ON PUNCTURED BALLS IN MANIFOLDS

WOLFGANG HEIL

E. Brown showed that for any map f of a punctured disc B_n with n holes into a 2-manifold M that is an embedding of ∂B_n , there is an embedding g of a punctured disk B_k into M such that $g(\partial B_k)$ is a subcollection of $f(\partial B_n)$. In this paper E. Brown's approach is extended to show that a similar result holds for maps of punctured g-balls into certain g-manifolds ($g \ge 3$).

Let PC(q) denote the collection of (topological) q-manifolds M^q with the property that if h is an embedding of $S^{q-1} \times [0,1]$ into M^q that is null homotopic, then $h(S^{q-1} \times \frac{1}{2})$ bounds a topological q-cell in M^q .

Note that PC(1) and PC(2) consist of all 1-manifolds and 2-manifolds, respectively. It is well-known that PC(3) consists of all 3-manifolds provided the Poincaré conjecture is true in dimension 3. Since the generalized Poincaré conjecture holds for dimensions ≥ 5 , [2] we are led to conjecture that PC(q) consists of all (topological) q-manifolds for $q \geq 5$, particularly since, from the proposition below, if $h: S^{q-1} \to \partial M^q$ is an embedding such that $h(S^{q-1})$ is null-homotopic in M^q , then M^q is indeed a q-cell ($q \geq 5$). However, C. McA. Gordon, whom I would like to thank most sincerely for providing the proof of the following proposition, informs me that C. T. C. Wall and John Morgan have counter examples for q > 4.

PROPOSITION. Let $C \cong S^{q-1}$ be a boundary component of a compact q-manifold M. If [C] = 0 in $\pi_{q-1}(M)$, then M is contractible.

Proof. Let $q \ge 3$. By the Whitehead and Hurewicz Theorems it suffices to show that $\pi_1(M) = 1$ and $H_*(M) = 0$. Now $\partial M = C$ since otherwise $[C] \ne 0$ in $H_{q-1}(M)$. Also, M is orientable since otherwise for the orientation cover M' of M we have $\partial M' = C' \cup C''$ (copies over C) and [C'] = 0 in $\pi_{q-1}(M')$, a contradiction.

There is a map $f: (B^q, S^{q-1}) \rightarrow (M, \partial M)$ such that $f \mid S^{q-1}$ is a homeomorphism. Orient M so that f has degree 1. Then for the fundamental classes z_q , w_q in $H_q(B^q, S^{q-1})$, $H_q(M, \partial M)$, resp., we have $f^*(z_q) = w_q$ and a commutative diagram

$$H^{q-k}(B^q, S^{q-1}) \stackrel{f^*}{\longleftarrow} H^{q-k}(M, \partial M)$$

$$\downarrow^{\cap z_q} \qquad \qquad \downarrow^{\cap w_q}$$

$$H_k(B^q) \stackrel{f_*}{\longrightarrow} H_k(M)$$

By Lefschetz duality, the vertical maps are isomorphisms. Therefore $f_*(-\cap z_q)f^*$ is an isomorphism. It follows that f_* is onto and hence that $H_*(M) = 0$.

To show that $\pi_1(M) = 1$, let $p: \tilde{M} \to M$ be the universal covering. Then f lifts to $\tilde{f}: (B^q, S^{q-1}) \to (\tilde{M}, \partial \tilde{M})$. But $1 = deg(f) = deg(p \circ \tilde{f}) = (deg p)(deg \tilde{f})$, hence $deg(p) = \pm 1$ and $\pi_1(M) = 1$.

For $q \ge 2$, $n \ge 1$, let B_n^q be a punctured q-ball with n-1 holes, i.e., B_n^q is obtained from S^q by removing the interiors of n mutually disjoint q-balls.

For a bicollared $S^{q-1} \subset M^q$ let $N \approx S^{q-1} \times I$ be a neighborhood of S^{q-1} and let $M' = \operatorname{cl}(M-N) \cup B' \cup B''$, where the boundaries of the q-balls B', B'' are attached to the boundary components $S^{q-1} \times 0$ and $S^{q-1} \times 1$ of $\operatorname{cl}(M-N)$. We say M' is obtained from M by surgery along S^{q-1} . Let X be the space obtained from M' by identifying B' and B'' under a homeomorphism. Note that X can be obtained from M^q by attaching a q-ball B to S^{q-1} along its boundary and $X - B = M' - (B' \cup B'') = M - S^{q-1}$.

LEMMA. Let S be a (q-1)-sphere in X-B. If $S \approx 0$ in X, then $S \approx 0$ in M'.

Proof. Suppose S^{q-1} separates M into M_1 and M_2 ; then $M' = M'_1 \cup M'_2$, where $M'_1 = M_1 \cup B'$, $M'_2 = M_2 \cup B''$. Let X'_1 be obtained from M_1 by collapsing S^{q-1} to a point. The projection $p\colon X\to X'_1\vee X'_2$ is a homotopy equivalence which sends S into X'_1 , say. This can be seen as follows: Identify a neighborhood of S^{q-1} with $N = S^{q-1} \times [-1,1]$, where $S^{q-1} = S^{q-1} \times \{0\}$. Let w be the "centerpoint" of B and for $y \in S^{q-1}$ let r(y) be the "radius" in B from y to w. In $X'_1\vee X'_2$ we identify $p(N) = (S^{q-1}\times I)/(S^{q-1}\times \{0\})$ with the cones over $S^{q-1}\times \{-1\}$ and $S^{q-1}\times \{1\}$ wedged together at their vertices to a vertex v. Let $g\colon X'_1\vee X'_2\to X$ be the map that is the identity outside p(N) and which sends the join of x and v (for $x\in S^{q-1}\times \{-1\}$, respectively $S^{q-1}\times \{1\}$) linearly to $x\times [-1,0]\cup r(x\times \{0\})$, resp. $x\times [0,1]\cup r(x\times 0)$. Then it is clear that g is a homotopy inverse of p. But since X'_1 is a retract of $X'_1\vee X'_2$ it follows that $S\cong 0$ in X'_1 already and hence in $M'_1\cong X'_1$.

If S^{q-1} does not separate M, let $\tilde{X} \to X$ be the infinite cyclic covering of X determined by B: the q-ball B lifts to q-balls $\cdots B_{-1}, B_0, B_1, \cdots$ and each component of $\tilde{X} - \bigcup_{i=-\infty}^{\infty} B_i$ maps homeomorphically onto X - B. For each i, let X'_i be obtained from M' by collapsing B' and B'' to single points. There is a projection $\tilde{X} \to \bigvee_{i=-\infty}^{\infty} X'_i$ that is a homotopy equivalence and hence $\pi_{q-1}(X'_i)$ injects into $\pi_{q-1}(\tilde{X})$, for each j. Let \tilde{S} be a lift of S to \tilde{X} . Then \tilde{S} lies in a component of $\tilde{X} - \bigcup B_i$ and is mapped into a factor X'_i of $\vee X'_i$. It follows that $\tilde{S} \cong 0$ in X'_i , hence $S \cong 0$ in M'.

THEOREM. Let $f: B_n^q \to M^q$ be a map such that $f \mid \partial B_n^q$ is a bicollared embedding, $f(\partial B_n^q) = S_1 \cup \cdots \cup S_n$. Suppose that the manifold M' obtained from M^q by surgery along S_i ($i = 2, \cdots, n$) belongs to PC(q). Then some subcollection of $\{S_1, \cdots S_n\}$ contains S_1 and bounds an embedded punctured q-ball in M.

Proof. By Brown's result we can assume that $q \ge 3$. Let X be obtained from M by attaching q-balls B_i to S_i ($i = 2, \dots, n$) along their boundaries. Then $X - \bigcup_{i=2}^n B_i = M' - \bigcup_{i=2}^n B_i' \cup \bigcup_{i=2}^n B_i''$, where B_i' , B_i'' are the balls used for surgery on S_i . Now $S_1 = 0$ in X. By the lemma, $S_1 = 0$ in M'. Since $M' \in PC(q)$, S_1 bounds a q-ball B_* in M'. Let E be the component of $B_* - \bigcup_{i=2}^n (B_i' \cup B_i'')$ which has S_1 on its boundary. If for each $i = 2, \dots, n$ only one of $\partial B_i'$, $\partial B_i'' \subset \partial E$, then E is the desired punctured ball in M bounded by S_1 and some of the S_i 's. In fact, this is the only case that can happen. For suppose for some i, $\partial B_i'$ and $\partial B_i'' \subset \partial E$. Then let k be a simple arc in E from a point of $\partial B_i'$ to a point on $\partial B_i''$ such that k misses the other ∂B_i 's and such that k corresponds to a simple closed curve in M that intersects S_i in one point and misses the other S_i 's. In M, the intersection numbers $\#(k, S_i) = \pm 1$, but $\#(k, S_{i+1}, S_i) = 0$, which is impossible since $S_i \sim \bigcup_{j \neq i} S_j$.

REFERENCES

- 1. E. M. Brown, A note on punctured disks in a 2-manifold, Proc. Amer. Math. Soc., 22 (1969), 471.
- 2. M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math., 84 (1966), 555-571.

Received February 6, 1976 and in revised form July 28, 1976.

FLORIDA STATE UNIVERSITY TALLAHASSEE, FL 32306