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SMOOTHNESS OF ANALYTIC FUNCTIONS
AT BOUNDARY POINTS

MIKIHIRO HAYASHI

Let U be a bounded open set in the plane. We study
the smoothness at boundary points of the continuous func-
tions on U which are analytic in U. A main result is the
characterization of sequences z,¢€ U, ©, — «, with the property
that the functions are of class C* along z, at z. As an ap-
plication of this characterization, we can find an open set
U for any twice continuously differentiable arc J such that
U contains J in its boundary and the functions are of class
C” on J.

1. Introduction. Let U be a bounded open set in the complex
plane. U and bU will be the closure and the boundary of U, respec-
tively. A(U) will be the set of all continuous functions on U which
are analytic in U. The set A(U) is a Banach space with the sup-
norm, || f|| = [ flly = sup {|f(2)|: z € U}.

For a point x € U, the derivative f*(x) is regarded as a linear
functional fi— f(x) on the Banach space A(U). By Cauchy’s
integral formula this functional is bounded. For some boundary
point x of U, the derivative f*(x) is defined as a bounded linear
functional on A(U); A. P. Hallstrom [2] has characterized such points
2€bU in terms of the analytic capacity (cf. Theorem 2.1). However,
this does not mean that the functions in A(U) are actually differenti-
able at z; in fact, we can construct an example such that all order
derivatives f‘(x) at a point x are bounded functionals, while the
first order derivative of a function in A(U) is not continuous at
x along x, for any sequence x,— x (Example 3, §3). The purpose
of this paper is to investigate the sequences {x,} along which the
functions in A(U) are actually differentiable at x.

The problem was first considered by A. G. O’Farrell [4], J. L.
Wang [6] and the author [3]. The first and the second authors
used suitable Borel measures as a main tool and considered kth
order differentiability, and so on. Independently, we have treated
the same problem by using both the measures and the analytic
capacity. However, in our previous paper we have considered only
the first order case. Suggested by their papers we succeeded in the
extension of the capacity’s method for the high order case; for
which we need an improvement of the method.

Our results are collected in the next section. A main result is
Theorem 2.2; roughly speaking, the sequences x, — 2 are characterized
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by the degree of thickness of the interior U at x and z,. To
measure the thickness, we shall use the analytic capacity. Applying
this theorem, we shall construct some examples in §3. The main
part of our proof consists of calculations to estimate the remainder
of Taylor expansion in terms of the analytic capacity. These calcula-
tions will be made in §§4 and 5. In §6 we shall show a way of
direct proof for the properties of a,(x, r); this notation will be defined
at the beginning of the next section.

The similar results are valid for the classical functions spaces
H>(U) and R(X). H=(U) is the space of all bounded analytic func-
tions on U. R(X) is the space of all continuous functions on a
compact plane set X which are uniformly approximable by rational
functions with no pole on X. The comments on these corresponding
results will be made at suitable places of §2.

We wish to thank the referee for his variable suggestions and
especially for showing us Lemma 2.10 in the present form so that
we can carry out the proof of the theorem without the aid of §6.
Our original form of Lemma 2.10 is stated as the statements (iv)
and (v) in §6.

2. Results and estimates. Throughout the paper, U will be a
bounded open set in the plane, and we shall fix a number a with
0 <a <1. Under this convention, E,. (x, r) = E, =z, r, a) will denote
the open annuli {z: ra"** < |z — x| < ra™} for integers n, —co < < oo,
And the open disc {z: |z — x| < r} will be denoted by 4(x, r).

For a set E in the complex plane C, let .&7&(F) be the set of
all continuous functions f on the Riemann sphere S* = C U {} such
that f is analytic outside of a compact subset of E and || f|ls: = 1,
f(2) = 0. Then, the continuous analytic capacity, a(F), of the set
E is defined by

a(E) = sup{| f'(=)|: fe & Z(E)} .
The following two facts are seen easily:
(2.1) a(d(x, r) =71,
(2.2) aEB)=<(E,) if E,CE,.

To measure the thickness of the interior U at z, we shall con-
sider the following quantity:

1 > a(H(z, T\U)

a"Mx, r) = al*¥x, r, a)y = Ao & (ray

where ¢ is a nonnegative integer and M, N are a pair of integers



SMOOTHNESS OF ANALYTIC FUNCTIONS AT BOUNDARY POINTS 173

with —co <M < N < o or N = ., C(Clearly, it follows that
(2.3) ad¥(x, r) < rrady¥(x, r) for 0<s=t.

We shall use the notation a,(x, r) instead of a}“(x, r). Some other
abbreviations, such as a,x, ), and a,(x, r, @), will be used if it is
appropriate for the occasion. Note that this quantity measures the
outside of U, so U is thick at x if it is small.

REMARK. To give a general form of estimates including the
parameter @, we are working with general ¢. This, however, is a
matter of interest but not of necessity. It may be helpful for the
reader to regard a = 1/2 in this paper, by which each expression
will become simpler.

Now, let xe¢ U. We shall denote by A(U;xz) the set of the
functions in A(U) which admit analytic continuation to some neigh-
borhood of |x. It is known that A(U;x) is a uniform dense sub-
space of A(U) (cf. [1; Chap. II, Th. 1.8]). We define a linear func-
tional on A(U; z) by

DL f —tle‘“(w) :

If the norm || D.|| is bounded, then we can extend || D:|| uniquely to a
bounded linear functional on A(U); in this case, we may use the
notation f“(x) = ¢! Dif for all fe A(U).

In our notations Hallstrom’s characterization reads as follows:

THEOREM 2.1 ([2]). Let x€ U and let » > 0. Then DYt =1) s
bounded tf and only if a, . (x, r) < .

Since the functional D} is defined by A(U), x and ¢, the finiteness
of a,(x, 7, a) does not depend on numbers  and a. Now, our main
theorem reads as follows:

THEOREM 2.2. Let xc U and x,c€ U be a sequence converging
to x

'( i) Suppose a,, (x,r) < o (t =1). Then
S (x,) — fO(x)

for all feA(U) (resp., uniformly for fe A(U), ||fI| 1) if and
only if )

mat+1(xn7 0 |z, — a]) < oo (resp., lim = 0).

n—00
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Here, p > 0 is any fixed number.
(ii) Suppose a, . (x,r) < o (t=0). Then

fOx,) — f9(x) £ ()
T, — X
for all fe A(U) (resp., uniformly for fe A(U), ||f]I|<1) of and
only if

Tim Leei(@ny 020 — @
noeo |, — x|

D < oo (resp., lim = 0).
Here, p > 0 is any fivred number.

NoTe. We proved in our previous paper [3] that the analogue
in case t = 0 of the uniform convergence part of Theorem 2.2 (i) is
valid. However, the pointwise convergence part is false in case
t=0. For a counterexample, let x be a nonpeak point on the
boundary of U to which a sequence x, of peak points converges.
Then a(x, r) < « and alzx,, |z, — x|) = ~ for all =, but f(z,) — f(x)
for all f e A(U).

Theorem 2.1 is the consequence of the following estimates:

ESTIMATE 2.3 (cf. (4.4), (5.2)). Let xc U and
(i) Then, it holds for r >0

0, N
E-1 D) = C, sup %@ 1)
(E-1) 1 D;]] = €, sup (s, ) £ 3
where C, = C(a, t) is an absolute positive comstant which depends

only on a and t. _
(ii) If R s a positive number with UZ A(x, R), then it holds

(E-1) Dl = etysi(2, R) ,

where ¢, 1s a universal constant.

Later, many positive constants, as C,, will appear. They will
depend on several parameters *,, ---, x, and do not depend on U and
2. To describe such constants, we shall say that C = C(x, ---, *,)
is an absolute constant. A universal constant is an absolute constant
with no parameter; in the paper, however, we shall not use a
universal constant other than ¢, which is the constant that appears
in Melnikov’s estimate (cf. §5, (5.1)); from now on we shall use this
constant ¢, without notice.

Some detail points should be mentioned for the proof of Theorem
2.1. Since a¥(x, r) < r'ad¥(x, r) by (2.3), the estimate (E-1) implies

t+1
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311Dz 1|
2.4 o, (e, r) < —=2 U=
(2.4) s+1(, 1) C— 2| D]
if » < ¥YCJ/||Df]]. Therefore, we need the fact that a,(x, r) < oo
for some 7 > 0 then a(x, ') < « for a sufficiently small (or large)
number #’ > 0; to see this, we have only to put " = ra” in the equality
a(x, ra¥) = al=(z, r).

Note. The proof of the estimates (E-1) and (E-1') are essential-
ly due to A. P. Hallstrom [2]. He also showed that if a,(z, r) =
then limy.. a?X(z, r)/a?™(x, r) = = for ¢t = 1. This follows from
Cauchy’s inequality

(@@, M) < a(w, ) 3, 2z T\U)
' 0 (,ran)l—t
Tt
1—a

A

(2, 1) .

The last inequality follows from a(E.(z, r\U) = ra™ ((2.1), (2.2)).
Therefore, the limit

lim %@ 1) @@, 1)
¥ 02¥(x, ) + 8 ax,r) + 3

exists, and is +oo if a(x,r) = . We shall not need this fact,
however.

By (2.3) we have the following:
COROLLARY 2.4. If D: s bounded, then DE, k < t, are bounded.
Later, we shall need that following:

LEMMA 2.5 (A. P. Hallstrom [2]). Let xc U. Suppose a,(x,r)< .
Then

lim

r—0

a4, M\U) _ o
7,.t

A proof of this lemma will be given in §6.
To prove Theorem 2.2, we shall be concerned with the remainder
of Taylor expansion: For f e A(U; x), let

(RN = f@) = 3 B poa
(2.5) _t )
= £@) = 3,(z — o} Dif .
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Clearly, R. is a linear operator on A(U; x). Since
(2.6) IBLF | S £+ Sllz = w71 D)

where ||z — ¢|| = sup,.y |2 — 2|, R, is bounded provided D} is bounded;
in this case, R. is uniquely extended to a bounded operator on A(U)
and it will be denoted by the same notation, R.. Moreover, while
the function (1/s!)f®(z) is undefinable on the set U, we can consider
the Taylor expansion of that function: For x, y ¢ U, we shall denote
by A(U; x, y) the set of the functions in A(U) which admit analytic
continuation to some neighborhood of # and y. The set A(U; 2, ¥)
is also a dense subspace of A(U). Now, for feA(U;z, y), the
remainder of Taylor expansion at x of the function (1/s!)f*“(2) is
given by D:(R.f), for

DyRif) = L y) - 5, W=D T Dy
s! (y —s)! sl

14
—Dif — z( ’ )(y QD .
Our estimate of the norm || D;R:|| is as follows:
ESTIMATE 2.6 (cf. (4.5), (5.5)). Let x,ye U, x + y.

(i) If0<s<tand 0 <o <1, then it holds

C, /
a2y, o |y — xl) + C\
&3k Dt Nt (y, 0]y — )

2 o ( k) lu—afF ).

su(yy Uiy - xi)

(E-2) [[DyR.|| = sup

where C, = C(a, t, s) and C; = C(a, t) are absolute constants.
(ii) If 0<s=<t 0<o<1 and |y — x| < R/4**, where UZ
A(x, R), then it holds

E2) DR = 1y — ol | Byl (Cof L et (0, )

t+1 —
+ Cfit(a, B) + G 2( N )““"*‘(y"’"” 2y,

k ly . xlt—s+ls

where C, = C(a, t, s), C; = C(a, 0, t, s) and Cy = C(a, o, t) are absolute
constants and L = [1/21og, |y — x|/R] (Gaussian symbol).

If s =0, then Dy(R'f) = (R.f)(y) and [|R)|| < 2. In this case
we have the following estimates.

ESTIMATE 2.7. Let ¢, yec U, x # vy, and f e A(U).
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(i) If 0< o<1, then it holds

B9 (BN 2 L0 ) 2ol =)

al(y,aly—wl)+—6—
l1—a

(ii) If0<o <1 and |y — x| < R/4, where U < A(x, R), then it
holds

i 3 0 t 4 —
BN = 221y — ol £ 11(2 B2, @, B

2 e 1 V'a(y,oly — =)
+—0'2a3at+1(x,R)+<1—0') ]y—xl‘ )7

(E-3))

where L = [1/21og, |y — x|/R].

Note. We stated Estimate 2.7 as a special case of Estimate 2.6.
However, we can prove the estimate (E-3') directly by modifying
the calculation made in [3], which is rather more simple than that
made in §5.

Now, we put the statement of Theorem 2.2 into a different form.
As we have already noted, the condition a,,,(x, r) <o is equivalent
to the boundedness of the linear functional D! on A(U). And, the
condition “f*(x,)— f%(x) for all fe A(U) (resp., uniformly for
feA(U), ||f]l £1)” is equivalent to the condition that D} converges
weak-* (resp., in norm) to D.. Moreover, the weak-* convergence
of D! is equivalent to the condition lim, || D:|| < o in our case: The
necessity of the latter condition is obvious by the uniform bounded-
ness principle and, since [f%(x,)— f¥(x) for feA(U;x), the
sufficiency is a consequence of the following easy lemma.

LevMA 2.8. Let E be a normed space and E, be a dense subset
of E. If ¢, is a sequence of linear functionals on E such that
lim, ||¢.]| < o and ¢,(x) is converging for any x¢cE, then ¢, con-
verges weak-* to a bounded linear functional on H.

Now, since D}(R.f) = D,f — D.f, and since lim, D; (R.f) =0
for fe A(U; x), the statement of Theorem 2.2, (i) is equivalent to
the following: Let p > 0 by any fixed number.

(i) Suppose || D[] < e (¢ = 1). Then,

lim || D: R.|| < o (resp., lim = 0)
if and only if

lim e, (2,, 0|®, — x]) < = (resp., lim = 0).
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The same is good of the statement of Theorem 2.2, (ii). In this
case, it holds that Di(R."'f) = Dif — D.f — (t + 1)y — x)D:*f. Hence,
the statement of Theorem 2.2, (ii) is equivalent to the following: Let
© > 0 be fixed number.

(ii) Suppose ||Di|| < o (¢t = 0). Then,

im Dz, R | < o (resp., hm =0)

» |z, — o

if and only if

El—l Czt+1(:11;'m (O[xn j— x') < oo (reSp., lim = O) .
n xn — X n

Thus, Theorem 2.2 is special case of the following theorem.

THEOREM 2.9. Let xc U and let x, e U be a sequence converging
to . Suppose ||D|| < co. Then, for s<t (t = 1),

(1) n‘_m,_ﬂ_pi_};%‘_s < (resp., (2) lim = 0)

if and only if

(3) lim *+1(Ix”’ o |x["t — z|) < oo (resp., (4) hm =0).
oo T, — T

Here, p > 0 is any fixed number.

To prove the theorem, we need a lemma.

LEMMA 2.10. Let z,2,eU, x,—x, and let o >0. Suppose
at+1(xr R) < eo.

(i) Let s, k be nonnegative integers with s +k <t. Then,
1t holds

Iim ag[’N(xny {len _ xl) =0
" !xn - xlk

for any integers M, N with M =< N.

(ii) Let N be an integer and, for each m, let M(n) be an
integer with M(n) £ N and a"™polz, — x| < R — |2, — z|. Then, it
holds

lim af™¥(x,, |z, — 2|) = K,

where K is a constant independent of the sequences x, and the
integers N and M(n).
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Proof. For simplicity, put d, = |z, — x|.
(i) Since E(x,, od,) < 4(z, od,a™) for k = M, we have by (2.2)

1 < a(Ek(xlm lOd'n)\U)
1 — a)a® =u (od,a*)
« N—M+1 a4, pd,a™)\U)
STa-ae  (eda’y

agl’N(xm pdn) =

Thus, Lemma 2.5 implies (i).

(ii) For a bounded set E in the plane, put »,(F) = inf {r/R:
{z:r< |z —2| < R}2E}. Thanks to (i), we may replace the integer
N to another one. So we assume

ak+l — 1
r(E(x, od,)) = — 1 <b=a" for k= N(KO0).
If r,(E) < b, then the set E can be covered by two succesive annuli
E.(z, R,b) and E,,(x, R, b). Putting F, = E,(z, R, b*) and G, =
E,.(x, bR, b), we have E(z,, pd,) < F,, or <G, for k< N, and
hence,

By, pd\U) - 1 a(F\D) o _1 a(GA\D)
(‘odnak)t = p (Rme)t ’ =p (szm—l)t

Since 7. (Ui Erri(2,, 0d,)) > a®, each F',, or G,, does not contain more
than two of Ey(x,, od,). Thus, when we sum up the above inequality
about k, each F', or G, appears at most two times; and it holds

@ ¥(a,, pd,) < (a(x, B, ) + az, R, 1) .
This proves (ii).
REMARK. We can avoid the use of the fact azx, -, b?) < for
a different conformal radius using the semi-additivity of the analytic

capacity, we have a(E,(x, R, a*)\U) < ¢,/(1 — a) X2, & Espri(z, R, a)\U).
Therefore, an easy calculation shows that

C(?“”)’N(xn, "Od,b) < (T:]-i—a,c)oawat(x’ R).

Proof of Theorem 2.9. First, we assume that o > 0 is so small
that v = 1 — S%_, 3(k + 1)(t - 1)(p/a)" > 0. Since &¥¥(y, ply — x|) <
e°ly — z*aii(y, ply — =x[) and

Uiy, 01y — x]) < 0%y — z|*a®i(y, oly — 2])
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by (2.3), we have by (E-2)

Gl DiR: | ,
NG, — 0'ly — o' [ DiEL]

a (Y, ply — ) =

whenever the denominator is positive. Therefore, if lim,||D; RE:|l =0,
then the property (1) (resp., (2)) implies the property (3) (resp., (4)).
So, to complete the proof of the “only if” part, we have only to
show that lim, || D! R.|| < oo implies

lim a, (2, 0|2, — 2|) < oo .

In fact, since D! R. = D. — D:and ||D;|| < oo, the hypothesis implies
lim, || D, || < e, and this implies lim, &, (2., 0|2, — x[) < o by the
inequality (2.4).

Conversely, suppose that the property (3) (resp., (4)) holds.
Then we have by (2.3)

im L2 Plx_» — ) < oo (resp., lim = 0)
" Ixn . xlt stk "

for 0 <k <s. If it were proved that lim, || R: || < o, the property
(1) (resp., (2)) would follow from the estimate (E-2'). So we shall
prove it. In either case, it follows that lim, &, .. (®,, 0|2, — x]) <
for 0 =k < s, and it holds «,,.,(x, R) < o for any R > 0 by Theorem
2.1. Hence, letting R, = a”*™p|x, — x|, the preceding lemma, (ii)
implies 1im, a;(x,, R,) <  for 1<1<s+ 1. Since we may take
the numbers R and R, so that U < 4(x,, R,) and B, < R — |z, — x|,
the estimate (E-1') implies that lim,|[D || < e for 0<k <s.
Therefore, we have lim, || R || < e by (2.6).

Now, let o be any positive number. The theorem holds for
o =a"0 if M is sufficiently large. Since a,.,(y, oly —z|) =
ad My, ply — z|) + a..(y, a¥p|y — z|), it follows from the preceding
lemmay (1) that m“3+1(xm Plxn - xl) = _l-ﬁn_n' as+1(wm (Ollwn - xl)'
Therefore, the theorem holds for any positive number p.

An application of our theorem is the following:

COROLLARY 2.11 (A. G. O’Farrell [4]). If the set U contains a
sector {ze€ d(x, r): 6, < arg (z — x) < 6,}, then the functions in A(U)
are t-times continuously differentiable at x along the half lines
{z€d(x, r): arg (z — x) = O}(0, < 0 < 6,) provided D; is bounded.

The proof is obvious, for a,(y, p|y — «|) = 0 at any point on the
half lines if o < tané,, 6, = min{d — 6,, 6, — 6, 7/2}.
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Note. Here we remark on the rational function space R(X).
In this case, the corresponding estimates are valid for R(X), where
we replace the set U by the set X. The proof is the same if we
use the set R(X), instead of the set A(U; =z, y); where R(X), is
the set of the functions which are analytic on some neighborhood

of X. Therefore, all analogy results of this section are valid for
R(X).

As already noted, the boundedness of D! does not guarantee the
existence of a sequence x, with the property considered above.
However, we have proved the following in [3] (J. L. Wang also
proved this; cf. Theorem 2.13):

THEOREM 2.12. Let x ¢ U and suppose || D:|| < . Denote by m
the 2-dimensional Lebesgue measure. Then there is o measurable
set E of U such that

i) lim PUEN Az, 7)) _

() = i, )

(i) lim fy) — flx) _ ()

Y — 2

Y-z
yeE

’

uniformly for feAU), ||fIIZ1.

Roughly, this fact shows that the functions in A(U) are dif-
ferentiable at « along almost all sequences provided D) is bounded.
In high order case, the situation is quite different. We can construct
an example such that D! are bounded for all ¢ = 0 but, for any
sequence x, converging to x, the derivative f’(x,) of a function f
in A(U) is not continuous at z (cf. §3, Example 3). For R(X),
A. G. O’Farrell ([5]) constructed a more extreme example such that
[|Di]] = « for all xe X except only one point of X at which D! is
bounded for all £ > 0. In spite of this circumstance, J. L. Wang
showed the following:

THEOREM 2.13 (Wang [6]). For uecC and fecA(U), put
4.1)2) =fz+u) — fz) if 2z 2z+uclU  And, inductively, put
4if(2) = (47 F )z + w) — (45 f)R) if 2,2+, -+, 2 +tuecU. Let
xe U and suppose ||D.|]| < co. Denote by m the 2-dimensional
Lebesgue measure. There is o measurable set F such that

(i) z,2+u, ---,x +tucU for wuekF,

(i) lim m(F N 400, 7)) _ 1,

0 m(4(0, 7))

(iif) 113133("—31&@ = FO(x) uniformly for fe A(U), | £l = 1.

u
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REMARK. To be exact, Theorem 2.12 (resp., Theorem 2.13) has
been proved only when the limit of (ii) (resp., (iii)) is weak-* limit
in the paper [3] (resp., [6]). However, with a little more effort,
one can prove the theorems in the above form.

The corresponding our result Theorem 2.13 is as follows;

THEOREM 2.14. Let v € U and suppose || D.|| < o>. Let u, e C\{0}
a sequence such that w,— 0 and x + u,, ++-, € + tu, € U. Then,

l lim (A;nz{;)(x) = Dif

£ oo ]

for all fe A(U) (resp., uniformly for fe A(U), ||fl|=1) if and
only if

Tim & + ku,, plu
nco [, [

) < oo (resp., lim = 0)

for all k=1, ---,t. Here, p >0 is any fized number.

Proof. Since 4.f = t\u'D:f + 4(R.f) and
t t
4(RLf) = kZ:l(—l)"<k )(Rif)(x + kw) ,

the “if” part is a simple consequence of the estimate (E-3’). The
“only if” part follows from the following estimate. The details are
the same as before and will be omitted.

ESTIMATE 2.15. Let z€ U and let u be a nonzero complex number
with * +wu, -+-,x +tueU. Then, for feA(U) and 0 <o <1, it
follows that

C.a(x + lu, alul)
a(x + tu, olul) + C,

(E-4) Iﬁgl%(&f ) )| =

for 1=1,2,---,t, where C, is the same constant as before and
C, = C(a, g,t) 1s an absolute comstant which is positive 1f ¢ > 0 1s
small.

The analogy results are valid for the space H*(U) of bounded
analytic functions, but the proof is not similar. It follows from the
results for R(X). We shall mention it briefly.

First we define the analytic capacity, or 7-capacity; the defini-
tion is similar to a-capacity, where we only replace the condition
“continuous functions” by “Borel functions;” i.e., the analytic capa-
city, 7(E), of a set E in the plane is defined by
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7(E) = sup {|f'(=)[: f e & (E)},

where %7 (E) is the set of all Borel functions f on the sphere S*
such that f is analytic outside of a compact subset of E and
fllse =1, f(<) = 0. The following properties are easily seen:

2.7 a(E) < v(E), and a(V) = (V) if V is an open set .
(2.8) Y(K)=inf{v(V): V open, V 2 K} if K is a compact set .

If we replace the open annuli E,(x,r) by the closed annuli
E . (x, r), the notation 7,(x, ), is defined in the same way as a,(, 7).
However, the derivative f(x) for fe H*(U) is not defined so easily.
This was defined by O’Farrell [4] using the device that T. W.
Gamelin and J. Garnett found and used to define the distinguish
homomorphisms H*(U). For our present purpose, we shall state it
here: Let H*(U; x) be the set of all Borel functions f such that
feH"(U) and f is analytic in a neighborhood of x. Then it holds
that

(2.9) (Gamelin and Garnett [7]) for each function fe H*(U), there
is a sequence f,€ H*(U;x) such that ||f,.lls: = || flly and f,
converges to f pointwisely on U.

Now, for feH=(U;x), we define D.f by D:f = 1/t])f ().
The lower estimate of the norm ||D:|| will be obtained in the same
way. In particular, || D.|| = o if 7,..(2, ) = . Conversely, suppose
Yeri(®, 1) < oo.  Then, by (2.8), there is a compact set X with the
properties: X & UU {z}, xe X and 7,,(x, 7)x < . It follows from
(2.7) that a,.(x, )y < 7.2, 7)x. Therefore, D: is bounded on R(X).

Using Hahn-Banach’s extension theorem and Riesz’s representation
theorem, there is a measure ¢ on X such that S fdp = D.f for
feR(X). If g has the form g =v+ ¢, (6, is the unit point
measure at x), we employ v + ¢((z — x)'/t!)¢t as a new measure /£ S0
that ¢ has no point mass at . Now, we put D.f = S fdp for
feH"(U). We claim that D.f is determined independently of the

choice of the measure p. Since X Z U U {x}, we have H*(U;z) =
R(X). Noting (2.9), dominate convergence theorem yields that

Dif = lim | f,dpe = - lim £12(@)
for any sequence fe H*(U; x) with ||f.]| < | fll, fu—f on U. The

expression shows that D.f depends neither on the measures g nor
on the sequence {f,}. And we also obtained the following;
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(2.10) Dzl z=wr = 1| Dzlzeo -

Since 7(z, r)y = infy Y(x, r)x by (2.8) (precisely, we also need (2.9)),
and since a(z, )y < Y(x, 7)z, the upper estimate of || D:||z~y) follows
from the corresponding estimate of ||D:||zx. One can obtain the
other corresponding estimates for H(U) in the same way. Hence,
all analogy results of this section are valid also for H*(U).

3. Examples. We shall make some examples of U concerning
the space A(U). As for the examples, the situations in the cases
R(X) and H*(U) are different. We shall also remark on it.

ExamMpLE 1. Let U = 4(0, )\(Uz-, 4(7/2%, &,)). If e, <27+,
then the discs 4(7/2", €,) are mutually disjoint and 0ebU. So

(o 22)- 53 #)e(sio 2N\
- 2<i4->’ S, 2.
8/ 2=

Thus, if ¢, = 27+ then ||D}|| < e and ||D;™| = oo; that is, all
functions in A(U) are of class C* on the interval (—1, 1) of the real
axis, but there is a function in A(U) which is not s+ 1 times
differentiable at 0. As another case, if ¢, = 27+, then ||D{|| <
for all ¢; that is, all functions in A(U) are of class C* on the
interval (—1, 1).

ExamMpPLE 2. Modifying the above example, it is possible to con-
struct an example such that the interval lies entirely in the boundary
of U: To do this, we let

_ 50 A (- L) s i)Y

U= 40, D\(H ky% A<n(1 2n) + 2»’ 5”))
for ¢, < 272, Then the interval J = (—1, 1) on the real axis lies
in bU. We claim that the functions in A(U) are of class C* on J
if we set ¢, = 27*’/4n. Put

lc( 1 7
e = —(1 — = —.
On n 2”>+2"

We note that the sum of the arc length of b4(w,., ¢,) is finite, for

© . 2n-2me, < w e, 27" < . Thus, if a function f is continuous
on the Riemann sphere S® and analytic in S\(U:-, Ui-—. 4(W,s, €))7
then the Cauchy’s integral formula yields!

! Note: J is a-negligible as noted below.
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f=3 % 1| L
=1 k== 2700 Ji—~wppl=e, { — 2
for z¢ (U, Up-—_, 4w, €,))". We first compute a(d(x, 27")\U) for
z, —1<2<1l: Let fe.>r&(4d(x,27)\U). By the above formula,
we have

’ 1
Fey=5o=f  fod.

By noting the analyticity of f, it suffice to sum up the integrals
only for =, k with 4(x, 27¥) N AW €,) * @. So we have | f'(e0)| £
Sy 2n-¢,, and hence, a(4(z, 27N\U) £ 32 y2ne, < S0, 2772 = 277,
Now we compute a,(x, r, 1/2)/r* for small » > 0. Let M be the
maximum integer with r < 2%, Then FE,(x,r 1/2)C A(x, 2777 "),
Thus, noting 27%7! < 7, we have

aw, r, 1/2) HADE 9t N - (M +m)?, O Fntl
— <2 -2 %2 -2

— M2
< 2(M+1)(k+t).2t+1 zool 2—M2+n(t—2M) — 2(M+1)(k+t)+t+l. 2

= 1 — 9t—2u *
Therefore, if -0, then M — «~ and we have

az, r, 1/2)
e

0;

the convergence is uniform on any compact subset of the interval
J = (—1,1). This shows that the functions in A(U) are of class C~
on the interval J.

In this example, the fact that J is an interval in not essential.
We have only needed the property of J that every continuous func-
tion f on S? which is analytic on an open set V can be approximated
uniformly by the continuous funections on S? which are analytic on
some neighborhoods of JU V. The sets J with this property are
said to be a-negligible. As is well-known, a finite number of piece-
wise twice continuously differentiable curve is a-negligible. There-
fore, starting from a compact a-negligible set J, we can construct
a similar example of U in the following way; first, take an open set
D with D2 J, and take a sequence {z,} in D\J whose cluster points
are in J; and then, choose a family of disjoint closed discs 4, in
D\J with the centers z;, and put U = D\(J U (Ui 4:). Then the
smoothness on J of the functions f in A(U) is obtained by ac-
celerating the speed of the radii of 4, tending to zero. To construct
a similar example for the case R(X), we can take any compact set
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J with no interior. For the case H*(U), we must take a 7-negligible
set as J. A set J is 7-negligible if there is a constant M > 0 with
the following property; for every bounded function f on S* which
is analytic on an open set V, there is a sequence of bounded func-
tions f, such that f, are analytic on some neighborhood of V U J,
| fulle S M| f |l and f, converges to f pointwisely on U. Since
every compact 7-negligible set is totally disconnected, we can not
take any arc as the set J in the case H”(U).

ExAMPLE 3. Here we give an example of U such that || Di|| < oo
at the origin 0ebU for all order ¢, but lim,||D: || = o for any
sequence z,€ U converging to the origin 0: Let J be an open
annulus {z:r < |2] < R}. It is known that, for any small ¢ > 0 and
large A > 0, there is a finite number of disjoint closed discs 4, such
that 4,cJ, a(U,4) <& and ayz, r,a); >N for any xzeJ (for
instance, cf. [2; Example 1]). Now, for each =, deleting a finite
number of closed disjoint discs 4\ from FE,(z, 1, a), we can make an
open set U = 4(0, )\(U.., 4i™)" such that a(E,(0, 1, a)\U) < ¢" and
alz, |x|, a)y >n for xe UNE,(x,1,a). Then, a/z, R, a), < - for
all ¢, and lim, a,(x,, |2,.|, @) = « if x,— 0. Therefore, Theorem 2.2
shows that this is a desired example of U. Although the above
constrction is somewhat rough, it is not difficult to make this
precise.

4. Proof of the estimates (I). In this section we shall estimate
the norms ||D:|| and ||D;R.|| (¢t = s) from below. To do this we use
the following property of a-capacity (cf. [1; Chap. VIII]): Let K
be a compact set in the complex plane C, and let f be a continuous
function on the Riemann sphere S* which is analytic in the outside
of the set K and vanishes at . Then

4.1 < oK) £ SUK ;

(4.1) | f(2)] = i K)Hfll or zesS

where d(z, K) denotes the distance from z to K. Moreover, let
flz) = AJ(z — x) + A,)(z — ) + As/(z — «)* + - -+ be the Laurent ex-
pansion at « € S? for K C A(x, r). It follows that

(4.2) |Ai| = elr* ' a(K)|| f
(cf. [1; Chap. VIII]). Also, it follows that
(4.3) A = r [ 1]

The latter formula is a consequence of an easy estimate of the
integral A, = 1/27zis (z — )" 'f(z)dxz.

lz—z|=7
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Now, let xc¢ U. We shall estimate the norm ||D:||. Let » >0
and 0 <a <1 be fixed, and put X, = E,(x,r). For ¢ >0 and a
positive integer N, take a function f, € &7 & (X,\U) with

a(X,\U) — (W)t“ﬁT

Let f,.(2) = fu(=)/(z — x) + A,)(z — x)* + A:/(z — x)* + - - - be the Laurent
expansion at oo, and put

< f(e0) £ a(X,\U) .

gn(z) = At+1 + (z — CU)At B (z _ x)t—1A2
+ (2 = @) i) = (2 = ) (3) -

We note that g, is vanish at -« and analytic wherever f, is analytic.
Thus g, € A(U). By the estimate (4.3) and by f,(«) < a(X,\U) < ra®,
we have

(1) 9.1l = llgallx, = (¢ + 2)(ra)™ .

Ifz¢ X, ,UX,UX,., then d(z, X,,) = ra”"* — ra"**. Hence, we have
by the formula (4.1)

(2) 19.(2)| = a—‘“—%@ + 2)(ra")

Now we put

9(z) = 2 9.(2)

= (,ran)h‘-l *

Then g € A(U) and ¢ attains the maximum modulus on U, X,. Let
ze€ X,. Using the estimate (2) for » with n =%k — 1, k, k£ + 1, and
the estimate (1) for n =k — 1, k, k + 1, we have

l9(2)| < LT 2 i (X"\U) + 3(t + 2) .
(1 — a)a +=
Therefore,

lgll = (¢ + 2)(a(w, r) + 3) .

On the other hand,

po-$ L) 2 S A
=0 (ra™)t A= (ra”)

Thus, by letting ¢ — 0, it follows that

1—a)e® aXi(z,r)
4.4 D) = 4 v .
44 1D:11 = t+2 a¥x,r)+ 3
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This proves the estimate (E-1).

Next we shall estimate the norm ||D:R:|| (¢t =s). Let z,ycU
and 0<r<d=|y—x|, and put Y, = E,(y,7r). For ¢ >0 and a
positive integer N, take a function f, e .7 (Y,\U) with

_ ays+_ € < Fo0) < .
(Y,\U) — (ra”) NT1= Fu() = A(Y,\U)
As above, let g,(2) = fi()/(z — ¥) + A:f(z — ¥ + Asf(z — y)’ + -+
be the Laurent expansion at «, and put

9.(2) = Ay + G— YA, + -+ +(z —y)T'4,
+ (2 — y)’fu(e0) — (2 — ¥)Hfu(2) .

Then g,€ A(U). By (1) and (2), we have

(4) lg.1l = (s + 2)(ra)y,

(3)

(5)  lou(2)| = 2XND) (o oNpgryn for ze V. UT,UT.L.,.
(1 _ a)a%+1

Here we consider the Laurent expansion at o once more; this time,
making a new center of the point 2z, let ¢.(2) = B/(z — 2) +
B,)(z — x)* + -+ at . Put

ho(z) = Byyy + (2 — @)B, + -+ + (z — 2)'B, — (2 — 2)'"'g,(2) .

Then &, is analytic wherever g, is analytic. Hence h,e A(U) and
ko)l = llk,]lp,. Since U, Y, 4(x, d + ), the estimate (4.3) and
(1) yields

(6) Al =@+ 2@+ r)* gl =@+ 2)(s + 2)(d + r)F(ra™) ™ .
If 2¢ Y, ,UY,UY,,, then the estimates (4.2) and (5) yields

1k (2)] < {e(t+1)(d+o~)t F(d+r)et(@+r) et (D7) e

+ ANV \O)-(s + Drary

(7) (1 = ajra™
_ {e(t +DE+2) At Vg yra(Y,\U)
2 (1 = ayra**) '

X (s + 2)(ra™)’t .

Now we put

(8) hz) = 3, 2

= (ra™)** .

Then he A(U) and h attains the maximum modulus at a point in
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v Y.. LetzeY, Applying the estimate (7) for n withn =k — 1,
k, &+ 1 and the estimate (6) for n =k — 1, k, k + 1, we have

he)| < ot + 1) + 2)(s + 2)(d + 7) é (YD)
< > > a(Y,

+ (S + 2)(d + ’I')H'1 i CK(Y,,,\U) + 3(t + 2)(8 4 2)(d 4 ,r)t+1
1-—a) =0 "

Since 3V, a(Y,\U) < S5 ra" < r/(1 — a), it follows that

3¢t + 12t + 23
< t+1 0,N,
(9) 1Bl = s+ 2 + (@, )+ AT,
On the other hand, it holds (R:h)(z) = — (2 — ®)'*"* 200 9.(2)/(ra™)**,
so Leibniz’ formula yields

DRI = — L () CED e &0
sl ’§’< (t —k 4+ 1)! ( ) Z (,ra'n)s+1

We note that g (y) = k1 A,_,,, for 0 <k <s and g@(y) = s! fi(=).

By the estimate (4.2) for A,, we have

s 92 "(y)
a=0 (ra™)**

:( k)'z IAk+1|

#=0 (fra,"")“ +1

= 3(k + 1)(s — k)! X (a(gs\gz
for 0 <k <s, and
> _92() Fi(=0) o S AY\U) _
Z‘ (ra™)* = sl nz‘(,) (rary T = = sl <n=0 —-_(,,.a,n)m e> .

Thus we have
3 t t+1 S a( Y’Ib\ U) —
Dy 2 4 3400 )

— kz:,l 3(1‘; + 1)(t + )dt k+1 Z (C:.Ezzv)";\‘gz

n=0

Consequently, letting € — 0, we have the following estimate:

<cl jl_ r>t+1 (

0,N 3¢ + 12t + 23\ \
(s + 2)<a1 () + —2(1?-0&)—>

DB = (1 = a)a'"arii(y, 7)

= Sate o+ 1)(* ) e - o, )

Putting r = oly — 2| = od (0 < 0 < 1), it follows that
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| DyRL|
>~ __ (A —ajr 1
T+ 2+ o) [ ow _ 38 + 12¢ + 23
(4.5) @Lmow wD+_§T?7_)
t . k+1\Y —
XQmmow—xD QE%FQ(Z yh|gfgkx%

Now the estimate (E-2) follows if we put

_Q—a)p*/_  (1-—a)" ) C. — 3t* + 12t + 23
’ @+mwﬂ*@+ma+@M’ ? 21 —a)

The proof of the estimate (E-4) is similar. We put s=20 in
above. Then, the expressions (3) and (8) are as follows;

(3) 0.(2) = F1l==) — (2 — W)u(2)
(8 he) = 3, 2@
n=0 71Q

Also, we note that (RA)(z) = —(2 — 2)'"* 27, 9.(2)/ra*. Let u be a
nonzero complex number with « 4+ %, ---, ¢ + tue U. For a certain
Iwithl<[I<t¢ weputy =z + lu. Since d(x + ku, 4(y, r)) = |u| — r
for k +# 1, it follows from the formula (4.1) and (4) that

2.a(Y,\U) < 20 | ku |t i a(Y\U)
lu| —r ~— 1l—0¢ = ra

|(Rzh)(x + ku)| = Uml“lZ
for £k # Il; where r = o|ul|, 0 <o < 1. And, it follows that

(@) = |y 3 L] 2 u (S AXAD) o)

=0  ra®
Since AL(R:)(x) = S0, (—1)k< H )(R;h)(m + ku), we have

o Yn\U )

o) = (e = 125 5 e 5 20

- e( i )llul”l .

t 20 & [T o
t+1 § t41 > t+1
(Z)l 1—0'k=1<k)k =l 1_0(2t) )

‘We note that

Since r + d = o|u| + |lu] £ (¢ + 1)|u|, it follows from (9) that
IRl < 2{@ + D|u[}*(a(y, o|ul) + C) .
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Thus, by letting € — 0 and N — o, we have

L (P Ca(x + lu, o|ul)
Au Rac z H
|§flu1£l (R./)@)] a(x + lu, olul) + G,

where

g 41 _
o (1 1o 0(2t) )(1 a)a
7 2(t + 1)+ .

This constant C, is positive when ¢ > 0 is small. This proves the
estimate (E-4).

5. Proof of the estimates (II). In this section we shall estimate
the norms ||D.|| and ||D:R:.|| (t = s) from above. The tool is the
following Melnikov’s estimate (c¢f. [1; Chap. VIII]): If K is a
compact set and if f is a continuous function on the closure of the
open annulus J = {2:r < |z| < R} such that f is analytic in J\K,
then

2re,
(5.1) |, faiz| = 20l Flla 0 K)
where ¢, is a universal constant and bJ denotes the boundary of J.
Now, let xc U, and fix a number R with Uc 4(x, B). We
already mentioned about the dense subspace A(U; xz) of A(U) in §2.
In the following, we assume that the functions f in A(U; x) are
extended to continuous functions on the Riemann sphere S* so that
f are analytic at # and vanishes outside of 4(x, R); moreover, we
may assume that the sup-norm || f||s: are sufficiently closed to || f||y.
First we shall estimate of the norm ||D.||. Take a function f
in A(U; z), which is analytic in 4(x, ¢) for suitably small ¢ > 0. It
follows that

Dif = f@) = o= | @ g,

2me Jiz—ai=e (z — x)***
Since we may assume ¢ = Ra” for a larger N, we have

1 gl + L[ @ g,

v
SbEn(x,R) (z — x)!™ o | Jiz—zi=r (. — x)**

IDiflg-gl-Z.
T 7n=0

The last integral is zero by the assumption about f. Hence, the
Melnikov’s estimate (5.1) yields

t Y Cy 1
i1 5 3o il el BND)

= coat+1(x1 R)|If”82 .
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Since the sup-norm || f||s: is closed to || f||;, we obtain the following
estimate:

(5.2) I D:]] = etpsi(z, R) .

Now we shall estimate the norm ||D:R.|. Let x, ye€ U, and fix
a number R with Uc 4(x, R). This time, we assume that the func-
tions f in A(U; =z, y) are extended to continuous functions on the
complex plane so that f are anrlytic at z, ¥ and R:f vanishes out-
side of 4(x, R); where A(U; «, y) is the dense subspace of A(U) which
was defined in §2. Let fe A(U; =, y), then f is analytic in 4(z, ¢)
for a suitably small ¢ > 0. First we make some preparatory com-
putations: It is easy to see that

DyR,f) = Dif if k>s,
Dy(R,f) = D.f — Dif .
Therefore, it follows from (2.5) that

D;(Rif) = D;f - kZ:‘s Tlffc—!:ﬁ—(y — x)""*’D’;f

=—iﬁywwwﬂwm

R\ — ) (B )(z)
- ngg ( s ) 27t Slz—xl=s (Z - x)k+] dz

S Qlﬁfi(ﬁmﬁmmL

—27f'b lz—z|=¢ (z - x)k+1 k=s
Differentiating s times the following equation as functions of y;
s W= _ 1 (@—o"

SE—o)" z—y (z—2)f -y

it holds that

s! [t 1) (y — )+
[

- (z - y)8+1 — s k=0 (z — .’L’)tﬂ(z _ y)s_k+1 .
Thus we have
Di(R.f)

_ 1 1 3 t+1 (y — )+
i O e i W e e )

D ®HE@E
s(+ﬁ@—ﬁ%w ®BAGD

— — t—s
- (y x) Z k 27T’L |z—z|=¢ (z - x)t_H(z - y)S#kﬂH

k=0
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For simplicity, we put F(z) = (R, f)(2) and ¢(2) = F(2)/(z — y),
where | =s —k + 1. The function F(z) has s + 1 zero’s at ¥ and
l<s+1, so we note that the function g¢(z) is analytic wherever
F' is analytic. Now our purpose is to estimate the following integral:

_ (y—a) F(z)
Iz - o SIz—-xI:e (z _ w)*“(z — y)‘ dz
(2) ,
k) S 9?) g4,
271 li—zl=e (2 — )"

For positive numbers o, d, there is a continuously differentiable
function & such that 0 <k <1, h(z) =1 for |2| < p, h(z) =0 for
|z]| > p + & and ||6k/6Z|| < 1/5; for example, we define h by h(z) =1
for |z|=p, =1-2((|z|—p)/3) for p<|z|=p+0/2, =2((|z|—0—0)/0)
for p +0/2<|z| < p + 9, and =0 for |z| > p + 0.

Let 0<ae<1land 0<7r<|y— 2|, and let M be the maximum
integer with Ra”™ = 2|y — |, i.e., M =]log, 2|y — z|/R] — 1 (Gaussian
symbol). For the sake of M = —1, we assume |y — x| < R/2. Here,
we prepare a system of continuously differentiable functions %, for
n=oc and for —1 <% < M such that 0 h, <1,

_ (L on dwer) kg 1
h“(z)—Jo off Ay, 7) ’ % ”é(l"“)’”
and
_ (1 on A(x, Ra™*") 0h.,|| 1
h”(z)‘{o off A(z, Ra) ' Haz =T ok

Moreover, we define a system of functions G, for » = « and for
—1<n<Mby

_ 1 { 9(§) — g(2) oh.,

" G.@) = || L =22 Beasay
_ 1 oh, 1 .
= 9@ + || 0% L dean;

where { =& + 9. It is known that G, has the following properties
(cf. [1; Chap. II]): Denoting by 4(x, r) the closure of A(x, r),

(a) @G, is analytic wherever g is analytic;

(b) G, is analytic outside of 4(x, Ra™) for —1 < n < M, and G.,
is analytic outside of A(y, r);

(¢) Gu(=)=0; .

(d) G,.,— @G, is analytic on 4(x, Ra"™')U (S*\4(x, Ra™)) for
0<% <M, and G, — G, is analytic on 4(y, ar) U (S\4(x, Ra™)).



194 MIKIHIRO HAYASHI

Moreover, there are several estimates made from the formula (3);
we shall state them in order. For simplicity, we put X, = E,(x, R)
and Y, = E,(y, r). Since 0k,/0 # 0 only on X,, it follows that

Gy — G| = 19(R)]-11 = ha(2)| + —i-llgllxn_luxﬂ

oh.,
aC

o 2

4{(z,Ra™) |C _— zl :

1G.(2)| < |0(z)| + %ngx,,

Here, [|o(hy_, — h,)/0C|| = max (||0h,—,/oC|], ||0h,/0T]]) < 1/(1 — a)Ra™,

and, for a measurable set E, it is easy to see that SSF d&dn/|C — 2| =

SS )dEdW/IC — 2| = 275, where 4(z, 9) is the open disc whose area
4(z,6

is the same as E’s. Noting these facts and that |y — 2| < Ra"*!/2
for » < M, we have

2
. [l
1Galr, = (14 = (‘C'imi 27Ra”) - (= 5 :

Therefore, for n < M, it follows that

_ 3-22 _[IF]|
(4) HGn-l Gn”Xn é (1 _ a)a (Raf‘“)l ’
3-20 _|[F]]
(5) ||G'ILHX%§ 1'—(1' (Ran+1)l'

In the same way, have

HGM - GOOH = ”GM - Goo{l./!(x,RaM)\A(y,ar)

1,1 . AR
§<1+? 1 —a)r 271'Ra)

L.l g, ) LEL
16allra = (14 2+ g =gy 257y

Since 2|y — x| > Ra’*?, it follows that

_ 51y — ol LF ]
(6) 16~ 6.l s GLSEEL
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38 . _lF]
(7) HG‘”HY'/L é 1—a (,ra"n+1)l ‘

Now, divide the integral (2) into the form

+g Gy — Go g, S _&__dz},

|z—z|=¢ (z — x)“" ¥ lz=z|=¢ (z — x)‘“

here there is not the second sum if M = —1. We estimate each
integral separately

The first integral: Since R:f vanishes outside of 4(x, R), it
follows that g(oh_,/0Z) = 0. Thus, G_, = ¢g. This shows that the first
integral is zero.

The second integrals: Since G,_, — G, is analytic in 4(x, Ra™™),
the Cauchy’s integral formula yields

S Gaoy = Gy, S} Gaoy = G,

lz—z|=¢ (z — x)t'H ‘ z—z|=Ran+1 (z — x)t'H'

SIz—z]:Ra”‘H SbX%___1 SbXn

Since (G,_, — G,)/(z — x)**' is analytic on S?\4(x, Ra"!) and its residue
at oo is zero, the first integral is vanishing. Also, since G, is
analytic on X, ,, it follows that (G,_, — G)(z — x)dz =
Sm_l (G,_./(z — ©)'")dz. Thus, by Melnikov’s estimate (5.1) and the
inequalities (4) and (5), we have

1 S G,,—G

L < 3-2%||F||( X, \U)
| 21

= (1 _ a)z \(Ran)t+1(Ran)l
1 a(X,\U) > )
a (Ralﬂ+1)t+l(Ra’rb+l)l ’

"z
le—zi=c (2 — )T

+

here there is not the first term in the right hand when % = 0.
Therefore,

’L S S Goos — Gag,
2mi =0 Jiz—sl=c (2 — )t}
< 3'2100“1’1”/% a(X,_\U) +ii a(X,\U) ),

- (1 — a,)2 .= (Ra™)t+itt a = (Ran+1)t+l+1

(8)

since Ra™™ = 2|y — x| > 2r,

3-20¢|F|l (1, aX\U) , 2 aX,\U)
= (1 . a)2 \a (RaM+1)t+l+1 + a %(Ra‘nﬂ)tﬂ‘ﬂ') .
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The third integral: Since we may assume ¢ = Ra® for a large

integer N, we have
.o
le—al=e (g — o)*** |z—z|=RaM

-2

The function (G, — G..)/(z — «)*** is analytic on S®\4(x, Ra™) and its
residue at oo is zero, so the first integral is vanishing. Also, since
G.. is analytic on X, it follows that

S GM—GdeZS G

vxy (2 — z)t+ sxy (2 — 2)tH

Therefore, Melnikov’s estimate (5.1) and the inequalities (5) and (6) yield

o). . fefeed
(9) 211 Jiz—ai=e (2 — @)
< 3-2l||F||. A X,\U) S5ly —axle||[F]] & aX\U)

= 1 — a)? (Ra™) (Ra™tyt+ (1 — a,)za(ra,)’“ ey 20 (Rau+1)t+1 ’

Here we may put N = oo,

The fourth integral: Since the function G.[/(z — x)"** is analytic
on S2\4(y, r) and its residue at oo is zero, the Cauchy’s integral
formula yields

G., _ G..
S[z——xl:e (z — x)t+1dz - §|z——~z]=’r (z — 2)™ az
< G
o ng:‘) Sbyﬂ (z — x)'™ ’

in the last summation, we note that integrals on bY, are vanishing
for large integers » because G.. is analytic in a neighborhood of .
Thus, Melnikov’s estimate (5.1) and the inequality (7) yield

l 1 § G. dz{ ~ 3allF[ aA(Y\U)
a0 | F = G =TT = ap S ey (y — [ = )
_ 3¢, F | $ AT\D)

(1 _ a)z(|y . 90[ _ ,r)t+1 = (,,.an+1)z *

Put these estimates (8), (9) and (10) together, we have the
following estimate: If |y — x| = R/2, then

515 ey — ol B (22 Sy 2l

5|y — x| o aX,\U)
(5.3) -+ (1 — a,)za('ra,)”l iy o] (Ran+1)t+1
3 & a(Y,\U)
T T el - A ey )
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where M = [log, 2|y — z|/R] — 1 (Gaussian symbol) and 1 <1 <s + 1.
Form this estimate, we obtain the following version: Let
r=cly—z|, 0<o <1 If |y — 2| < R/4, then it holds

15 el B (22 e e B

(5.4) + (%)l“zl——""-)—lg Loz, R)

+ <1 E o)ml E a all(z’fljlt:ffl)) ’

where L = [(1 — (1/21)) log, |y — x|/R] (Gaussian symbol).

Proof. For simplicity, we put d = |y — x|. Then L is the
maximum integer with R(d/R)'"*/* < Ra®. From the condition
ly — x| < R/4, it follows that 2d < R(d/R)"“* < Ra®. Hence,
0=ZL=M+1. Now, we transform the first term of (5.3) in the
following way: Since R(d/R)""%/* < Ra**! for 0 < n < L,

6-20 & a(X,\U) _ 628 1 1 B aX,\U)
(1 _ a)za = (Ran+1)t+l+1 = (1 _ a)za Rl(_d_>z—(1/2) attt i (Ra,n)t-!-l
R
1 6.2 d
== PL = a)a\/ a,.(%, B)

and, since 2d < Ra*** for n < M,

62§ U)o 62 L 1§ all\D)
(1— a)ai=x (Ran+1)t+l+1 = (1— a)a (2d)l attt = (Ran)tﬂ .
1 1 y
=g’ 1- a,)aatm[(x’ E).

The second term of (5.3) is transformed in the following way:

5d & aX\U) _ 1 (1)”‘ 5 5 ari=(z, R).

(1 — aya(ra)™ <7 (Ra")™ = @ o — a)a'?

And, the last term of (5.3) is transformed in the following way:

3 S “(Yn\U)<_1_,< 1 )t“, 1 | afy, od)
(1 _ a)z(d — ,r)t+1 Prgunrc} (Ta”“)l = dl 1 — 0 1 —a dt—H.l .

Hence, we obtain the estimate (5.4).

Now we turn back to the formula (1) and obtain the following
estimate of the norm |[|[DJR:||: If s<t 0<o<1 and |y — x| <
R/4°**, then it holds
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s¥1 [ ¢ 1 Ot
IDRLN < o ly — ] ’HR‘H<\/W 2 s (s"_JZJr l)aetza—);amm R)

s41 t+1 1\ i+t 6 -
(5.5) + gl (s . 1)<0) H——)—lgam(% R)

+< 1 )’“ 8 & t+1 \az(y,alw-wl))
1—0/ 1—aB\s—1+1/ ly M

The estimate (E-2') follows if we put

_s+1 t+1 6.2100 _s+1 t+1 1 \i+t 6¢,
Cs—é(s_l+1)(1—a)a’ C‘—;l(s-—l-{—l((r) 1 — a)att?’

o glets)”

NoOTE. There is another way to estimate the norm ||D:R.|| from
above. We note it in short. By Leibniz’s formula, it follows that

DYR:f) = Dy(z — ay B

(z — 2™
1 s (t + 1! R ey s—k R.f
- ;Tk%(k)(t—wrl)z (@ = @) (s — R)LD; ((z—w)’“)
t—s z t + 1 s—k+1)s—k _ﬂ-f__
~(z — ) ,,Z:o( ) )(z—x) D ((z_w)m)

for fe A(U; z, y). We may assume that f is analytic in 4(y, ¢) for
a small ¢ > 0. Then, we have

- apemi( L)

N i) Mt S R.f

z
o2 == (2 — Y)* ¥z — @)t

Now, the way to estimate this integral is similar to that we have
just seen. In this case, we put g(z) = (R.f)(2)/(z — x)'** and change
the definition of k. so that &. has its support in a neighborhood of
2. The estimate obtained by this is similar to that we have given in
above except that the condition 0 < ¢ < 1is replaced by the condition
o>1

Note. In his paper [8], O’Farrel investigated the bihavior of
t-th order derivative D; at a point x under the -condition
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Oy, 7) < oo, where 0 < £ < 1. A version of our estimate (5.5)
is also applied to this case. The corresponding theorem is as
follows:

THEOREM. Let E be a subset of U and let 0 < £ < 1. Suppose
Cypepi(, 7) < oo for some r > 0. Then, there is a constant M > 0
such that

|D, — D.|| < M|y — x|* for all yekE
if and only if

supat+1(y» 401?/ - xl) < oo,
ver |y —aff

Here, o0 >0 is any fixed number.

To obtain the upper estimate, we put L =[(1 — (8/1)) log, |y — z|/R]
in the proof of (5.4), where 1 > 8 > £ > 0. A gimilar computations
yield the following estimate: If |y — x| < R/2“*V/#, then it holds

DR = |y — o B (=2 a0, B)

(5.6) + |y — z|2¢Caii,(w, R)

St ey, oly —
—+ ‘y‘xfcsé(s_l_i_l) ,l:l(/_a[.]t—l+f:+1,)>’

where the constant C,, C, and C, are the same as before. As for
the lower estimate, we can use (E-3).

6. Appendix. We already proved some properties of a.(z, r, a)
in §2. The proof, however, depends on the estimates of ||D:|| and
[|DiR:||. The purpose of this section is to indicate a direct proof of
the following properties:

(i) If afx,r,a)< o for some >0, 0<a<1l, then
a,z, r,a) < o for any r >0, 0 <o < 1.

Suppose a,(z, R) < <o below ((ii) ~ (v)):

(ii) lim a(4d(z, t"')\ U) _ 0.

r

r—0

(iii) lirgﬁ%l)—: 0 for s, k=0 with s + & < ¢.
In addition, let 0 < s < ¢ and let x,c U, x, — a:
(iv) If IMI*E a,(xr;pLx,;;I: ) < oo (resp., il_t’g = 0) for some o >0,
then the same holds fgr any 0 > 0.
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(v) If lima,zx,, p|e, —2|) < for some o >0, then
lim a,(x,, R) < o for any R > 0.

N—>00

These properties are valid not only when the numbers ¢, s and
k are integers but also when these are real numbers. The properties
follow immediately from the following estimates:

(6.1) Citayx, r, b) = alx, r, a) = Gz, r,b) ,
where 0 < a, b <1 and

log, b + 2 log,a + 2)
1—bp 1—ayl"

C; = ¢, max {

(6.2) afr, r) < —2% _ab(z, R) if r< Ra*.
1 — a)a’
(6.3) a4z, T\U) ez, ) .
,rt

ay, ply — x]) < aly, a”ply — z|)

(6.4) LN oA+ o)y —«\U)
(1 — a)a’ o'y — z[*a™
6.5  a(y, ) = 22 __a(y, ply — z|) + Coaa, B)
1—a)
where
2 3e
, R= — dC,=—"""2
‘0>a—a2 =7+ poly — 2| an T oy

In fact, (i) is clear by (6.1). (ii) follows from (6.2) and (6.3), and
(iii) follows from (6.2) and (2.3). By (6.2), it holds a,(y, a"p|y — z|) =
(2¢,/(1 — a)aV)a(y, o|ly — x]) if a”po <0. So (iv) follows from (6.4)
and (ii). (v) is clear by (iv) and (6.5).

The estimate (6.4) has been proved in the proof of Lemma 2.10,
(i). To prove the other estimates, we need the following inequality
which is an easy application of the Melnikov’s estimate (5.1) (ef. [1;
Chap. VIII, Cor. 12.8]): If E is a subset of the complex plane, then

(6.6)  a(d(z, \E) = cd(x, ra")\E) +

c M—1
— 3, a(E(x, 7, o\E) .

1—a =0

Now, the proof of (6.3) is at hand; letting M — < in (6.6), we have

a(d(z, T\E) = ¢/(1 — a)a(x, r). So (2.3) yields (6.3). Since each

E\(x, r, @) can be covered by two succesive E,(x, R, a) and E,_ . (z, R, a),

noting
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a(Ex, r, a\U) = /(1 — a)(a(En(z, B, a\U) + o(En.z, B, a)\U))

and ra* = Ra™"*, we have (6.2). Now we prove (6.5): For simplicity,
we put X,, = E,(x, B, a) and Y, = E,(y, 7, a). Let k be the minimum
integer with p|y — x| = ra”. By (6.2), we have ai“(y,r) =
2¢,/(1 — a)a)a(y, oly — z|). Now, for 0 <n =<k, it holds ra™™ >
|y — x| since ra” > p|y — x|. So, each Y, can be covered by a
finite number of X, say, X,, ---, X,,,. Since Y, intersects with X,
and X,,,, it holds Ra*™ < ra™ + |y — «| and Ra?** > ra"** — |y — x|.
By ra" = ply — x|, we have

ra™t — |y — x|
ro” + |y — x|

a?™t > > a?,

and hence, ¢ =< 2. Thus, noting Ra?'*™ < ra" — |y — x| < ra™*,
we have

(Y, \U) Co o (X,\U)
(ra™ ~ (1 — a)a* #=» (Ra™)*

On the other hand, if X,, intersects four of Y,, say, Y, -+, Y,,
then it holds Ra™ > ra"* — |y — x| and Ra™" < ra™ + |y — «|; that
is,

ra® + |y — x|
re" " — |y — x|

2
a < , or m”<—0{taly—x|<my—xl.
Hence, each X, does not intersect more than three of Y,, n < N.

Thus, summing up the inequality, we have

30, sl B)

This proves (6.5). The idea of the proof of (6.1) is the same as (6.5)
and we shall omit its proof.

ay* Ny, r) = =

NoTE. Some results in this section would be well-known.
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