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KOROVKIN SETS FOR AN OPERATOR ON
A SPACE OF CONTINUOUS FUNCTIONS

LE BARON 0. FERGUSON AND MICHAEL D. RUSK

We characterize Korovkin sets for sequences of either
positive operators or contractive operators converging to an
operator T. Properties of both the Korovkin sets and the
operator T are given which were previously known only in
the case T was the identity operator.

Let C — C(Q) be the Banach space of continuous functions on a
first countable, compact Hausdorff space Q. Let J? be a subset of
the bounded linear operators ^(C) on C. A subspace X of C is
said to be a ^f-Korovkin set for an operator T in J? if for any
sequence of operators {Tn} in ^f the convergence of Tnf to Tf in
the uniform norm for all / in X implies the convergence of Tnf
to Tf for all / in C. This paper is concerned with ^^F-Korovkin
sets when J? consists of either the positive (/ ^ 0 implies Tf ^ 0)
operators or the contractive (| |Γ| | ^ 1) operators in &{C).

The case where T is the identity operator is now classical. See,
for instance, Lorentz [3]. In this same paper the extension of the
classical theory to the case of arbitrary operators T is mentioned
as an open problem. This extension is the subject of the present
paper. In case T is the identity operator our results reduce to the
classical ones. A number of authors have considered the case where
T is a lattice homomorphism between (possibly distinct) vector lattices.
The present situation is different since we consider operators with
the same domain and range and assume the weaker condition that
T either be positive or have norm one. In addition, Cavaretta [1]
and Micchelli [4, 5] have considered the case where T is a positive
operator, but not necessarily a lattice homomorphism.

Many of the following results have obvious analogues in the
case where the operators are assumed to be both positive and con-
tractive.

1* General theory* Korovkin-type theorems are usually stated
for either sequences of positive operators or sequences of contractive
operators. Some results about Korovkin sets can be shown in a more
general setting. This observation has also been made by Micchelli
[5].

For a bounded linear operator Γ, let T* denote the adjoint of
T. For a point q in Q, let q denote the functional in C* given by
evaluation at the point q. Let ^ be a subset of C* and ^f be
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the set of all bounded linear operators T on C such that T*q is in
£f for all q in Q. For example, if Sf were the positive functional
on C, then ^J? would be the positive operators.

Let λ be a functional in J5^ and X be a subspace of C. We
say X is an ^-Korovkin set for λ if for any sequence {Xn} in £?
the fact that λΛ(/)->λ(/) for all / in X implies λn(/)~>λ(/) for
all / in C. We say X is an Sf-determining set for λ if for any
μ in Sf the equality μ(/) = λ(/) for all / in X implies μ = λ. The
latter concept was first introduced for operators by Saskin [8]. These
two concepts are equivalent in the following sense.

THEOREM 1.1. Let Sf be a weak* closed subset of C* and let X
be a functional in Jίf\ A subset X of C has the property that for
any norm bounded sequence {Xj in Jtf the fact that λn(/)~*λ(/)
for all f in X implies Xn(f) —• λ(/) for all f in C (X is a Korovkin
set for norm bounded sequences in £f converging to λ) if and only
if X is an Jzf-determining set for X.

Proof. Suppose X is a Korovkin set for norm bounded sequences
in Sf converging to λ. Let μ be any functional in ^ such that
μ(f) = χ(/) for all / in X. Define Xn = μ for n = 1, 2, . Then
{Xn} is a norm bounded sequence in Sf such that λft(/) —*λ(/) for
all / in X. By assumption λΛ(/)—*λ(/) for all / in C. Therefore
μ(f) = λ(/) for all / in C. Hence, X is an ^-determining set for λ.

On the other hand, suppose X is an ^SP-determining set for λ.
Let {λj be a norm bounded sequence in ^f such that λΛ(/)-*λ(/)
for all / in X. By the Banach-Alaoglu theorem there exists a weak*
limit point μ of {λj. Since μ(f) = X(f) for all / in X and X is an
^-determining set for λ, we have μ = λ. The sequence {Xn} is
contained in a compact set and has the unique limit point λ, hence
the sequence converges to λ. Thus Xn(f) —»X(f) for all f in C and
the theorem is proved.

Another fundamental result is the relation between ^- and £?-
Korovkin sets.

THEOREM 1.2. For a convex subset J*f of C* we define ^ as
above. Let X be a subspace of C and T an operator in ^. Then
X is a ^-Korovkin set for T if and only if X is an Jί?-Korovkin
set for T*q where q is any point in Q.

Proof. Suppose X is a ^-Korovkin set for T. Let q be a
point in Q. Suppose there is a sequence {λj in ̂ f such that Xn(f) —*
(T*q)(f) for / in X. We show \n(f)->(T*q)(f) for all / in C by
constructing a sequence of operators in ^f. Let the sequence {Un}
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be a decreasing neighborhood base at the point q. This is possible
since Q is first countable. By Urysohn's lemma there exists, for
each n iΞ> 1, a continuous function hn: Q —* [0,1] such that hn(q) = 1
and hn(p) = 0 for p not in U%. Define the operator ΓΛ in ^ ( C ) by

(Γ./XP) = A.(p)λ.(/) + (1 - K(p))(Tf)(p) .

It follows from the definition of ^^F and the convexity of Sf that
Γn is in J" for all w ̂  1. Fix ε > 0 and / in X. Since Γ/ is a
continuous function, there exists a set, say Z7W, in the neighborhood
base of the point q such that

| (Γ/)( ί )-(Γ/Xp) |<e/2

for all p in Um. Also hn(p) = 0 for any p not in Ϊ7m and any n ̂>
m. Hence, for any p in Q and any n ^ m we have

By assumption there exists j ^ 1 such that for all w ̂  j

\Xn(f)-(Tf)(q)\<ε/2.

Using the definition of Tn and letting k be the maximum of j and
m, we have for all n ^ fe

/ ) - K(p)(Tf)(p)\

= K(p)\Xn(f) ~ (Tf)(p)\

< e/2 + ε/2 = ε .

Since X is a ^-Korovkin set for T, TJ -> Tf for all / in C. In
particular,

λ.(/) = (Tnf)(q)-+(Tf)(q) = (T*ξ)(f) .

This shows that X is an i^-Korovkin set for T*q for all q in Q.
On the other hand, suppose X is an ^-Korovkin set for T*g

for all q in Q. Let {TJ be a sequence of operators in ^ such
that TJ-+Tf for all / in X. As in Saskin [7] we use the well-
known result that a sequence {/„} in C converges uniformly to / in
C if and only if for any sequence {qn} converging to a point q in Q
it follows that fn(qn) —> f(q). Let {qn} be a sequence in Q converging
to a point q in Q. For all / in X, (Γ./)(?J - (Γ/)(g) or (Γί&K/) -
(T*q)(f). By assumption this implies (T*qn)(f)-+(T*q[)(f) for all /
in C. By the same result we now have Tnf —> Γ/ for all / in C
Hence, X is a ^^-Korovkin set for T and the theorem is proved.
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2* Positive operators • In this section we give two characteriza-
tions of Korovkin sets for positive operators.

Let ^ _ denote the positive bounded linear operators on C and
let £f+ denote the positive bounded linear functionals on C. For a
subspace X of C and a functional μ in C*, let μ\x be the functional
in X* obtained by restricting μ to X. We define M = {p\x:p£Q}.

In Micchelli [5] and Grossman [2], the authors assume that a
^f+ -Korovkin set contains a strictly positive function. The following
theorem (compare to Saskin [7, Lemma 1]) shows this hypothesis to
be unnecessary.

THEOREM 2.1. // a subspace X of C is an £f+-Korovkin set for
a functional μ in Jzf+, then X contains a strictly positive function.

Proof. Suppose X is an ^+-Korovkin set for a functional μ in
«Sf+. Let cb(M) be the weak* closure of the convex hull of M. We
claim co(itf) does not contain 0|x, the zero functional restricted to
X. We assume the claim is false and arrive at a contradiction.
Let {μa} be a net in co(ikf), the convex hull of M, such that μa—>0\x

in the weak* topology of X*. For each a there exists a positive
integer nβt ^ 0 and qt in Q, 1 <; i <; n, where Σ?=i& - 1>
that

We define the natural extension va — Y^^SΛx in C*. Note that va

is a positive functional where vjl) = 1 and therefore | | Ϊ ; Λ | | = 1. By
the Banach-Alaoglu theorem there exists a weak* limit point v of
{va}. Clearly, v is a positive functional in C* with v| x = 0|x, but
v ^ O since v(l) = 1. Then for the sequence {λj in J&+ given by
λΛ = v + μ, we have λΛ(/)—>μ(/) for all / in X. However, λ%(l) =
v(l) + /^(l) — 1 + ̂ (1) does not converge to μ(l). This contradicts
the hypothesis of the theorem. So the claim is true. By a standard
separation theorem there exists a weak closed hyperplane H separat-
ing 0\z and co(ikf), i.e., there exists g in X and β > 0 such that
g(p) > β for all p in Q. The theorem is proved.

THEOREM 2.2. A subspace X of C is a ^+-Korovkin set for an
operator T in ^/+ if and only if X is an ^^determining set for
T*q for all q in Q.

Proof. Suppose X is a ^-Korovkin set for T. By Theorem
1.2, X is an ^+-Korovkin set for T*q for all q in Q. Therefore,
as in Theorem 1.1, X is also an .^-determining set for T*g for all
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q in Q.
Conversely, suppose X is an ^^.-determining set for T*q for all

q in Q. By Theorem 2.1, there exists g in X such that #(g) ^ 1 for
all q in Q. Fix a point g in Q. We claim X is an 5̂
set for T*g. Let {λft} be a sequence in ^f+ such that λΛ(/)
for all / in X. In particular, λn(flr) ->(T*g)(g) = (Tg)(q). Since λn

is a positive functional for each n ^ 1

Therefore, the sequence {λj is norm bounded. By Theorem 1.1, the
claim is true. The result now follows from Theorem 1.2. The
theorem is proved.

If the subspace X is finite dimensional, then a more geometric
condition is possible. When T is the identity operator, Corollary
2.3 is essentially Lorentz's Theorem 4 [3].

COROLLARY 2.3. An m-dimensional subspace X is a
set for an operator T in ^ + if and only if X satisfies the condi-
tion that 0|x is not in co(Af) and for any subset {q, qu q2j , qm+ι)
in Q and βt ^ 0 for 1 ^ i <>m + 1 the equality Σ S ^ ^ I x = {T*q)\Σ

implies ΣJΆ'βtQi = T*Q

Proof The necessity of the condition follows directly from
Theorem 2.2.

We now show the condition is sufficient. Suppose X satisfies
the condition of the theorem, but X is not a ^^.-Korovkin set for
T. By Theorem 2.2 there exists a positive functional μ in C* such
that for some q in Q we have μ(f)'= (T*q)(f) for all / in X, but
for some g in C we have μ(g) Φ (T*q)(g). Let Y be the subspace
of C spanned by X and g. Let M1 be the set of point evaluations
in Y*. The functional 0|Γ is not in co(Mi), since 0 | x is not in co(ikΓ).
By a known theorem there exists ai ^ 0 and qt in Q for 1 ̂  i ^ m + 1
such that

μ(f) - it <*Mf)

for all / in Y. Thus,

for all / in X, but not for f = g. This contradicts our assumption.
Hence, X must be a ^^-Korovkin set for Γ. The corollary is proved.

If a positive operator T has an m-dimensional ί:^.-Korovkin set,
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then Micchelli [5] has shown that T must be finitely defined of order
m. This means that for every q in Q there exists at ^ 0 and qt in
Q for 1 ̂  i ^ m such that T*g = ΣίLΛϊi W e shall show a similar
result for contractive operators in the next section.

3* Contractive operators* In this section we prove two char-
acterizations of contractive operator Korovkin sets. We also establish
two properties of any operator T having a contractive operator
Korovkin set. Finally, we give conditions under which positive
operator Korovkin sets are equivalent to contractive operator Korovkin
sets. These results are all stated for an operator T of norm one.
If T has norm c > 0, it is easy to verify the corresponding theorems
for sequences of operators of norm at most c.

Let ^ 1 denote the bounded linear operators on C of norm at
most one and let Sf1 denote the bounded linear functional on C of
norm at most one. The following result can be compared with Saskin
19].

THEOREM 3.1. Let T be a norm one bounded linear operator.
A subspace X of C is a ^^-Korovkin set for T if and only if X
is an £(•^-determining set for T*q for all q in Q.

Proof. The proof follows directly from Theorems 1.1 and 1.2.
The following is the analogue of Saskin's Theorem 2 [9]. This

condition seems to be necessarily more complicated than Saskin's
condition since for q in Q the functional T*q is not necessarily a
point evaluation.

COROLLARY 3.2. Let T be an operator in &(C) of norm one.
An m-dimensional subspace X of C is a ^X-Korovkin set for T if
and only if X satisfies the condition that, for any subset {q, qί9 ,
qm+2} in Q and for any functional μ = S<S2&<Z< where βt is in R
and Σ£i2 |/3J = 1, the equality μ\z = (T*q)\x implies μ — T*q.

The proof of this corollary is similar to the proof of Corollary
2.3.

If an operator T has a ^^Korovkin set X, then T*q for each
q in Q must have certain properties. First, we note that T must
be a finitely defined operator if X is finite dimensional.

COROLLARY 3.3. // the m-dimensional subspace X of C is a
^J?l-Korovkin set for the norm one operator T in &(C), then T is
finitely defined of order m + 1.

Proof. Suppose T and X satisfy the hypotheses of the theorem.
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For each q in Q there exist qlf q2, , qm+1 in Q and at in iί where
ΣίSMαJ = 1 such that for any f in X

Since X is a Korovkin set, by Theorem 3.1, the above equality holds
for all / in C. Therefore T is finitely defined of order m + 1. The
corollary is proved.

In the following Corollary we have another condition on (T*q)\x.

COROLLARY 3.4. Let T be a norm one operator in &(X). Let
X be a closed proper subspace of C. If X is a ^^Korovkin set
for T, then for all q in Q we have

II ψ^n II II T*n II 1

II-* q x\\x* — w J- q\\ — J-

where
ll(Γ*$)lxllz* = sup{|(Γ*ί)(/)|:/eX, | | / | | £ 1} .

Proof. Let a = \\T*q\x\\x*. Then a ^ \\T*q\\ ^ 1. Suppose a <

1. Then by the Hahn-Banach theorem (T*q)\x has an extension to
C of norm a. By a modification (see Rusk [6]) of the proof of the
Hahn-Banach theorem one shows that (T*q)\x has an extension to C
of norm β where a < β <̂  1. This contradicts Theorem 3.1. There-
fore a — 1, which proves the corollary.

A natural question arises about subspaces which are contractive
Korovkin sets for any finitely defined operator of a given order.
Cavaretta [1] has given such sets for the positive operators. The
next corollary shows that there are no such finite dimensional sub-
spaces for contractive operators.

COROLLARY 3.5. Let Q also be nondiscrete. Then C has no finite
dimensional ^^-Korovkin set for all finitely defined operators T
of order 2 such that \\T*q\\ = 1 for all q in Q.

Proof. Suppose the theorem is false. Then there exists a finite
dimensional subspace X of C which is such a set. For any distinct
points qλ and q2 in Q and β1 and β2 in R such that | βλ \ + | β2 \ — 1 there
is some operator T as above such that T*q = β^qx + β2q2. By Co-
rollary 3.4, \\(T*q)\x\\x* = 1. Since the closed unit ball of X is com-
pact, there exists / in X such that (T*q)(f) = 1 = βj{qd + A/fe)
and 11/11 5^1. This can happen only if /(^1) = sgn/31 and f(q2) =
sgn/S2, where sgnx = x/\x\ if x Φ 0. Since Q is not discrete, there
exists a sequence {q%} in Q such that qn—*q in Q, and such that
q%φ q for % ^ 1. Then according to the previous argument there
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exist fn in C of norm one such that /»(?»)• = 1, but fn(q) = - 1 for
n^l. Again since the closed unit ball of X is compact, there exists
a subsequence {%} such that fnj—*f uniformly as j — * °o for some
/ in X. From the uniform convergence we have 1 = fnj(qnj) —» f(q)
as j —> oo. On the other hand — 1 = fnj(q) —* f(q) as j —* ©o. This
contradiction implies the corollary is true.

Suppose X is a finite dimensional subspace of C containing the
constants. Lorentz [3, Theorem 8] has shown that X is a
Korovkin set for the identity operator if and only if X is a
Korovkin set for the identity. We extend this result in the next
theorem.

THEOREM 3.6. Let T be a norm one positive operator in
and let X be a subspace of C containing the constants. The subspace
X is a ^f+-Korovkin set for T and Tl = 1 if and only if X is a
^fι-Korovkin set for T.

Proof. Suppose X is a <:?^-Korovkin set for T and Tl = 1.
Suppose for a point q in Q and a functional μ in ^f1 that μ\x =
(T*q)\x. From

it follows that μ is a positive functional. By Theorem 2.2 we have
μ = T*q. Therefore, by Theorem 3.1, X is a ^/^-Korovkin set for
T.

Conversely, suppose X is a ^/^-Korovkin set for T. By Corol-
lary 3.4 and since T is a positive operator 1 = | |Γ*p| | = (Tl)(p) for
all p in Q, i.e., Tl = 1. Suppose for a point g in Q and a func-
tional μ in ^ + that μ\x = (T*g)|x. Then

By Theorem 3.1 we have μ = T*q. Therefore by Theorem 2.2, X
is a ^^-Korovkin set for T. The theorem is proved.

The hypothesis that Tl = 1 cannot be omitted in Theorem 3.6.
Consider the positive norm one operator T in &(C) where Q = [0, 1]
defined by

(Tf){q) = (1 + g)f(g)/3 , ? e [0, 1] .

If X is spanned by {1, x, x2}, then X is a ^^^-Korovkin set for T
(see Cavaretta [1, Theorem 2]). However, since | |T*#| | = 1/3 when
q = 0, by Corollary 3.4, X is not a ^-Korovkin set for Γ.
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