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RIESZ HOMOMORPHISMS AND POSITIVE
LINEAR MAPS

C. T. TUCKER

It was shown in previous papers [C. T. Tucker, “Homomor-
phisms of Riesz spaces,” Pacific J. Math., 55 (1974), 289-300,
and “Concerning c-homomorphisms of Riesz spaces,” Pacific
J. Math., 57 (1975), 585-590] that there is a large class 3 of
Riesz spaces with the property that if L belongs to 8 and
¢ is a Riesz homomorphism of L into an Archimedean Riesz
space then ¢ preserves the order limit of sequences. In
this paper it is shown that if L belongs to 3 then every
order bounded linear map of L into an Archimedean, di-
rected, partially ordered vector space is sequentially con-
tinuous. An application of this is made to the theory of
Baire funtions. Further, some properties of those members
of 3 which are also normed Riesz spaces are considered.

This paper is a continuation and extension of Tucker [8] and
[9]. The notation of Tucker [8] and [9] will be used.
The following theorem includes Theorem 19.8 of Nakano [5].

THEOREM 1. Suppose L belongs to 8. Then every order bounded
linear map of L into an Archimedean, directed, partially ordered
vector space ts sequentially continuous.

Proof. Suppose E is a complete Riesz space and let &~ =
#~(L, E) be the complete Riesz space of all order bounded linear
transformations of L into E. If feL and T e &, then denote by
{f, T> the order bounded bilinear form <{f, T) = Tf. The canonical
imbedding of L into &#~(<~(L, E), E) is a Riesz homomorphism.
(A proof when E = R is given in Kelley and Namioka [2], Section
23. The same argument holds when R is replaced by any complete
Riesz space.) Since (¥ ~(L, E), E) is Archimedean, it follows
from the hypothesis that the imbedding preserves countable suprema
and infima. Hence if f, | 0, then for every Te &~, Tf, ={/,,T> |0
by definition of &~

Suppose E is only an Archimedean, directed, partially ordered
vector space. There exists a one to one order continuous positive
linear map ) of E into E, its completion. If T is an order bounded
linear map of L into E, then AT is an order bounded linear map
of L into the complete Riesz space £ and thus AT is sequentially
continuous. This implies that T is sequentially continuous.

In view of the previous theorem the elements of £ will be said
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to have the sequential mapping continuity property, abbreviated the
s.m.c. property.

In Tucker [7], property ¢ was defined. It was shown in Tucker
[8] that if a Riesz space contained a point with property ¢ then it
belonged to 8. The following shows more clearly how property ¢
relates to other properties.

DEFINITION. A point 2 = 6 has weak property ¢ if, whenever
{h;} is a sequence such that k{2, there exists a subsequence .,
Biy hiy -+- and a point b such that b < 3., h,, for each positive
integer n.

Clearly in the hypothesis of Theorem 3 of [8], property ¢ could
be replaced by weak property ¢ with only a minor modification of
the argument.

THEOREM 2. Suppose order convergence in L is stable and f= 6.
Then f has weak property c.

Proof. Suppose h;Tf. Then h; [ 8. Since order convergence is
stable there exists a point g and a sequence {¢;} of real numbers
converging to 0 such that ¢,g < hy. Let {c,} be a subsequence of
{c:} such that ¢,, <1/2°. Then 3. hi = 3i5-i 0,9 = 35-11/27g = g.

Suppose each of 2 and £’ is a linear lattice of functions on a
set X containing the constant functions. Denote by B,(2) (the first
Baire class of 2) the family of all pointwise limits of sequences from
2 and by LS(2) the family of all pointwise limits of nondecreasing
sequences from 2. For a recent survey of the properties of Baire
functions, see Mauldin [4].

LEMMA 3. Pointwise monotone convergence in B(2) is equivalent
to monotone order convergemce. (In the sense that f;| fe B(Q) in
order convergence if and only if it does in pointwise convergence
also.)

Proof. Clearly pointwise convergence implies order convergence.
Suppose fi=fi=fi= -+ =20, f,€ B(2), and A f, = 6. There exists
a sequence g, = ¢, = ¢; = -+ = 0 such that g, € LS(2) and the point-
wise limit of {g,} is the same as the pointwise limit of {f;}. Suppose
there exists an x € X and ¢ > 0 such that g,(z) > ¢ for every positive
integer i. There exists a point %,€2 such that g, = h, =6 and
h(x) =¢. Let k;, =min,, {h,}). Then k, =k, =k, = ---=6, k, 2,
k: < g;, and k(z) = ¢. Let j be the pointwise limit of {k}. Then
jeB(R), g.=J, and j(x) =¢ >0, so that j 6. This is a con-
tradiction. Thus {f;} converges pointwise to 4.
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PROPOSITION 4. The space B/(2) contains a point with weak
property c.

Proof. In view of Lemma 3, the proof of Theorem 6 of Tucker
[9] holds.

COROLLARY 5. Amn order bounded linear mapping from B(R2) to
B(2') is sequentially continuous (and thus preserves bounded point-
wise convergence).

If <] ||” is a norm on the Riesz space L such that ||f] =gl
if |f]=l|gl, then “|| ||” is called a Riesz norm on L and L is said
to be a normed Riesz space. Also L will be said to have property
(4, %) if f;] 6 implies || f;]] ] 0.

The remainder of this paper will consider those members of £
which are also normed Riesz spaces.

THEOREM 6. Suppose L is a normed Riesz space. Then, of the
Jollowing conditions, (1) implies (2) and (2) implies (8). If L s
assumed to be morm complete then each two of the three conditions
are equivalent. If L is mot assumed to be norm complete then the
reverse implications do not hold.

(1) Order convergence in L is stable.

(2) L has the s.m.c. property.

(8) L has property (A4, 7).

Proof. (1) implies (2) clearly. If L has the s.m.c. property then
every positive linear functional is sequentially continuous, thus by
Corollary 24.3 of Luxemburg and Zaanen [3], L has property (A4, 7).

In the event that L is norm complete and has property (4, 7),
then order convergence implies norm convergence which implies re-
lative uniform convergence and (1) holds.

For an example to show that (3) does not imply (2) if L is not
assumed to be norm complete take L= with the L* norm.

To show that (2) does not imply (1) in the absence of norm
completeness consider the following example: Let S be the set of
all ordered pairs of positive integers. Let L be the collection to
which f belongs only in case f is a real valued function on S with
the property that there is a set @ which includes all but at most
a finite number of positive integers such that if %k is a positive
integer in w, f(1, k), (2, k)f(8, k), --- is a bounded number sequence
and with the property that
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The space L is an order complete Riesz space and
g1l
=5 352 21, 9)

is a Riesz norm on L.

Suppose M is an ideal which is relatively uniformly closed. Let
S be the lLu.b. of a countable subset a of M. The function which
is equal to f(¢, j) at (4, j) and zero elsewhere is in M. For each
positive integer k let f.(p, ¢) = f(p, q) if k = q and zero otherwise.
There exists a nondecreasing unbounded sequence of positive integers
{c;} such that the function g, defined by g.(p, q) = ¢, fi(p, ¢) is in L.
Thus f, is in M. Also, there exists a non-decreasing unbounded
sequence of positive integers {d;,} such that A(p, ¢) = d,f(p, ¢) is in
L. Therefore f is in M. By Corollary 4 of Tucker [9], L has the
s.m.c. property.

For each positive integer ¢, let g, be the function such that
g{p,q) =1 1if p=1 and g¢g,(p,q) =0 if p 4. Then {g;} is an or-
thogonal subset of L whose supremum is the constant funection 1,
but there is no nondecreasing unbounded positive number sequence
{k;} such that {k,g.} is bounded above. Thus order convergence is
not stable in L.

The Riesz space L is said to be almost o-complete if L is a Riesz
subspace of a o-complete space K such that for every 6 < uckK
there exists a sequence {u,} & L with § < u, |« in K. See Aliprantis
and Langford [1] or Quinn [6] for some properties of almost
o-complete spaces.

COROLLARY 7. Suppose the normed Riesz space L has s.m.c.
property. Then every order bounded linear mapping of L into
an Archimedean, directed, partially ordered wvector space preserves
order convergence of mets vf and only tf L is almost o-complete.

Proof. Suppose L is almost o-complete. By Theorem 9.1 of
Quinn [6], L is order separable which implies that sequentially con-
tinuous maps are net continuous. On the other hand, if every
sequentially continuous map is net continuous, then L is order
separable and therefore almost o-complete.

The following theorem includes Theorem 5.1 of Zaanen [10] and
Theorem 3 of Tucker [7].

THEOREM 8. Suppose L has the s.m.c. property, is almost
g-complete, and has @ strong unit. Then L is finite dimensional.
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Proof. Let {h;} be a countable orthogonal subset of L*. Suppose
¢ is a strong unit of L. It may be assumed that for each positive
integer ¢, ¢ = h;. By Corollary 8.5 of Quinn [6], there exists a
sequence f, | # such that f, = |32 h, — >, h;| for each positive
integer p. Thus f, is an upper bound of {&}:,... It may be as-
sumed that for each positive integer =,f, <e. Let g,=¢ —
(/o V (Vi k). Then e =g, = g..

Let @ be the set to which f belongs only in case fe L', f<e,
and if € > 0 there exists a positive integer n such that

A —ee—Shi—g) =0.

Let M be the set to which f belongs only in case there is a positive
number ¢ such that ¢|f|]€®. To show that M is an ideal, suppose
that f and g are in M. Now [f+g|=|f|+ gl =[fIVIgl+IfIA
lgl £2(f| VIg)eM. Sothat f+ g is in M. The other properties
of an ideal follow easily.

Note that ¢ = Vh; + Vg,, but since ¢ —ee — g, = (f, V (V. k) —
€e = >\, h; — ee for each positive integer m, e is not in M and M is
not a o-ideal.

Suppose d,] 0, {f.} is a sequence of points of M, and f is a
point of L such that |f— f,| < d,e. Let ¢ >0 and d;, < ¢/2. Then
fi +¢€2e = fand f; — ¢/2¢ = f — ee. There exists a positive integer
n such that A5, (f; — ¢/2¢ — 3\ h;, — g,)" = 6. Thus,

A —cee—h —g) =0,
p=1 i=1
f belongs to M, and M is uniformly closed. This is a contradiction.

In Theorem 8, the s.m.c. property cannot be replaced by property
(4, i) as the first example in Theorem 6 shows. The following ex-
ample shows that the almost o-completeness can not be dropped.

BExAMPLE 9. Let X Dbe an uncountable set and let L be the
space of all real valued functions on X that are constant except
possibly on a finite subset of X. Then L has the principal projec-
tion property but is not almost o-complete. Also L is infinite
dimensional, has a strong unit, and has the s.m.c. property since
the constant function 1 has weak property c.
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