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THE COHOMOLOGICAL DIMENSION
OF A #n-MANIFOLD IS » + 1

SATYA DEO

It is known that any one-dimensional topological manifold
is of cohomological Dimension two. The present paper is
devoted to the proof of the conjecture that the cohomological
Dimension of any topological n-manifold is n + 1.

Introduction. Let ¢ be a family of supports on a topological
space X. The largest integer m (or <) for which there exists a
sheaf .o~ of abelian groups on X such that the Grothendieck
cohomology groups H%X, . %) # 0 is called the cohomological ¢-
dimension (dim; X) of X. The supremum of all ¢-dimensions when
¢ runs over all the families of supports on X is called the cohomologi-
cal Dimension (Dim X) of X. The extent E($) of a family of
supports ¢ is defined to be the union of all members of ¢. It is
then known that if ¢ and + are two paracompactifying families of
supports on X such that E(¢) C E(y) then dim,(X) < dimy (X). It
follows, therefore, that if ¢ varies over all those paracompactifying
families of supports on X whose extents are equal to X then dim, (X)
is independent of ¢ and is called the cohomological dimension (dim X)
of X. Thus if a space X admits a paracompactifying family of
supports with extent equal to X then dim X makes sense. Let us
call a topological space to be locally paracompact Hausdorff if each
point of the space has a closed paracompact Hausdorff neighbourhood
in it. Then one can easily see that for any space X, dim X makes
sense if and only if X is locally paracompact Hausdorff. An intereting
relation between dim X and Dim X when X is a nice space is given
by the following: If X is locally completely paracompact Hausdorff
then dim X = Dim X or dim X = Dim X — 1. An open problem as
to which one it is, was solved in the case of one-dimensional topologi-
cal manifolds in [2]. The main objective of this paper is to prove
the conjecture of [2] by showing that if X is a topological n-manifold
then Dim X =% + 1 for any # = 1.

1. Preliminaries. By a sheaf in this paper we shall mean a
sheaf of abelian groups. If .97 is a sheaf on a space X, (X, .&¢)
will denote the sheaf on X generated by the presheaf U — C(U, .&)
where C(U, .&7) is abelian group of all sections (not necessarilly con-
tinuous) of .%7 on the open set U of X. Similarly, # (X, &)= #"
will denote the quotient sheaf (X, .o7)/.%7 on X. For each positive
integer n we define inductively
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e X, w) =X, F "X, ¥))
and
F = g"Y(X, )= (X, (X ¥)).

If .o~ is a flabby sheaf on a space X then Hy(X, %) =0 for
every family of supports ¢ on X. Conversely because an open set
U of X is always taut we find ([1], p. 59) that

H(X, U, &)~ Huygyx—o(X, ) =0,

Here cld denotes the family consisting of all closed sets of X. But
again because (cf. [1] p. 58)

0— H'X, U, &7)— H'X, .27)— H(U, ) — H'(X, U, %)

with supports in cld is exact we find that H'(X, &) — HY(U, &) is
an epimorphism and hence .o~ is flabby. Thus we have

ProposiTION 1.1 ([1] p. 110): Let &7 be a sheaf on X. Then
&7 is flabby if and only if HX, .&) =0 for every family of
supports ¢ on X.

Since the sequence

0—> F"— FHX, ) T 0

of sheaves on X where n = 0 and & ° stands for .& is exact and
"X, .&7) is ¢-acyclic for every ¢ we find that for each £ > 0

H’;(X, T )~ H:f,“(X, T Nay e A H};Jrn(X’ 7).

Hence by above proposition we have

PropPOSITION 1.2 ([1] p. 110): Let X be a topological space. Then
Dim X < n if and only if F (X, ) is flabby for every sheaf &7
on X.

Now we state the following theorems which we shall require in
the proof of our main result.

Vietoris-Begle theorem for Sheaf cohomology ([1] p. 55): Let
i X—Y be a continuous closed map, & a sheaf on Y and + a
family of supports on Y. Suppose that each f~'(y) is connected
and tout in X and that H*(f'(y), &Z,) =0 for »p >0 and all y.
Then

f*: H:;(Y, '@) —— H}e“l(lb)(X’ f*ﬂ@)

18 an isomorphism.
Leray spectral theorem for Sheaf cohomology ([1] p. 140): Let
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f: X—Y be a continuous, 4 any family of supports on X, & «a
sheaf on X and ¢ be a paracompactifying family of supports on Y.
Then there exists a spectral sequence in which

Ep = Hg(Y’ %p(fy '/Q/))

and which converges to H3 j(X, .&7). Here S£*(f, ) denotes the
Leray Sheaf of the map f and ¢(y) denotes the extension of + by
o.

2. On Dim X. For any space X we have the following form
of Subspace Theorem and a result which shows that Dim X, in a
sense, is a local property.

THEOREM 2.1. Let A be any locally closed subspace of X. Then
Dim A < Dim X. Furthermore, if each point of X has an open
netghbourhood U such that Dim U < n then Dim X < n.

Proof. For any Sheaf .o on A the sequence
0— & — &4, ¥)— F (4, &)—0
is exact which means the sequence
0— v, — %4, ), — F (4, &), —> 0
of sheaves on X is exact. But since the sequence
0— 7 — FUX, &) — F (X, &) — ¢
is exact and Z%X, ) ~ ©°(4, .&7),, we find that
FHA, A )~ FHX, ) .
By induction, therefore,
F A, )~ T X, ) .

Now let s be a section of & "(4, %) defined on any open set UN A4
of A where U is open in X. This gives canonically a section s’ of
F ™A, ), defined on U. But that means we have a section s” of
Z "X, .o7) on U. Suppose Dim X = n. Then & "(X, .&7) is flabby,
by Proposition 1.2, and hence we have an extension s’ on X of the
section s” onto U. Then s”’/A on A is an extension of s on UN A.
Whence .7 "(A, .©7) is flabby and by Proposition 1.2, Dim A < x.

The last statement follows from Proposition 1.2 and the fact
that a sheaf .o~ on a space X is flabby if and only if each point of
X has an open neighbourhood U such that .7 /U is flabby.

3. Main result. First we have the following
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LEMMA 3.1. Let R** x R R be the canonical projections and

Ilan—l
Z any sheaf on R"'. Let ¢ be any family of supports on R**
and + be the family of supports on R*™ X R which consists of the
members of the family 77 (g) and their closed subsets. Then the Leray
Sheaf S5 (w, 3 #) is a constant sheaf on R with stalks Hy (R, #)

Proof. Note that the Leray Sheaf on R is generated by the
presheaf U—3q.1o(ni(U), 7 FZ |77 (U)). Let us regard H (R*™, &)
to be the constant sheaf on R. The projections

(T,)y: i (U) — R
induce a sheaf map
wf: H¥(RY, &) — SF3(my, T3 F) .

Likewise, the inclusions (chosen once for all for each U) ¢y R**' —
77(U) induce a sheaf map

% S (my, 8 B ) — Hi (R, FZ) .
Now, on the stalks at ¥y in R we find that
(w3)y: HY(R*™, Z) — Z&7 (7, 73 F)y
= =" ()5 Hy(B™, &) — 285 (m, 13 B),s

where U runs over all the neighbourhoods of v,

= 5 () Hi (R, ) — 63w, wi B,

where W runs over the cofinal family of all compact interval neigh-
bourhoods of ¥ in R. But since for each W, (7,)y: 7 (W) — R is
a closed continuous map and (7,)3'(2) is connected and taut (closed
subspace of a paracompact space) in 77(W) and H*((7,)7'(y), &) =0
for every p > 0 and for every z in R** we find by Vietoris-Begle
theorem that (w,);, is an isomorphism. Hence (7)), is an isomor-
phism, which implies that 7} is an isomorphism with +* as its inverse.
This proves our lemma.

Now we can prove our

THEOREM 3.2 (Main result). Let X be a topological n-manifold.
Then Dim X = »n + 1.

Proof. The proof is by induction on . For n =1 we have
already proved in [2] that the Theorem is true. Hence we can
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assume the theorem to be true for all positive integers less than
n, n>1. In view of Proposition 2.1 it suffices to prove that
Dim R* = n + 1. By our hypothesis, there exists a sheaf <& and a
family of supports ¢ on R"* such that

HYR™, Z) #0.

Now let 7, and 7, and + be as in Lemma 3.1. From there it follows
that the Leray Sheaf S#*(x, n7<#) is a constant sheaf on R and
that

HYR"'\, Z) q=mn

Gf(w, nf B, = 0 q>n

Now let ¢ denote the paracompactifying family of supports of all
compact subsets of R. Hence by Leray spectral theorem there
exists a spectral sequence in which

Ey = HUR, 55/(n, 73 7)) — HIH(R", 11 F) .

Since SZ(m, w5 <#) # 0 and E?* =0 for p>1 or ¢ >n we find
that

cn(RY, 3 Z) ~ By~
~ HYR, £ (x,, ni 7))
~ S (m, i)+ 0.

Hence DImR" = n + 1.

REMARK 3.3. If we want to use the Kunneth theorem for Sheaf
cohomology ([1] p. 141) then a very short proof of our main result
is as follows: By [2] and the definition of Dimension we find that
there exists a sheaf .©~ on R and a family of supports ¢ on R such
that H3(R, &)+ 0 and HL(R, . &)=0 for ¢>2. Since R is a
cle,, space we have, by Kunneth theorem, the following sequence
to be exact.

0— HYR, /)Y@ Z— H:i(R x R*™, &7 X R*™)
V4
— Hi(R, Jé/)}kZ——»O.
This implies that H},(R", .o X R"') # 0, whence the result.
REMARK 3.4. It should be noted that the main result of this
paper is not true for zero-dimensional manifolds, which are, as a

matter of fact, discrete spaces. Any sheaf on such a space is itself
discrete and therefore flabby and hence g¢-acyclic for every family
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¢ of supports on X. Since the family cld is a paracompactifying
family for such a space we find that dim X = 0 = Dim X. On the
other hand the result is clearly true for any manifold with boundary
also. Hence Dim I* = n + 1 where I* stands for the n-dimensional
cube ete.

REMAKR 3.5. Asis well known the generalization of the concept
of the family of supports to any paracompactifying family of sup-
port whose extent equals the space X itself is certainly an interesting
one. However, our result shows that the generalization of latter
one to any family of supports does not seem to be so interesting
because of the fact that such a concept leads to a dimension function
defined for all spaces which although distinguishes the Euclidean
spaces R™ and R" m +# m, yet does not agree with other classical
dimensions even for Euclidean spaces. But it may be justified on
the ground that it, being the supremum of some other dimensions
including the classical ones and being consistently greater than the
classical ones strictly by one for Euclidean spaces R", n =1, is not
a bad one. Also for manifolds it satisfies the following product
formula

DmX xY=DimX+DimY —¢

where ¢ = O‘if m =0 or n =0 and 1 otherwise.
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