RATIONAL APPROXIMATION TO x^n

DONALD J. NEWMAN AND A. R. REDDY

This note is concerned with the approximations of x^n on [0,1] by polynomials and rational functions having only nonnegative coefficients and of degree at most $k(1 \le k \le n-1)$. It is shown that the best approximating polynomial of degree k on [0,1] to x^n is of the form

$$p_{\scriptscriptstyle k}(x) = dx^{\scriptscriptstyle k}$$
,

where d > 0 and satisfies the assumption that

$$n(1-d) = (n-k) \left(rac{k}{n}
ight)^{k/(n-k)} d^{n/(n-k)}$$
 ,

with an error $\varepsilon_k = 1 - d$, for each fixed $k = 1, 2, 3, \dots, n - 1$. It is also shown that dx^k is a best approximating rational function of degree k to x^n on [0, 1].

More than one hundred years ago Chebyshev showed that x^n can be uniformly approximated on [-1,1] by polynomials of degree at most (n-1) with an error of exactly 2^{-n+1} .

Just recently D. J. Newman [1] has shown that x^n can be uniformly approximated on [-1, 1] by rational functions of degree at most (n-1) with an error roughly $\sqrt{n}(3\sqrt{3})^{-n}$.

If one looks carefully at the above results, then the following questions arise naturally.

- Q.1: How close can one approximate x^n uniformly on [0, 1] by polynomials of degree (n-1) having only non-negative coefficients?
- Q.2: Is the error obtained by rational functions of degree (n-1) having only nonnegative coefficients in approximating x^n on [0,1] less than the error obtained by polynomials of degree (n-1) having only nonnegative coefficients?

We answer these questions in this note. Let

$$\varepsilon_k = \inf_{p \in \pi_k^+} ||x^n - p(x)||_{L^{\infty[0,1]}}$$

where $\pi_k^*(1 \le k < n)$ denotes the class of all algebraic polynomials of degree at most k having only nonnegative coefficients.

(1')
$$\theta_k = \inf_{\substack{p,q \in \pi_k^*}} \left\| x^n - \frac{p(x)}{q(x)} \right\|_{L^{\infty}[0,1]}.$$

THEOREM 1. If $p_k(x) = dx^k$, $1 \le k < n$, where d > 0 and satisfies the assumption that

(2)
$$n(1-d) = (n-k) \left(\frac{k}{n}\right)^{k/(n-k)} d^{n/(n-k)}$$

then $p_k(x)$ is a best approximating polynomial to x^n in the sense of (1). In fact, we get

(3)
$$n\varepsilon_k = (n-k)\left(\frac{k}{n}\right)^{k/(n-k)}(1-\varepsilon_k)^{n/(n-k)}.$$

Proof. Let

$$(4) p_k(x) = d x^k$$

then it is easy to see by finding a point where $|x^n - p_k(x)|$ attains its maximum on [0, 1], that

$$(5) \quad \varepsilon_k \leq ||x^n - p_k(x)||_{L^{\infty[0,1]}} = \max \left\{ (1-d), \; \left(\frac{n-k}{n}\right) \left(\frac{k}{n}\right)^{k/(n-k)} d^{n/(n-k)} \right\}.$$

From (2), it is clear that

(6)
$$\varepsilon_k \leq ||x^n - p_k(x)||_{L^{\infty}[0,1]} = (1-d).$$

So that, again by (2), we obtain

$$(7) n \varepsilon_k \leq (1 - \varepsilon_k)^{n/(n-k)} (n - k) \left(\frac{k}{n}\right)^{k/(n-k)}.$$

Now we get the lower bound to $n \varepsilon_k$.

From (1) and the nonnegativity of the coefficients we get

$$egin{aligned} arepsilon_k & \geq p(x) - x^n \geq [p(1)]x^k - x^n = [p(1) - 1]x^k + x^k - x^n \ & \geq x^k (-arepsilon_k + 1 - x^{n-k}) \end{aligned}$$

i.e.,

$$\varepsilon_k \ge \frac{x^k (1 - x^{n-k})}{1 + x^k} .$$

 $\frac{(1-x^{n-k})x^k}{1+x^k}$ attains its maximum for values of x satisfying

$$x^{n-k}=rac{k}{n}\Big(rac{1+x^n}{1+x^k}\Big)$$
 .

Hence for this value of x, we obtain

$$(\ 9\)\quad \varepsilon_k \geqq x^k \Big(\frac{n-k}{k}\Big) x^{n-k} = \frac{x^n (n-k)}{k} = \frac{k-n}{k} \, x^{n-k} = 1 - \frac{n}{k} \, x^{n-k} \ .$$

From (9) we get

$$x^{n-k} \geq (1-arepsilon_k) \, rac{k}{n}$$

i.e.,

(10)
$$x \ge \left\lceil (1 - \varepsilon_k) \frac{k}{n} \right\rceil^{1/(n-k)}.$$

From (9) and (10) we obtain

(11)
$$\varepsilon_k \geq (1-\varepsilon_k)^{n/(n-k)} \left(\frac{k}{n}\right)^{n/(n-k)} \left(\frac{n-k}{k}\right).$$

From (7) and (11) we get

$$n \, \varepsilon_k = (1 - \varepsilon_k)^{n/(n-k)} (n-k) \left(\frac{k}{n}\right)^{k/(n-k)}$$
.

Hence, $p_k(x) = d x^k$ is a best approximating polynomial in the sense of (1).

THEOREM 2.

(12)
$$\varepsilon_k = \theta_k \text{ for all } k(1 \leq k < n).$$

Proof. By definition, for a p(x) and q(x), we have

$$\left\|x^n-\frac{p(x)}{q(x)}\right\|_{L^{\infty}[0,1]}=\theta_k.$$

From (13) we get as earlier

$$\begin{array}{ll} (14) & \theta_k \geq \frac{p(x)}{q(x)} - x^n \geq \frac{|p(1)x^k|}{q(1)} - x^n \\ & = \Big(\frac{p(1)}{q(1)} - 1\Big)x^k + x^k - x^n \geq x^k (1 - x^{n-k} - \theta_k) \;. \end{array}$$

i.e.,

$$\theta_k \ge \frac{x^k (1 - x^{n-k})}{1 + x^k}$$

(8) and (15) being the same in terms of x, n and k, we get

(16)
$$n \theta_k \ge (n-k) \left(\frac{k}{n}\right)^{k/(n-k)} (1-\theta_k)^{n/(n-k)}.$$

From Theorem 1 and (16), we obtain

$$(17) \qquad (1-\varepsilon_k)^{n/(n-k)} \left(\frac{k}{n}\right)^{k/(n-k)} \ge \varepsilon_k \left(\frac{n}{n-k}\right) \ge \left(\frac{n}{n-k}\right) \theta_k$$

$$\ge (1-\theta_k)^{n/(n-k)} \left(\frac{k}{n}\right)^{k/(n-k)} \ge (1-\varepsilon_k)^{n/(n-k)} \left(\frac{k}{n}\right)^{k/(n-k)}.$$

(12) follows easily from (17). Hence the result is proved.

Remarks on Theorems 1 and 2. According to ([2], Theorem 6) p_k of our Theorem 1 is unique. Hence p_k is the best approximating polynomial in the sense of (1). (ii) As a result of Theorems 1 and 2 a best approximation to x^n in the sense of (1') is also

$$p_k(x) - dx^k$$
,

where d>0, satisfies (2). (iii) Let us suppose $\varepsilon_k<1-d$, then from (2) and (3), we get $\varepsilon_k>1-d$. Similarly, assume $\varepsilon_k>1-d$, then we get from (2) and (3), $\varepsilon_k<1-d$. Hence we have from (2) and (3),

$$\varepsilon_k = 1 - d$$
, for each fixed $k = 1, 2, \dots, n - 1$.

(iv) For the case k = n - 1, we get

$$heta_{\scriptscriptstyle n-1} = arepsilon_{\scriptscriptstyle n-1} \sim rac{c}{n}$$
 ,

where c satisfies the equation $ce^{c+1} = 1$.

REFERENCES

 D. J. Newman, Rational approximation to xⁿ, J. Approximation Theory, to appear.
 J. A. Roulier and G. D. Taylor, Uniform approximation having bounded coefficients, Abhand. aus dem Math. Sem. der Univ. Hamburg band, 36 (1971), 126-135.

Received May 26, 1976 and in revised form July 21, 1976.

YESHIVA UNIVERSITY

AND

INSTITUTE FOR ADVANCED STUDY