfmn(Fan€B(Twmn) fimn € E(Tm») if and only if 6 =),
we term S a standard regular semigroup of type wY.

In §4, we specialize Theorem 3.14 to obtain the structure of
standard regular semigroups of type Y (Theorem 4.2). In Theorem
4.2, the factor terms “g(c, d)” are omitted and V is an wY-inverse
semigroup with each subgroup a single element. Hence, an explicit
multiplication for V is given by [15, Theorem 2.3]. Further speciali-
zation yields the structure of simple and bisimple standard regular
semigroups of type @ (T is an w-chain of completely simple semi-
groups—no condition of the <r-classes).

In §5, we describe the structure of standard orthodox, standard
<~ -unipotent, and standard inverse semigroups (Theorems 5.1, 5.3,
and 5.5 respectively). A standard regular semigroup is termed
standard orthodox (& -unipotent)(inverse) if T is a semilattice of
rectangular groups (right groups)(groups). The structure theorems
are obtained by specializing Theorem 3.14. In each of the theorems
the term “B”, is omitted. In Theorem 5.3 and 5.5, I, = {¢,} for each
ye€ Y. In Theorem 5.5, J, = H, for each ye Y.

Warne [9, page 206, paragraph 3] and Munn [5, page 66, par-
agraph 3] have exhibited inverse semigroups with identity on which
&%, Green’s relation, is not a congruence. Using Lemma 2.13, these
semigroups are not standard.

Let S be a standard regular semigroup. If acS, let .“(a)
denote the collection of inverses of a. Let ¢ = {(a, b) € S* aa’, bb' ¢
E(T,) and da'a, b'bc E(T,) for some '€ #(a), b’ € _~(b), and y, z€ Y}.

In §5, we show ¢ is a congruence on S, S/, =V, kert =T, and
S is a regular extension of T by S/, in the sense of Yamada [19].

We use the definitions of Clifford and Preston [1] unless otherwise
specified. In particular, <2 & 5%, and < will denote Green's
relations on a semigroup S, i.e., (¢, b)e . Z if a UaS =bUbS; (a, b) e
FifaUSa=bUSb; ¥ =R NL; =2 S(a,b)e = if there
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exists ¢ €S such that (@, x) € &# and (z, b) € &)). R, will denote the
A-class containing a € S. A semigroup consisting of a single &-class
is termed a bisimple semigroup. A semigroup S which is a union
of a collection of pairwise disjoint subsemigroups (S,: ¥ € Y) where Y
is a semilattice and S,S,£S,4, for all y,2¢ Y is termed a semilattice
Y of the semigroups (S,: ¥€ Y). If Y = N with ndm = max (n, m), S
is termed an w-chain of the semigroups (S,:ne€N). A semigroup
S is termed regular if acaSae for all ¢ S. If S is a regular semi-
group, for each a € S, there exists y € S such that aya=«a and yay =y
(for example, if ¢ = axa, let ¥y = xax [1, Lemma 1.14]). The element
y is termed an inverse of a. A regular semigroup S is termed an
inverse semigroup if each @€ S has precisely one inverse. A re-
ctangular band is the algebraic direct product of a left zero semigroup
Uz, y € U implies 2y = x) and a right zero semigroup. A rectangular
group is the algebraic direct product of a group and a rectangular
band. A right group is a semigroup X such that a, b€ X implies
there exists a unique x € X such that eax =b. If S is a semigroup
we may define a partial order “<” on E(S) by the rule: ¢ < f means
ef = fe=e. A band is a semigroup S such that 2* = x for each
zeS. If S is a commutative band, (S, <) is a semilattice with
adb = ab and, conversely, every semilattice is a commutative band
with ab = a4b [1, Theorem 1.12]. A semigroup S is termed simple
if S is its only ideal. If, furthermore, ¢, f € E(S) and ¢ < f imply
e=f, S is termed completely simple. The structure of such S is known
modulo groups by theorem of Rees [1, Theorem 3.5].

1. Locally inverse Cliffordian semigroups. In this section, we
give a characterization of locally inverse Cliffordian semigroups
(Theorem 1.6) and related results to be used in the sequel.

In the remainder of this section, S will denote a locally inverse
Cliffordian semigroup, i.e. S is a locally inverse semilattice Y of
completely simple semigroups (S,: ¥y € Y).

LEMMA 1.1. If Ec E(S,) and y > z, there exists precisely one
ec E(S,) such that E > e. Furthermore, S,.L; < L, and R:S, S R,.

Proof. If y =z, take ¢ = E. Suppose ¥ > z. Using the proof
of [7, Theorem], there exists ¢c E(S,) such that £ >e. Let g,he
E(S,) with ¢ < E and h < E. Hence, since S is locally inverse,
gh = hg. Thus, (hg)(hg) = hhgg = hg, and, hence, hg € E(S,). Fur-
thermore, g(hg) = hg = (hg)g. Thus, hg < g. Thus, since S, is
completely simple, kg = g. Similarly, hg = h and, thus, g = k. The
proof of the second sentence of the lemma is contained in the proof
of [7, Theorem] for ¥ > 2. If y ==z, apply the Rees theorem [1,
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Theorem 3.5].

Let Ae S, and suppose that A€ R;N L, where E, F e E(S,). Let
e and f denote the unique idempotents of S,(¥ > z) under E and F'
respectively. We define Af,, = e¢Af. It is shown in the proof of
[7, Theorem] that {,, is well defined (i.e. {,,. does not depend on the
selection of E and F').

LemmA 1.2. For y>z,({, . 1s a homomorphism of S, into S,. Let
AeS, and BeS,. If y >z AB= A{,.B. If z >y, AB= A(B(,,).

Proof. The proof of Lemma 1.2 is contained in the proof of
[7, Theorem].

LemMA 1.3. If ye Y, {,, is the identity mapping of S,.

Proof. Let AeS,. Hence, Ac Ry N\ L, for some E, F e E(S,).
Let ¢ and f denote the unique idempotents of S, under E and F re-
spectively. Hence, since S, is completely simple, ¢ = E and f = F,
Thus, A{,, = eAf = EAF = A.

Let yz =y 4z in the semilattice Y.
LEmMmA 1.4. If AeS, and BeS,, AB = A{, ,.BC, ,..

Proof. Let AecL, and FeE(S,). Thus, utilizing Lemma 1.2
or 1.3, AB = A(FB) = ACV,W(FB) = ACy,yzFCy,wB = (AF)CU,MB =
ACy,yzB = ACy,yzBCz,yz-

LEMMA 1.5- FO'I' X > Yy > 2, Cz,yCy,z = Cz,z-

Proof. Let Ae S, and suppose that A€ R;c L, for some E, Fe
E(S,). Let ¢ and f denote the idempotents of S, under E and F
respectively. Hence, A(,, =e¢Af. By Lemma 1.1, ¢eAeS,L, < L;
and Afe€R;S, S R,. Let ¢ and f' denote the unique idempotents
of S, under ¢ and f respectively. Hence, AL, ,C,., = eeAff = Af'.
However, E>e>¢' and F > f > f'. Hence, by Lemma 1.1, A, , =
G’Af’ = ACx,yCy,r

THEOREM 1.6. Let {S,:y € Y} be a collection of paitrwise disjoint
completely simple semigroups indexed by the semilattice Y. For
each y,zeY with y > z, let {,, be a homomorphism of S, into S,
such that

(1) %,, is the identity automorphism of S,.
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(2) Ll =8 fora>y>zin Y.
Lot S=U(S,:yeY) and define a product on S by the rule
(3) A°B= AL,,..BL,.

where the right hand product is taken in S,,. Then, (S,°) is a
locally inverse Cliffordian semigroup.

Conversely, let (S, o) be a locally inverse Cliffordian semigroup.
Then, S is the unton of a collection of pairwise disjoint completely
stmple semigroups (S,: YY) indexed by a semilattice Y. For each
Y,2€ Y with y > z, there exists a homomorphism C,,, of S, into S,
such that (1) and (2) are valid and the multiplication is given by (3).

Proof. The converse is a consequence of [1, Theorem 4.6] and
Lemmas 1.2-1.5. Let us now establish the direct part. Let zy =
xdy. Let AeS,, BeS,, and CeS,. Hence, uzing (3), the fact Z,, ...
is a homomorphism, and (2).

Ao(Bo C) = A°(ch,ngC,,y,) = AC%xﬂz((B:%“CCz’“)C“’“:’)
= Acw,zyz(BCy,zyzCCz,zyz) .

Similarly, (Ao B)oC = (AL,,.4,BCy,+v.)CC, 0y.. Hence (AoB)oC = Ao(B-C)
by associativity in S,,,. By (1) and (3), S, is a completely simple
subsemigroup of S for all ye Y. Thus, S, is a Cliffordian semigroup
for each y € Y by [1, Theorem 2.52]. Hence, S is Cliffordian. Clearly,
S is a regular semigroup. Finally, let Ee E(S,), f € E(S,), and
g€ E(S,) and suppose that > f and E > g¢g. Hence, >y and
x>2. Thus, using 3) and (1), f = Eof = E(,,f = foE = f(EL,,).
Hence, EC.,> f(EC,, fe€E(S,). Thus, f=E(,, since S, is a
completely simple semigroup. Similarly, ¢ = E{,,. Hence, fog =
ny,yngz,ilz = ECx,uCy,yzEC:,zCz,yz = ECx,yzECr,yz = ECx,yz‘ Slmllarly, gof =
EC,,.. Thus, gof = fog, and hence, S is locally inverse.

REMARK. In Theorem 1.6, we term {{,.:¥, z€ Y} the collection
of structure homomorphisms of S.

REMARK 1.7. In the statement of Theorem 1.6, we may replace
“completely simple semigroup” by “left zero semigroup” and “Cliffor-
dian semigroup” by “semilattice of left zero semigroups”. Using
Theorem 1.6, a band E is left normal [17] if and only if F is a
locally inverse semilattice of left zero semigroups. Hence, we have
obtained the Yamada-Kimura characterization of left normal bands
[17, Theorem 1].

REMARK 1.8. In the statement of Theorem 1.6, we may replace
“completely simple semigroup” by “right group” and “Cliffordian
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semigroup” by “semilattice of right groups”.
The following result will be used in the sequel.

ProrosiTION 1.9. Let S be a locally inverse Cliffordian semi-
group. Then, &, F#, and 57 are congruence relations on S.

Proof. Let S be a locally inverse Cliffordian semigroup. We
first show that & is a congruence relation on S. We will apply
Theorem 1.6 and its notation. Let (z,y)e < in S. Hence, (z, y) e
% in S, for some uc Y. Let z€S,. Since {, ., is a homomorphism
of S, into S,,, 2C4v0 L YCu,w» in S,,. Using the Rees theorem [1,
Theorem 3.5], & is a congruence relation on S,,. Hence,

20% = 28,024, u0-L % 0,00YCuuo = 2°Y .

Thus, since & is a right congruence on any semigroup, & is a
congruence on S. Similarly, < is a congruence relation on S.

2. Structure theorem for standard regular semigroups (proof
of converse). In this section, we will use a sequence of twenty-one
lemmas to establish the converse of our structure theorem for stan-
dard regular semigroups (Theorem 2.22).

Let S be a standard regular semigroup and let T denote the
union of the maximal subgroups of S. Hence, T is a semilattice Y
of completely simple semigroups (7,: ¥y € Y) where Y has a greatest
element y, Let {{,.:y,2¢ Y} denote the set of structure homo-
morphisms of T. Let E, = E(T,). Select and fix ¢, € E,,. For each
ye Y, define ¢, = ¢,(, . Let S, = ¢, Se,,.

LemmA 2.1, E(S,) = {e,;ve Y}

Proof. Since e,e, = ¢,y,,6, = ¢,, and, similarly, e, = ¢, ¢,€
E(S,) for all yeY. Suppose fe€E(S,) and fecFKE, say. Hence,
f < e, and ¢, <e¢,, implies fe, = ¢,f. Thus, since T, is completely
simple, f = e,.

LEMMA 2.2, y —e, defines an isomorphism of Y onto E(S,).

Proof. Let y,z€¢ Y. Hence,

€0, = eﬂcﬂ»yzezczmz = (eyocwomcv,yz)(euoguo,zCMIz) = €y, »
LemMA 2.3. S, =U(R., NL,,:y,2z€Y).

Proof. Letxe R., N L,, where y,z€¢ Y. Using Lemma 2.2, ¢, =
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,,0,% = ¢, = x and, similarly, we,, = . Conversely, if z€S, let
27* denote the unique inverse of x in S,. Thus, using Lemma 2.1,
xe™' = e, and 7'z = ¢, for some y,2¢€¢ Y. Hence, xR, NL,,

By the Rees theorem [1, Theorem 3.5], for ye Y, T, =G, X
M, x N, where G, is a group and M, and N, are sets under the
multiplication (g, 7, )%, », ) = (9f4(J, D)k, %, ¢) Where (7, p) — f(J, D)
is a mapping of N, X M, into G,. We note ¢, = (f,(4u %)™ % Ju)»
say, where f,(4,, 1,)" is the inverse of f,(J,, 7,) in the group G,. Let
I, denote the set of idempotents of the .~-class of T, containing e,
and let J, denote the Z-class of T, containing e¢,. Hence, I, =
{(fulds )7 %, Ju); te My} and J, ={(g, %, J):9€G and jeN,}. Let
I=U{yyeY)and J=U J,:yeY).

LEMMA 2.4. I is a standard regular semilattice Y of left zero
semigroups (I,:yeY).

Proof. Let ael, and bel,. Thus, ¢ e, and b, Using
Proposition 1.9 and Lemma 2.2, ab.~¢,,. Furthermore, abab=abe,.ab=
abee,ab = abee,b = abe,,b = abb = ab. Thus, abe l,,.

LEMMA 2.5. J s a steandard regular semilattice Y of right
groups (J,:yeY).

Proof. Apply Proposition 1.9 and Lemma 2.2,

The next two lemmas are special cases of left-right duals of
[14, Lemmas 1.3 and 1.4]. Note our arbitrary representations of
the “e,” requires a slight modification in the proof of [14, Lemma 1.3].

LEMMA 2.6. Every element of T may be uniquely expressed in
the form x = ij where 1 €I, and je€J, for some yeY.

If X is a set, Ty will denote the semigroup (iteration) of mappings
of X into X.

LEMMA 2.7. There exists a mapping j— A; of J into T, and
a mapping p— B, of I into T; such that I,A; S I,, for jeJ, and
J,B, S J,, for pel,. IfjeJand pel, jp = pA;iB,. Furthermore,
IpZpA(eT) and jp L jB,(eT).

LEMMA 2.8. 14; =e,, for 1€l, and jed,.

Proof. First, we show that 4; = A, for jeJ,. Since 72 is
a congruence relation on T, (4, e,) € &# implies (ji, e,i) € # for all
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1€ l. Hence, using Lemma 2.7, (¢4, 14,,) € &, for all 1el. Thus,
14; = 14, for icl. Let tel,, say. Thus, since ¢ € I,,, we utilize
Lemma 2.7 to obtain (e)e,, = ¢,i = iA4, ¢,B,. Thus, by Lemmas 2.7
and 2.6, 74, = es. Since 1 Pe,, (...~ €L, s = €,.. Hence, i(, €
I,,. Hence, using Theorem 1.6, ¢, = ¢,,(%(,,,) = &,. Thus, 14; =
14,, = e,.

DEFINITION [1, p. 10]. A transformation p of a semigroup S is
a right translation of S if (ab)p = a(bo) for all a,beS.

LEmMMA 2.9. For each 1€ l, B, is a right translation of J.

Proof. Let red,, seJ,and x €I, say. Hence, utilizing Lemmas
2.5 and 2.7, (rs)x=xA,(rs)B, while r(sx)= r(xAsB,) = ©vA,A,(rB,,sB,).
However, using Lemma 2.8, rB,,, = rB,,,. Using Lemma 2.5, re,, €
Jupe Hence, e,,(re,,) = re,, = ev,,A/rB,W. Hence, using Lemmas 2.7
and 2.6, 7B, , = T¢,. Thus, using Lemmas 2.7 and 2.6, (rs)B, =
re,,sB, = r(sB,).

LEmMA 2.10. 47— B, is a homomorphism of I into P(J), the
semigroup of right translations of J.

Proof. Let r,sel and xeJ. Thus, proceeding as in the proof
of Lemma 2.9, a(rs) = (rs)A,xB,, and

(xr)s = rA,(xB,s) = (rA,sA,; )«B,B,) .
Thus zB,, = 2B,B,.

For each ye Y, let H, denote the maximal subgroup of S con-
taining e,.

LemmaA 2.11. If iel, and jed,, jB;eH,,. If jeH, jB;, = j.

Proof. Let 11, and jeJ, Since jHe,, j¢, .. R#e.L. . = €, and
jCz,'yz eJﬂz' Thus’ e’.llzjieﬂz = 6yszz,yziC1!,ﬂzeyz = jCz,yz'inmz = j’I;‘ Hence’
since j1eT,, ji€ H,,. However, using Lemmas 2.7 and 2.8, ji =
14;jB; = e,,jB, = jB,. Thus, jB,€H,,. If jeH, jB, = ji = je,i=
"].62, = jJ.

LemmA 2.12. If jeJ, jB,, = je,.

Proof. Utilize the proof of Lemma 2.11.

LEMMA 2.13. Let X be an inverse semigroup such that the union
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of the maximal subgroups of X ts a subsemigroup. Then, 57 1is
a congruence relation on X.

Proof. Let H= | (H,:ec E(X))). Using [1, Theorem 1.7], H
is an inverse semigroup which is a union of groups. Hence, E(H)
is contained in the center of H by [1, Lemma 4.8]. Let (a, b)c £
Hence, ao™ =bb' and o'a =070. Let ceS. Thus,

(be)(be)™ = bec™b™ = ba'acc™'atabt = ba N (acc o )ab™

= ba"'ab'acc'a™t = aa'acc'at = (ac)(ac)™!

while (bc)™'bc = ¢ b 7'b¢c = ¢ 'a'ac = (ac)'ac. Hence, (ac, bc) € 5#
Similarly, (ca, cb) € 5

LEMMA 2.14. 257 is a congruence relation on S,.

Proof. Using Lemma 2.3, {H,: y € Y} is the collection of maximal
subgroups of S,. Let ac€ H,and be H,, say. Since a7, 0, ,,57 ¢,
and, thus, a{,,,, € H,,. Similarly, 8, ,, e H,,. Thus, ab = al,,,.b, ,.€
H,,. Hence, using Lemma 2.13, 57 is a congruence relation on S,.

LemMMA 2.15. There exists a homomorphism ¢ of S, onto an
inverse semigroup V. where E(V) =Y and each S#-class of V con-
sists of a single element. Furthermore, (@, b) € S7(eS,) if and only
if ap = bg. Thus, if h, = c¢™',{h,:ce V} is the collection of 7 -
classes of S,.

Proof. Using Theorem 2.14 and [1, Theorem 7.36], S, is an
inverse semigroup. Let ¢ — @ denote the natural homomorphism of
S, onto S,.. Suppose (@, b)e S#(eS, ). Hence, @a = bb™ and
@@ = b'b. Thus, ae ' =0b"' and a '@ = b 'b. Hence, (aa™, bb) €
57 (eS,) and (a'a, b7'b) € 57 (eS,). Thus, aa™ = bb™* and a™'a = b7'b.
Hence, (a, b)e 5%, and, thus, @ = b. Thus, each S#-class of S,,.
consists of a single element. Using Lemma 2.2 and [1, Lemma 7.34],
g,— Yy defines an isomorphism of FE(S, ;) onto the semilattice Y.
Hence, we may extend this isomorphism to an isomorphism » of S, .
onto a semigroup V with E(V) =Y. For acS, define ap = ax.

For each ce V, select a representative element v,ch,. ForyeY,
let v, =¢,. Hence, using Lemma 2.15 and its proof, v.v;* = ¢,
and v;'9, = ¢,—1, for ce V.

LEMMA 2.16. Ewvery element of S may be uniquely expressed in
the form 1v,j where 1€ I,,—1 and J € J,-,.
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Proof. Let xeS. Hence, x€R,N L, where ¢ecE, and feE,
for some y,z€ Y. Thus, (¢ 7)€ for some 1€ I, and hence (%, ©) €
. We note that ¢, z7e7v 7 fZe,. Hence, R, N L,, #+ []. Thus,
using Lemmas 2.3 and 2.15, R, N L, = h, for some ce V. Thus,
vv;' = e, and v;'v, = e,. Hence, x = 1z = ie,x = w,(v;'x). We will
show that v;'x € T,—,. Using the proof of [1, Theorem 2.18], there
exists an inverse ' of x such that 2’ € R, N L,, 2’ = ¢, and «'x = f.
Let z2’ = (f,(s, r)™, 7, s) for some reM, and se€ N, and let z =
(fu(dy, 7)Y, 7, 7,). Using the Rees theorem, e,xx'2=e¢,. Hence,
e, = v, = vlew, = vile,xx'zv, = v'wx'zv, € v;'xS. However, v;'w =
ev;'wee,S. Again, using the Rees theorem, ze,xa’ = x2’. Hence,
x=ze,x=2v,v;'2. Thus, f=a'v=12"2v,07x € Sv;'x. However, v;'xc Sx=
Sf. Hence, v;'ve R, N L, < T,. Since ev;'x = v;'x, v;'weJ,. Since
e, =v"v,2=¢,6=0)"v,¢=c'c. Thus, v;'xecJ .. Hence, x=1v,j
where ¢€1,,~ and jedJ,~,. Suppose iv.j = rv,s where 7€ I;;— and
s € J;—1,;.  Since jHe, -, V,] BV, = V. Fe,~1. Hence, 1v,]¢€
Hie,,— = 1. Similarly, iv,7.j. Hence, wv,5 ¢ R, N L;. Thus, 1#r
and j<s. Hence, cc'=dd™, 1= r,and ¢c'¢ = d7'd. Thus, c5#d(eV)
and, hence, ¢ = d. Thus, iv,j = ©v,s. Therefore, ¢,,—110,J = €,,~19V,8.
Hence, v, = v,s. Thus, j = ¢,—,7 = v;0,J = v;'0,8 = €,~1,8 = 8.

LemMMmA 2.17. If ¢, de V, v,v, = v,49(c, &) where g is a function
of VX Vinto H=\U (H,:yeY) such that g(¢, d) € Hy~1.a- If Y, 2€
Y, 9(y, 2) = e,..

Proof. Using Lemma 2.16, v, v, = %v,j7 where t€l,,-1 and j¢
J.—1,. We first show = = ¢d. By the proof of Lemma 2.16, iv,j €
R, N L;. However, (v,v,(v,v,) )¢ = (ed)(ed)™ = €4 ca—16. Hence, using
Lemma 2.15, (v,0,)(%,0,) " = €gy o~  Similarly, (v,0;) (v02) = €eqr—iten-
Thus, zz™' = (ed)(cd)™ and a7z = (ed)*ed. Thus, (x, cd)e (V).
Hence, using Lemma 2.15, x = ed. Thus, v,v; = 1v.,5. Let 7 = g(e, d).
Hence, using Lemma 2.16, g is a function of V XV into J and
g(c, d) € Jgy-1ea. Furthermore, v,v4=e(awa—19,V4= €ea wa—110.a9(¢, d)=
v.a9(c, d). We note that g(c, d) = eco-1.09(c, @) = viv.9(c, d) =
V0.0, €8, Thus, using Lemma 2.3, g(e, d)€ H4—1... To obtain
the last statement of the theorem, utilize Lemma 2.2

If weJ and se V, define uB, = v;'uv,.

LeEmMMA 2.18. For se V,B,¢End J and J,B, € H,—,,. Further-
more, if jed and s€Y, jB, = je,

Proof. Let j, j,€J. Suppose j,€J, and j,€J,. Hence, using
Lemma 2.5, 7.8,5:8, = (v;'5,0,)(¥:5:0,) = 07" J1001(J:€00—1) V=05 71050, =
(4.7.)B,. Hence, B, is a homomorphism of J into S. Since is a J
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union of groups, S, is a homomorphism of J into 7. Since ¢,5, =
v, = e, , jHe, implies jB,Fe,-,,. Hence, J,B,<J-1,.. Thus,
B,eEndJ. Let jeJ,. Thus, v7 0, =00, 6,1, = V7 JV, €5_1,C5—15.6—1rs =
V7 v, 61, Thus J,B, & Hy1,,. If se Yand jed,, j8, = e.je, = Je..

If jeH and z€ H, define jC, = 27'jz. (Using Proposition 1.9
and Lemma 2.2, H is a semilattice ¥ of the groups (H,:%¥ € Y).)

LEMMA 2.19. B.B: = B.:.Cic.0)-

Proof. Utilizing Lemma 2.17, 58,8, = vi'w;'jv.v, = (v,v,) ' jv.v,=
(veag(e, d))7Jv.ag(e, @) = B.4Coic,n-

LEMMA 2.20. g(a, be)g(b, ¢) = g(ab, ¢c)(g(a, b)B,).

Proof. Using Lemmas 2.17 and 2.5,

(va/vb),vc = /Uabg(aﬂ b)vc = vabg(a’! b)ecc_l/vc
= vabecc_l(g(aU b)ecc“‘l)vc = ,Uab'vc(/vc—lg(a’! b)vc)
= V. 9(ad, c)g(a, b)B.) = €wserimse—1Varcg(ab, c)(g(a, b)B.) .

Using Lemmas 2.17 and 2.18, g(ab, ¢)(g(a, b)B.) € Jwpe~1ap. HOWeVer,
7)@(’01,?10) = va(vbcg(b’ C)) - e(abc)(abc)-lvabcg(a, bc)g(bi C) .

We note that g(a, be)g(b, ¢) € J(ase)~10s.- Hence, using Lemma 2.16,

9(a, be)g(b, ¢) = glab, c)(g(a, b)B.).
If a,beJ, define a*b = ab. If a, bel, define acb = ab.

LemMA 2.21. S={(i, a j):acV,icl, s and jeJ-i} under
the multiplication (i, a, )(w, b, 2) = (i© Can e, 0b, 9(a, B)*iB.EI2) .

Proof. Letiel,,—1,j€J,~1,,%¢I,;,~1, and 2 € J,~;,. Using Lemmas
2.7, 2.8, and 2.2,

(10.9)(uv,2) = w,ud;jB,v,2
= Welp—1a—1aJ B, V32
= 10,80-14€00—1] B, V32
= 10,0,0;, J B, 0,7
= Wag(a, b)JB.B
= (i ° €anan—)ar(9(a, b)*IB.B5z) .
Using Lemmas 2.4, 2.5, 2.7, 2.17 and 2.18, % °€ws wp—t € Lap @~ and

g(a, b)*jB,B¥z € J 4y)—1a. Hence, using Lemma 2.16, (tv,5)0 = (4, @, J)
defines an isomorphism of S onto the groupoid given in the statement
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of the lemma.

THEOREM 2.22. Let S be a standard regular semigroup. Then,
S is isomorphic to (Y, I, J, V, B, B, g) for some Y, I,J, V, B, B, g.

Proof. Utilize the remark before the proof of Lemma 2.21 and
Lemmas 2.2, 2.4, 2.5, 2.10-2.12, 2.15, and 2.17-2.21.

REMARK 2.23. A semilattice Y is said to be directed from above
if y,ze Y implies there exists we Y such that w >y and w > 2.
Theorem 2.22 is valid if we replace the condition “Y” has a greatest
element by “Y is directed from above” and “for each ye Y, there
exists ¢, e K, such that e,e, = ¢,, for all y,ze Y”. Just replace S,
by the inverse semigroup U (e,Se,:yeY)=U(®R, NL.:y, 2eY)
and note that for z <y, ¢,(,, = e..

3. Structure theorem for standard regular semigroups (proof
of direct half). In this section, we show that (Y, I, J, V, B, B, g) is
a standard regular semigroup and establish other results to be used

later in the sequel.
For brevity, let S= (Y, I,J, V, B, B, g).

LemMA 8.1. S is a semigroup.

Proof. Utilizing (4) and (1), closure is easily established. Let
ta,7),=1and (4,0,75),=3. Leta=(@,a,J),y=(ubz),and w=
(p, ¢, ¢). Using the fact e,oe, = ¢,, for all », se Y and (4), ((xy)w), =
(x(yw)),. Utilizing (4), the facts 8, ¢ End (J, *) and ¢ — B, is a homo-
morphism of (, ) into P(J), 3(b), 3(a), 1(c), the fact efe, = e,,, 1(b),
and 2(a),

((xy)w); = g(ab, ¢)*(g(a, b)*jB.Bi2)B,Biq
= g(ab, c)*(g(a, b)B.)* (1 B.BF=)B,B q
= g(a, be)*g(b, ¢)*JB.B,BI2B,BIq
= g(a, be)*g(b, ¢)*(9(b, ) '+(§ B.B:.)"9(b, ¢)*2B,6:q
= g(a, be)*euo 1523 B.BY9(D, ¢)*2B,B q
= g(a, be)*jB,B1.9(b, ¢)*2B,B:q
= g(a, be)* 3B, B} we vo—1859(b, €)*2B,B q
= g(a, be)*(IBiewo n0-1)Bi9(b, €)*2B,B¥q
= g(a, be)* 1B, B, o) s0—-183:9(b, ¢)*2B,Bkq
= g(a, b¢)*JB,..,., 4., - P19(b, )*2B,BFq
= (2(yw))s .
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Hence, (xy)w = x(yw).
LEmMA 3.2, E(S)={(1,0, j):acY and jB; = ¢,}.

Proof. Let (i,a, 7)€ E(S). Using 4, 2(a), 1(a), and 2(c), ac Y
and jB}j = j. Since J, is a right group, there exists y €J, such
that j*y = e¢,. Hence, using 1(a), ¢, = j*y = jB¥j*y = jBfe, = jB..
Conversely, if ac Y and jB; = e, using (4), 2(c), and 2(a), (3, @, 7)€
E(S).

LemmA 3.3. Let (3, a, j), (w, b, v) € S. Then, (4, a, 5)#u, b, v) if
and only if 1 = u.

Proof. First suppose that 7 = . Hence, aa™ = bb™". Let x¢
Li~15100—15~1.  Thus, using (1) and the fact J,-, is a right group,
there exists yeJ,—, such that (¢(a, a7'0)*jB,B,~,)*y = v. Thus,
using (4), (4, a, 7)(x, a7'b, y¥) = (¢, b, v). Similarly, there exists pe
Ty-10)5~10y—1 and q € J,—1, such that (2, b, v)(p, b7'a, q) = (4, a, j). Thus,
(¢, @, 5).#(1, b, v). Conversely, suppose that (4, a, 7)#(u, b, v). Using
Thus, (4), tou = % and uo7 = ¢. Hence, 7 = u.

LEMMA 3.4. S is a regular semigroup.

Proof. Let (¢, a, j) € S. Using Lemma 3.8, (4, aa™*, €,,-1)#Z(, @, j).
By 2(b), ¢,,~1B; = e¢,,~:. Hence, using Lemma 3.2, (1, aa™, ¢,,—1) € E(S).
Thus each <Z-class of S contains an idempotent.

Lemma 3.5. Let (i, a, j), (w,b,2)e8S. Then, (1, a, j)F(w, b, 2)
if and only if a”'a = b7'b and (7, 2) € 77 (eJ-1).

Proof. We first show that (¢, a, j).&Z(w, b, 2) if ¢'¢ = b~'b and
(4, ) e &7 (eJ,—1,). Since (4, z) € 7 (eJy-1), there exists y € H,—s, such
that y*j = 2. Since g(a¢™?, a)e H,~1, by 1(c), there exists x e H,—,
such that xz*g(a™?, a)*j = 2. Using 1(b), 2(b), 3(a), 2(a), and 1(c),
g(e™, a)*xB,_.B,Lrj=x*g(a™", a)*j=2. Thus, (¢,~1., ¢, 2B,~1)(%, a, J)=
(e~ 07 'a, 2). However, (w,b,(g(b,b7'0))"")(e;—1,,b7'b,2)=(w,b,z). Hence,
((w, b, (g(b, 57'0)) )ez'sy 7%, £B._))%, @, 5) = (w, b, z). Similarly, there
exists p € Hy—, such that ((4, o, (9(a, a7 a)) ) (es—w, b7, DB-))(w, b, 2) =
(i, a, j). Hence, (i, @, j).&(w, b, z). Conversely, suppose that
@, @, 7). (w, b, z). Using (4) and (1), a*a = b7*b and (7, 2) € 7 (eJ,—13).

LemmA 3.6. Let (4, a, 5), (w, b, 2)€S. Then, (i, a, 7)57(w, b, z)
if and only if i = w, a = b, and (7, 2) € 7 (eJ,~1,).
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Proof. Just note that each 57 -class of V consists of a single
element, and combine Lemmas 3.3 and 3.5.

REMARK. Lemmas 3.3 and 3.5 and their proofs were suggested
by [16, Lemma 3.2] and its proof.

Lemma 3.7. Let (3,0, j), (w, b, 2)€S. Then, (3, a, 5)2(w, b, z)
of and only if azb(eV).

Proof. Suppose that a2b(cV). Hence, there exists x € V such
that aZx and ©<°b. Hence, aa™' = zx™* and b'b = x7'2. Thus,
using Lemmas 3.3 and 3.5, (3, @, J)2 (@, x, 2)ZL(w, b, z). Conversely,
if (2, @, j)=2(w, b, 2), using (4), aZb(eV).

LEmMMA 3.8. S is a bisimple semigroup tf and only if V is a
bisimple semigroup.

Proof. Apply Lemma 3.7.

LemMmA 3.9 For each yeY, let T, ={(4,1v, j):t€l, and jed,l.
Then, T, is a completely simple semigroup.

Proof. First, we show that T, is a simple semigroup. Let
¥, 9), (u, y,v) € T,. Hence, using 1(a), 2(a), and 2(c), (¢, ¥, ), ¥, v)
¢, 9, jBiv)eT,. Since J, is a right group, there exists x€.J, such
that j*z = v. Hence, using 2(b) and 2(a),

(w, ¥, €,)(3, ¥, 3Ney, ¥, ) = (U, ¥, V) .

Next, we show T, is completely simple. Let ¢, f € E(T,) and suppose
that ¢ < f. Hence, using Lemma 3.2, ¢ = (4, ¥, j) and f = (w, ¥, 2),
say, where jB; = 2B, = ¢,. Thus, (w, v, 2)(%, ¥, j) = (¢, ¥, J) implies
w = 1. Hence, (4, ¥, ), ¥, 2) = (4, ¥, 2) = (4,9, j). Thus, z = j and,
hence, (w, y, 2) = (¢, ¥, J)-

LEmmA 3.10. Let T=U((T,:yecY). Then, T is a semilattice
Y of the completely simple semigroup (T,:yeY).

Proof. Apply (4), 2(c), 1(a), and 2(a).
LemMmA 3.11. T s the union of the maximal subgroups of S.
Proof. If xeT, x is contained in some subgroup of S (each

completely simple semigroup is a union of its subgroups by [1,
Theorem 2.52]). Thus, x € H, for some ¢c E(S). Hence, T € X, the



564 R. J. WARNE

union of the maximal subgroups of S. If ce X, ¢27¢ for some e¢c
E(S). Hence, ¢ = (1,9, ) for some y€Y by Lemma 8.2. Thus,
using Lemma 3.6, ce T,.

LEMMA 3.12. T s a locally imverse semigroup.

Proof. Let (4, a, 7), (4, b, v), and (w, ¢, ) € E(S) such that (4, a, j)>
(u, b, v) and (¢, @, j)=>(w, ¢, 2). Hence, (4, a, j)(u, b, v)=(u, b, v)(4, a, j)=
(u, b, v). Using Lemma 3.2, @, bc Y, and, hence, @ > b. Since ioe, =
U, 1o =140(toe) =106, =% While ot = uo(uoi) =u. Hence, i > u.
Using (4), 2(c), 2(a) and 1(a), jBiv = vBfj = v. Hence, using the fact
iB,€ H, and veJ,, a right group, jB, = ¢,. Hence, using Lemma
3.2, e, =vB, = (wB}j)B, = vB}fjB, = vB}fe, = vB,. Thus, efj = v.
Let {{,..: », ¢ € Y} denote the set of structure homomorphisms of (J, *).
Thus, ¢,*j5(., = v. Hence, j{,, = v. We have shown that (4, a, 7) >
(, b, v) implies © > u, ¢ > b, and v = j{,,. Similarly, (¢, a, ) = (w, ¢, 2)
implies 7 > w, @ > ¢, and z = j{,,. Since (I, o) is a locally inverse
semigroup, wow = wowu. Using 2(c), 2(a), and 1(a), (u, b, v)(w, ¢, 2) =
(0 e, bc, vBiz) while (w, ¢, 2)(u, b, v) = (wee,, bc, zBfv). Let {¢,,:
», ¢ € Y} denote the set of structure homomorphisms of (1, o). Hence,
WOU = WP 40Uy, 50 = Whe,55°€p°0UBy 5c = Woey,. Similarly, uew = uoe,.
Hence, #oe,, = woe,. Furthermore,

vBiz = vBje),2 = vB,B}, 2
= vB,..,.*2 = vB,.., 2
= vBjelz = efer.z
= efz = 2L, -

Similarly, zBjv = v, ,.. Hence, vB}z = 7(,..L.0c = Cabe = 5Ca,0Co0c =
vl 4. = #BFv. Thus, (u, b, v)(w, ¢, 2) = (w, ¢, 2)(u, b, v).

THEOREM 3.13. (Y, I, J, V, B, 58, g9) is a standard regular semi-
group.

Proof. Utilize Lemmas 3.1, 3.4, and 3.10-3.12.

Tueorem 3.14. (Y, I, J, V, B, 8, g) is a standard regular semi-
group and, conversely, every standard regular semigrowp is 1so-
morphic to some (Y, I, J, V, B, 8, 9).

Proof. Combine Theorems 2.22 and 3.13.

REMARK 38.15. Let J and H be as in the statement of Theorem
3.14. Using the proof of [1, Theorem 1.27], Theorem 1.6, and Pro-
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position 1.9, J=U (H, X E(J,):ycY) where, if acH,ceH,bc
E(J,), and dc E(J)), (a, b)c, d) = (ac, bd) e H,, X E(J,,). The multi-
plications in H and E(J) are given by the corresponding speciali-
zations of Theorem 1.6. These specializations yeild theorems of
Clifford [1, Theorem 4.11] and Yamada and Kimura [17, Theorem 1]
respectively.

REMARK 38.16. Let ¢, = (¢, ¥, ¢,). Hence, using (4), 2(c), 2(a),
e, = ¢,,. Thus, if we replace “Y has a greatest element” by “Y
is directed from above” in the definition of (Y, I, J, V, B, B, g), we
obtain the semigroup of Remark 2.23. Hence, Theorem 3.14 with
appropriate modifications characterizes these semigroups.

4. Standar dregular semigroups of type @Y. Let S be a regular
semigroup such that T is a locally inverse w Y-semilattice A of com-
pletely simple semigroups {T(.s:(®, 8)e A}, If fo.o D fmn(Fun €
E.,s:fimn€Foy) if and only if 6 =\, we term S a standard regular
semigroup of type wY. If §, is the greatest element of Y, (o, d,) is
the greatest element of A. We give a characterization of standard
regular semigroups of type wY(Theorem 4.2). A regular semigroup
S such that T is a locally inverse w-chain of completely simple
semigroups (T,:n € N) (no further condition) is termed a standard
regular semigroup of type w. We show that S is a simple (bisimple)
standard regular semigroup of type @ if and only if S is a standard
regular semigroup of type wY with Y a finite chain (a single element)
(Theorem 4.3) (Theorem 4.4). Hence, the structure of these semi-
groups is given by specializing Theorem 4.2.

To establish Theorem 4.2, we use a more general result on “split”
extensions (Theorem 4.1).

Let S be a standard regular semigroup. In the notation of §2,
let {h.:ce V} denote the collection of S#°-classes of S,. For each
ceV, select v,eh,. If vv, =, for all ¢, de V, we term S a split
extension of T by V.

Let Y,V, I, J, H, and {¢,} be as in the definition of (Z,.J,V, B, 8, g).
Let ¢ — B; be a homomorphism of (I, o) into P(J), and let v — B, be
a homomorphism of V into End (J, *) such that (1)(a) jB,€ H,, for
jed. and i€ I(b)J.8, & Hy-1,, (2)(a) gBe, = 9B, = g*e, for ged (b)
jB; = j for jeH, and 1e1,. Let (Y, I,J, V, B, 8) denote {(3, a, 7):
acV,iel,,~, and j € J,—1,} under the multiplication (3) (4, @, 7)(%, b, 2)=
(t°€ustar -1, @b, 7B, Bi2).

THEOREM 4.1. (Y, I, J,V, B, B) is a split extension of T by V.
Conversely, every such semigroup is isomorphic to some (Y, I,J, V,

B, B).
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Proof. Let S=(Y,1,J,V,B,8). If we let g(c, d) = e, p-1.q
for all ¢,de V, it is easily verified that (1)-(4) of the definition of
(Y, I1,J, V, B, B, g) are valid. Hence, S is a standard regular semi-
group by Theorem 3.14. Let y, denote the greatest element of Y.
Using 2(a) and Lemmas 3.9 and 3.2, (e,, ¥, ¢,,) € E(T,,). Using (4),
2(a) and the fact (J, *) is locally inverse, (e, Yo, €,,)S(eyy Yo €,,) =
{(ege—1, @, J): @€V, j€ H,~,}. Thus, using Lemmas 3.6,

ha = {(eaa'—l’ a’ j): j e Ha,'“la,} .

Let v, = (€4a-1, @, €,—1,). Hence, v,v, = v,,. Thus, S is a split ex-
tension of T by B. Conversely, let S be a standard regular semi-
group which is a split extension of 7 by V. Hence, using Lemma
2.17, g(c, d) = e a~1.q for all ¢,de V. Thus, using Theorem 3.14,
S=(Y,1I,J,V,B, B, g) with g(c, d) = e y-1,s. For brevity, let (Y, I,
J, V, B, 8) =U. Using 3(a), 1(a) and 1(b) of the definition of S, ¢— 8,
defines a homomorphism of V into End (J, *), and (4) of the definition
of S reduces to (3) of the definition of U. Hence, S = U.

Let A be an wY-semilattice. Let V = {(n, k);:n, keN,oe Y}
under the multiplication

(n, kYo(r, 8), = (m + r —min(k, 7), k + s — min (k, );4.n

where f(k,r) =9,7, or 67 according to whether k¥ > »,» >k, or
r=%k Let Y(=A4),1I, J, H, and {e,,;} be as in the definition of
(Y,1L,J,V,B,B). Let (n,k);— Bi,n, be a homomorphism of V into
End (J, *) and let ¢— B; be a homomorphism of (I, ) into P(J) such
that 1(a) jB,€ Hippmn f0r jE€Jiy and 1€l 1(b) JinBuwn, =
H i ibomintm, i 2(8) hBe(n,a) = hBu,n = h*ew,s for heJ (b) jB; = j
if jeH,; and 7€l,,. Let I, =U [o:n € N) and let J, =
UWwa:neN). Let (Y, I, J, B, B) denote U (I; X J;:6€Y) under
the multiplication (3): if 2 € I5, J € Jory % € Lipny, and z €J ),
(3, )%,y 2) = (10 €nrrminte,m,fih s jBuB(*r,s),/z) .

THEOREM 4.2. (07, I, J, B, B) ts a standard regular semigroup
of type wY, and conversely every such semigroup s isomorphic
to some (Y, I, J, B, B).

Proof. Let S be a standard regular semigroup of type wY.
Using Lemmas 2.1 and 2.2, E(S,) = {ew,»:me€N,0€Y} = A. Fur-
thermore, e, ;€. ,(eS,) if and only if 6 =A. Hence, use [15,
Lemma 2.1, Theorem 2.3, and Corollaries 2.2 and 2.4] to show S is
a split extension of T by V (given in the definition of (wY, I, J, B, B)).
Hence, S= (4,1, J,V, B, 8) by Theorem 4.1. Using [15, Corollary
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2.4], Jir 0By & Hirsiminirm),frrn) and ((w, k)7, 8),)(n, k)s(r, 8),)™" =
(n + r — min (k, 7), f(k, r)). Hence, using Theorem 4.1 and [15,
Corollary 2.4], S = {(7, (n, k), 7): (n, k);€ V, 1€ L, 5, J € Ju»} under the
multiplication (’L, (%’ k)d: ,7)(’11/, (’7', S),,, z):(iOe(n+r-—min(k,r),f(k,'r))’ (n, k)&('r, 3)77’
jBu,B(,,,)”*z). Hence, (¢, (n, k);, )¢ = (4, 7) defines an isomorphism of
(4,1, J,V,B,B) onto (w, Y, 1I,J, B, B). Conversely, consider S =
(Y, I, J, B, B). Using [15, Theorem 2.3 and Corollary 2.4], V is an
inverse semigroup with semilattice of idempotents A and each S#
class of V consists of a single element. Using [15, Corollary 2.4],
1(b) of the definition of (A4, I, J, V, B, B) is valid. Hence, {™* defines
an isomorphism of S onto (4, I, J, V, B, 8). By the proof of Theorem
4.1, (A,1,J,VB,B)=(4,1,J,V, B, B, g) with g(c, d) = e.q-1... Hence,
using [15, Corollary 2.4] and Lemmas 3.2, 3.7, and 3.9-3.12, S is a
standard regular semigroup of type wY.

THEOREM 4.3. S is a simple standard regular semigroup of
type @ if and only if S is a standard regular semigroup of type
oY with Y a finite chain 0 >1>2> ---d — 1 where d is a positive
wnteger.

Proof. Let S be a simple standard regular semigroup of type
w. Hence, S, is a simple semigroup. Thus, using Lemma 2.15 and
[15, Lemma 7.5 and Theorem 2.3], V is the semigroup described in
the definition of (wY, I, J, B, 8) with Y the finite chain 0 > 1 > 2
-+« >d —1 where d is a positive integer. Hence, using Theorem
3.14 (and its proof), [15, Corollary 2.4], Lemmas 3.2, 3.7, and 3.9-3.12,
S is a standard regular semigroup of type wY with Y the finite chain
0>1>2--->d—1 where d is a positive integer. Conversely, let
S be a standard regular semigroup of type Y with Y a finite chain.
It is easily seen that S is a standard regular semigroup of type w.
We next show that any standard regular semigroup of type wY is
simple. Let S =(wY, I, J,B,B). Letiel,s j€Jus u€el,,, and
veJyy. Letg= e(n+1,ﬂ)BiB(*'rH—1,3),7.7.18(k+1,a)v' Using (1), ¢ € H,,,. Hence,
since J, is a right group, there exists becJ , such that ¢*b = v.
Thus, (3), (2(a)), the fact ¢— B, is a homomorphism of V into
Elld (J9 *)7 and (1)! (ur e(n+1),'7)(7:9 j)(e(k+1,77)y b)) = (’M/, ?)).

If A is a finite set, | A| will denote the number of elements of A.

THEOREM 4.4. S is a standard regular bisimple semigroup of
type o if and only if S is a standard regular semigroup of type
oY with Y| = 1.

Proof. Apply Theorem 4.3, Lemma 3.7, and [15, Corollary 2.4].
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5. Some other classes of standard regular semigroups. A
regular semigroup S is termed standard orthodox (& -unipotent) if
T is a locally inverse semilattice Y of rectangular groups (right
groups) (T,: ye Y)(J,:¥y€Y)) where Y has a greatest element. An
inverse semigroup S is termed standard inverse if T is a semilattice
Y of groups (H,-y<€Y) where Y has a greatest element. In this
section, we give structure theorems for these classes of semigroups.

Let Y, V, I, J, {e.}, H, B, and g be as in the definition of (Y, I, J,
V, B, B, g). Furthermore, assume that 1(b), 1(c), 2(c), 3(a), and 3(b)
of that definition are valid and that 2(a) g8, = g*e, for yc Y and
ged. Let (Y,I1,J,V,B 9) denote {(i,a, j):aeV,i€l,,—1, jE€J,—1,}
under the multiplication (4)

(iv a, _’])(%, b7 z):(ioe(ab)(ab)"% ab: g(“? b)*j,@;‘z) .

REmMARK 5.1. (Y, I, J, V, B, g9) is a standard orthodox semigroup
and conversely every standard orthodox semigroup is isomorphic to
some (Y, I, J, V, B, 9).

Proof. Let S be a standard orthodox semigroup. It is easily
seen that S is standard regular. We apply Theorem 3.14. Let jeJ
and wel. By the proof of Lemma 2.11, jB, = ju. Let{{,.,.y2€ Y}
denote the set of structure homomorphisms of 7. Let jeJ, and w e I..
Hence, using the fact that T',, is a rectangular group, ju=35¢, ,.uL, .=
3Cyv:€.80,0. = Je,. Hence jB, = j*e,. Let jed, u € I,,—, and 2 € J;,—y.
Hence, using the fact 8, € End (J, *) and 1(b), jB.B¥z = (3*e—1)Biz =
jB¥e,—iz = jB¥z. Thus, (4) of Theorem 3.14 reduces to (4) in the
definition of (Y, I, J, V, 8, 9).

Conversely, we show (Y, I,J, V, B, ¢g) is a standard orthodox
semigroup. First, we apply Theorem 3.14 to show that (Y, I, J, V, 8, 9)
is a standard regular semigroup. We define jB, = j*e, for jeJ and
9el, Let uel,vel, and jeJ. Hence jB,B, = jefe, = j*e,, =
jB,... Let j,hed and 1€I,. Hence, (7*h)B; = (j*h)*e, = j*(h*e,) =
7*(hB;). Thus, 1 — B, is a homomorphism of (I, o) into P(J, *). Let
jed, and t1e€I,. Let {7,,:¥y,2¢€ Y} denote the set of structure homo-
morphisms of (J, *). Hence, forte I, jB;=j%e,=j7¥,.6.7,,,.. However,
e7,,. < e, and ¢,, < e¢,. Hence, using the fact that (J, *) is locally
inverse and J,, is a right group e,7,,., = ¢,,. Thus, jB;, = j7¥,.e,. €
H,,. Hence, 1(a) of Theorem 3.14 is valid. By definition, jB,, =
j*e,. If jeH, and i1€l, jB, = j*¢, = j. Hence, 2(b) of Theorem
3.14 is valid. Let jeJ, wel;—, and ze€J,-1,,. As above, jB}z =
jB,B¥z. Thus, (4) of Theorem 3.14 and (4) of the definition of (Y,
I J, V, B, g) are equivalent. Hence, using Theorem 3.14, (Y, I, J,
V, B, g) is a standard regular semigroup. Let (7,9, 7), (u,y,2)eT,
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(note, Lemma 3.9). Hence, using 2(c) and 2(a), (4, ¥, 7)(u, ¥, 2) =
(2, ¥, 7%2). Thus, using [1, Theorem 1.27], 7', is a rectangular group.
Hence, using Lemmas 3.9-3.11, (Y, I, J, V, B, g) is a standard orthodox
semigroup.

REMARK 5.2. By a result of Preston, Yamada, and Clifford, [2,
Proposition 1], if T is a semilattice of rectangular groups, T is an
orthodox semigroup. Conversely, every Cliffordian semigroup which
is orthodox is a semilattice of rectangular groups.

Let Y, V,J, and B be as in Theorem 5.1. For each y € Y, select
e, € E(J,) such that efe, =¢,, for all y,zeY. Let H, denote the
maximal subgroup of J, containing ¢,. Let g be as in Theorem 5.1
and assume 1(b), 1(c), 2(a), 2(c), 3(a), and 3(b) of Theorem 5.1 are
valid. Let (Y, J, V, B, g) denote {(@, j):a€V, jed,~1,} under the
multiplication (4) (a, j)(b, 2) = (ab, g(a, b)*7Bz).

THEOREM 5.3. (Y, J, V, B, 9) is a standard L -unipotent semsi-
group and, conversely, every standard F-unipotent semigroup s
isomorphic to some (Y, J, V, B, 9).

Proof. Let S be a standard <~ -unipotent semigroup. Hence,
using [1, Theorem 1.27], S is standard orthodox. Using Theorem
51, S=(Y, L, J,V,B,g9). Let 1e€l,. Using Lemma 3.2 and the
proof of Lemma 5.1, (¢, 4, ¢,), (¢,, ¥, ¢,) € E(S). Hence, using Lemma
3.5 and the fact each <“-class of S contains precisely one idempotent,
1 = e, Thus, I, = {e,} for each ycY. Hence, (¢,.,—, @, 7)¢ = (a, j)
defines an isomorphism of (Y, 1, J, V, B8, g) onto (Y, J, V, B, g). Con-
versely, we show that S = (Y, J, V, 8, ¢9) is a standard .&“-unipotent
semigroup. Let I, = {¢,}. Define ¢,0¢, =¢,,and let I = U ([,:ye Y).
Hence, (I, ©) is a standard regular semilattice Y of left zero semi-
groups (I,:y€Y). Then, ¢7' is an isomorphism of S onto (Y, I, J,
V, B, g). Hence, S is a standard orthodox semigroup. Using Lemmas
3.2 and 3.5, each #-class of S contains precisely one idempotent.
Hence, it easily follows that S is standard <-unipotent.

REMARK 5.4. A semigroup S is termed _“-unipotent if each
&~ -class of S contains precisely one idempotent [13]. Hence, a
standard regular semigroup is .~ -unipotent in the sense of [13] if
and only if it is standard < -unipotent.

Let Y,V, and 8 be as in Theorem 5.3. Let (H, *) be a semi-
lattice Y of groups (H,:y <€ Y) and let e, denote the identity of H,
and let g be as in Theorem 5.3 and assume 1(b), 1(c), 2(a), 2(c), 3(a)
and 3(b) of Theorem 5.3 are valid. Let (Y, H, V, B, g) denote {(a, 7):
aeV,jeH,~,} under the multiplication (4)
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(a, 7)(b, 2) = (ab, 9(a, b)*jB32) .

THEOREM 5.5. (Y, H, V, B, 9) is a standard inverse semigroup,
and conversely every standard inverse semigroup s isomorphic to

some (Y, H, V, B, 9).

Proof. Let S be a standard inverse semigroup. Then, S is
standard _“-unipotent. Hence, using Theorem 5.3, S= (Y, J, V,
8,9). Using Lemma 3.2, E(Y,J, V, 5, 9) ={(y, 5, ye Y, je E(J,)}
Let je E(J,). Hence, using 2(c) and 2(2), (v, /) ¥, ¢,) = (¥, ¢,) and
(¥, )W, 3) = (y, ). Thus, j =e, Hence, J,=H, for all yeY.
Thus, S=(Y, H, V, 8, g). Conversely, let S = (Y, H, V, B, g). Since
efe, = e, ,, S is standard .~-unipotent by Theorem 5.3. Using Lemma
3.2, E(S) ={(y, ¢,): y€ Y.} Hence, E(S) is a semilattice. Thus, it
is easily seen that S is a standard inverse semigroup.

REMARK 5.6. A characterization of standard orthodox semigroups
may be obtained by combining a theorem of M. Yamada [18, Theorem
2] with Theorem 5.5.

6. The congruence t. Let S be a standard regular semigroup.
Let t = {(a, b)) € S*: aa’, bb' € E(T,) and a'a, b’b € E(T,) for some a’¢c
A(a), b'e ~(b), and y,2€Y}. We introduced ¢ in a special case
in [12] and used it in subsequent papers (see [15] and [16] for ex-
ample). We show ¢ is a congruence on S, S/t =V, and kert¢ (the
collection of ¢-classes of S containing idempotents) = T. We note that
S is a regular extension of 7 by V in the sense of Yamada [19].

LemmA 6.1. Z((4, @, 7)) N ({4=1a X {@7} X Joe—1) &= [

Proof. Let y = aa™ and let w € I,-,. Hence, using (1),
9(a, a™Y*jB, B, € H,,—1 for je€J,—,. There exists ve H,,— such that
g(a, a™)*jB,Bxw = e,. Hence, using (4), (4, @, j)(u, ™", v) = (3, ¥, e,).
However, using 2(b), Lemmas 3.2, 3.3, and 3.5,

¢, a, J) = (3, 9, 61,)('5, a, J) = (¢, a, ) u, a™*, v)(1, a, 7)

-1

while (v, a7, v)(¢, a, 5)(u, ¢, v) = (u, 7%, )%, ¥, €,) = (u, &', v).
LEMMA 6.2. (¢, @, J)t(u, b, v) if and only if @ =b.
Proof. Using Lemmas 6.1 and 3.9, there exists (¢, a, j)' € -7 (¢, a, J)

and (%,b,v)’ € #(u,b,v) such that (1,a, 7)(%,a, 5) € Tou—1, (4, b,)(u,b,v) €
Ty, (4, a, 1), @, j) € Ty—1,, and (u, b, v)'(u, b, v) € T)—,. Hence,
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(¢, @, 7)t(u, b, v) if and only if aa™ = bb™* and a ‘e = b~'b.

THEOREM 6.3. t is a congruence relation on S, S/t =V, and
kert = T.

Proof. The first two assertions are easily seen. Using Lemmas
3.2, 3.9, and 3.10, kert = T.

REMARK 6.4. Using Lemmas 3.9-3.11 and the fact (v, ¢, 7)¢ = @
defines a homomor phism of S onto V, S is a regular extension of
T by V in the sense of Yamada [19, page 4]. Thus, using Theorem
6.3, S is a regular extension of T by S/t.
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